File size: 23,658 Bytes
8c85b97 b812a47 8c85b97 b812a47 8c85b97 b812a47 8c85b97 b812a47 8c85b97 b812a47 8c85b97 b812a47 8c85b97 b812a47 8c85b97 b812a47 8c85b97 b812a47 8c85b97 b812a47 8c85b97 b812a47 8c85b97 b812a47 8c85b97 b812a47 8c85b97 b812a47 8c85b97 b812a47 8c85b97 b812a47 8c85b97 b812a47 8c85b97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 |
"""
Conversational Meeting Intelligence Agent
This module implements a LangGraph-based conversational agent that orchestrates
the entire meeting intelligence workflow through natural conversation, including:
- Video upload and transcription
- Transcription editing
- Pinecone storage
- Meeting queries and analysis
"""
# Standard library imports
from typing import Annotated, Any, Dict, List, Optional, TypedDict
# Third-party imports
from langchain_core.messages import AIMessage, HumanMessage, SystemMessage
from langchain_openai import ChatOpenAI
from langgraph.graph import END, StateGraph
from langgraph.graph.message import add_messages
from langgraph.prebuilt import ToolNode
# Local application imports
from src.config.settings import Config
from src.tools.general import (
get_meeting_metadata,
initialize_tools,
list_recent_meetings,
search_meetings,
upsert_text_to_pinecone,
import_notion_to_pinecone,
create_notion_page,
)
from src.tools.video import (
cancel_video_workflow,
initialize_video_tools,
request_transcription_edit,
request_video_upload,
transcribe_uploaded_video,
update_speaker_names,
update_transcription,
upload_transcription_to_pinecone,
)
class ConversationalAgentState(TypedDict):
"""State for the conversational meeting intelligence agent."""
message: str # Current user query
history: List[List[str]] # Conversation history [[user, bot], ...]
llm_messages: Annotated[List[Any], add_messages] # LLM messages for streaming
response: str # Generated response
error: Optional[str] # Error message if any
class ConversationalMeetingAgent:
"""
LangGraph-based conversational agent that manages the entire meeting intelligence workflow.
This agent combines video processing tools with meeting query tools to provide
a seamless conversational interface for all meeting-related tasks.
"""
# Enhanced system prompt for conversational workflow
SYSTEM_PROMPT = """You are a friendly and helpful Meeting Intelligence Assistant. You help users manage their meeting recordings through natural conversation.
**CRITICAL: INTENT ROUTING (READ FIRST)**
Before calling ANY tool, determine the user's intent:
1. **"Create a Notion page"** / **"Save to Notion"** / **"Export to Notion"** / **"Upload to Notion"**
- **ACTION**: You MUST use `create_notion_page(title=..., content=...)`.
- **FORBIDDEN TOOLS**: Do NOT use `upsert_text_to_pinecone` or `import_notion_to_pinecone`.
- **Example**: "Create a Notion page with these minutes" -> `create_notion_page(...)`
2. **"Save to Database"** / **"Save to Memory"** / **"Upload to Pinecone"** / **"Ingest this"**
- **ACTION**: Use `upsert_text_to_pinecone` (for manual text) or `import_notion_to_pinecone` (for Notion pages).
- **FORBIDDEN TOOLS**: Do NOT use Notion creation tools.
3. **"Import from Notion"** / **"Sync from Notion"**
- **ACTION**: Use `import_notion_to_pinecone`.
**IMPORTANT: Handling Meeting References**
- If the user refers to a meeting by index (e.g., "meeting 1", "the second meeting"), you MUST first call `list_recent_meetings` to find the actual `meeting_id` (e.g., "meeting_abc123").
- NEVER use "meeting 1" or "meeting 2" as a `meeting_id` in tool calls. Always map it to the real ID first.
- If you are unsure which meeting the user means, ask for clarification or list the available meetings.
**IMPORTANT: Handling Data Changes (Deletions/Updates)**
- If the user mentions that a meeting was deleted, updated, or that your information is outdated, do NOT rely on your conversation history.
- You MUST call `list_recent_meetings` or `search_meetings` again to get the fresh state from the database.
- Do not argue with the user about what exists; always verify with the tools.
**Your Capabilities:**
You can help users with two main workflows:
1. **Video Upload & Transcription Workflow**
- Upload meeting videos
- Transcribe with speaker identification
- Edit transcriptions if needed
- Store in Pinecone for AI-powered search
2. **Meeting Query & Analysis Workflow**
- Search across meeting transcripts
- Summarize meetings and extract key points
- Find action items and decisions
- Track speakers and discussions
**Available Tools:**
**Video Processing:**
- `request_video_upload`: Show video upload interface
- `transcribe_uploaded_video`: Process and transcribe video
- `request_transcription_edit`: Allow manual transcription editing
- `update_transcription`: Save edited transcription
- `upload_transcription_to_pinecone`: Store transcription in database
- `update_speaker_names`: Update speaker names in transcript (e.g., replace SPEAKER_00 with "John Smith")
- `cancel_video_workflow`: Cancel current video workflow
**Meeting Queries:**
- `list_recent_meetings`: Show available meetings
- `search_meetings`: Search meeting content semantically
- `get_meeting_metadata`: Get meeting details
- `get_current_time` (from World Time MCP): Check today's date (use this for questions like "last week", "yesterday", etc.)
**Notion Integration & Retrieval:**
**IMPORTANT: You CAN and SHOULD use Notion tools when the user asks!**
**A. RETRIEVING from Notion (Workflow):**
To retrieve a full page from Notion, you MUST follow these steps (Notion pages are split into metadata and content):
1. **Find Page**: Use `API-post-search(query="name")` to get the `page_id`.
2. **Get Metadata**: Use `API-retrieve-a-page(page_id=...)` to get the title and properties. *This does NOT return the page content/text.*
3. **Get Content (CRITICAL)**: Use `API-get-block-children(block_id=page_id)` to get the actual text blocks.
- You MUST iterate through the blocks to extract the "plain_text" or "content".
- If you skip this, you will only have an empty page!
**B. CREATING in Notion:**
1. **Use `create_notion_page`**:
- Simply provide the `title` and the `content` (plain text or markdown).
- This tool handles all paragraph formatting 2000-char limits automatically.
- Do NOT try to build complex JSON blocks yourself.
```
create_notion_page(
title="Meeting Minutes - Dec 24",
content="Here is the summary...\n\n- Point 1\n- Point 2"
)
```
**Available Notion Tools:**
- `API-post-search`: Search for pages
- `API-retrieve-a-page`: Get page metadata (Title, Date, etc.)
- `API-get-block-children`: Get page content/blocks (USE THIS FOR CONTENT!)
- `API-post-page`: Create new pages
- `API-patch-block-children`: Add content to existing pages (Append)
- `API-patch-page`: Update page properties
**C. APPENDING to Notion:**
When adding content to an existing page, you MUST use `API-patch-block-children`.
**CRITICAL**: The `children` argument MUST be a list of Block Objects (like `API-post-page`).
```
API-patch-block-children(
block_id="page_id_here",
children=[
{
"object": "block",
"type": "heading_2",
"heading_2": {"rich_text": [{"type": "text", "text": {"content": "New Section"}}]}
},
{
"object": "block",
"type": "paragraph",
"paragraph": {"rich_text": [{"type": "text", "text": {"content": "New content..."}}]}
}
]
)
```
**D. SAVING to Pinecone (Generic Document/Text Upsert):**
1. **Importing from Notion (MANDATORY)**:
- **ALWAYS** call `import_notion_to_pinecone(query='Meeting Title')`.
- **Context Resolution**: If the user says "upload the first one" or "that meeting", you MUST resolve the reference to the actual **Page Title** from the conversation history (e.g., "Meeting 1"). Do NOT pass "first one" as the query.
- **No Batch Uploads**: If the user asks to "upload all", "upload the missing ones", or provides a list, you MUST call `import_notion_to_pinecone` SEPARATELY for each meeting title. Do NOT call the tool once with a list or a summary. Provide one confirmation message after all are done.
- **NEVER** use `upsert_text_to_pinecone` for Notion content, even if you think you have the text in your history.
- **REASON**: Usage of `upsert_text_to_pinecone` for Notion runs the risk of you summarizing the content. `import_notion_to_pinecone` purely transfers raw data via code, which is safer.
- This single tool handles search, content fetching, and saving automatically.
2. **Manual Entry (User types text directly)**:
- Use `upsert_text_to_pinecone` with the FULL text provided by the user.
- Ensure you pass the raw text without summarizing.
**Example 1 (Notion -> Pinecone):**
User: "Save 'Meeting 3' from Notion to Pinecone"
You: `import_notion_to_pinecone(query="Meeting 3")`
**Example 2 (Notion -> Pinecone):**
User: "Sync 'Project Kickoff' to database"
You: `import_notion_to_pinecone(query="Project Kickoff")`
**Example 3 (Pinecone/Agent -> Notion):**
User: "Save this summary to a Notion page"
You: `create_notion_page(title="Summary", content="The summary...")`
**Example 4 (Manual -> Pinecone):**
User: "Save this note: 'Discussion about budget'"
You: `upsert_text_to_pinecone(text="Discussion about budget", title="Manual Note")`
**Conversational Guidelines:**
1. **Start with a Greeting**: When the conversation begins, greet the user warmly and ask "What would you like to do today?"
2. **Guide the User**: Offer clear options:
- "Would you like to upload a new meeting video?"
- "Or would you prefer to search through your existing meetings?"
3. **Video Upload Flow**:
- When user wants to upload: call `request_video_upload`
- After upload: call `transcribe_uploaded_video` with the video path
- Show transcription and ask: "Would you like to upload this to Pinecone or edit it first?"
- If user wants to edit: Guide them to the **"βοΈ Edit Transcript" tab** where they can:
1. Click "Load Transcript" to load the transcription
2. Make their edits
3. Click "Save & Upload to Pinecone"
- If ready to upload directly: call `upload_transcription_to_pinecone`
- Confirm success and offer to help with queries
4. **Meeting Query Flow**:
- For "what meetings" (db): call `list_recent_meetings`
- For "meetings in Notion" or "Notion pages": call `API-post-search(query="Meeting")`. Do NOT use `list_recent_meetings`.
- For "compare Notion and Database" or "what is missing": Call BOTH `list_recent_meetings` AND `API-post-search(query="Meeting")`, then compare the lists. Report any missing meetings clearly. If meetings are missing, ASK "Would you like to sync [Meeting Name]?" before uploading. Do NOT auto-upload.
- For "find meeting about X", "do I have...", or "search everywhere": Call BOTH `search_meetings(query='X')` AND `API-post-search(query='X')` and report all findings.
- For time-based questions (e.g., "last week", "yesterday"): FIRST call the available time tool (e.g., `get_current_time` from World Time MCP), THEN calculate the date, THEN call `search_meetings`.
- For specific questions: call `search_meetings`
- For meeting details: call `get_meeting_metadata`
- To create minutes/summaries:
1. Identify the correct `meeting_id` (use `list_recent_meetings` if needed)
2. Call `search_meetings` with queries like "summary", "action items", "decisions", "key points"
3. Synthesize the results into a structured meeting minute format
- Provide clear, actionable answers
5. **Be Conversational**:
- Use friendly, natural language
- Acknowledge user actions ("Great! I'll transcribe that for you...")
- Provide context and next steps
- Ask clarifying questions when needed
6. **Handle Transitions**:
- After completing video upload, smoothly transition to offering query capabilities
- Allow users to switch between workflows naturally
**Response Format:**
Keep responses concise and actionable. Use:
- β
for success messages
- β for errors
- πΉ for video-related actions
- π¬ for meeting queries
- π for summaries and data
**Example Conversations:**
```
User: Hi
Agent: Hello! π I'm your Meeting Intelligence Assistant. I can help you:
- πΉ Upload and transcribe meeting videos
- π¬ Search and analyze your meeting transcripts
What would you like to do today?
---
User: Upload a video
Agent: [calls request_video_upload]
Great! I've opened the video upload interface. Please select your meeting video and I'll transcribe it with speaker identification.
---
User: [uploads video]
Agent: [calls transcribe_uploaded_video]
β
Transcription complete! [shows full transcript or summary with link to Edit tab]
Would you like me to:
1. Upload this to Pinecone for AI-powered search
2. Let you edit the transcription first
---
User: What meetings do I have?
Agent: [calls list_recent_meetings]
Here are your available meetings: [shows list]
Would you like me to summarize any of these meetings?
```
Remember: You're a helpful assistant focused on making meeting management effortless through natural conversation!"""
def __init__(self, pinecone_manager, transcription_service):
"""
Initialize the conversational agent.
Args:
pinecone_manager: Instance of PineconeManager for database access
transcription_service: Instance of TranscriptionService for video processing
"""
self.pinecone_mgr = pinecone_manager
self.transcription_svc = transcription_service
# Initialize tools
initialize_tools(pinecone_manager)
initialize_video_tools(transcription_service, pinecone_manager)
# Standard tools
standard_tools = [
# Video processing tools
request_video_upload,
transcribe_uploaded_video,
request_transcription_edit,
update_transcription,
upload_transcription_to_pinecone,
cancel_video_workflow,
update_speaker_names,
# Meeting query tools
search_meetings,
get_meeting_metadata,
list_recent_meetings,
upsert_text_to_pinecone,
list_recent_meetings,
upsert_text_to_pinecone,
import_notion_to_pinecone,
create_notion_page
]
# Load MCP tools (Notion integration)
mcp_tools = []
if Config.ENABLE_MCP:
mcp_tools = self._load_mcp_tools()
# Combine all tools
self.tools = standard_tools + mcp_tools
# Create LLM with tool binding
self.llm = ChatOpenAI(
model=Config.MODEL_NAME,
temperature=0.7,
openai_api_key=Config.OPENAI_API_KEY,
streaming=False
).bind_tools(self.tools)
# Build the state graph
self.graph = self._build_graph()
def _load_mcp_tools(self):
"""
Load MCP tools (Notion integration).
Returns:
List of MCP tools in LangChain format
"""
try:
import asyncio
from src.tools.mcp.mcp_client import MCPClientManager
# Get MCP server configurations
mcp_servers = Config.get_mcp_servers()
if not mcp_servers:
print("β οΈ No MCP servers configured")
return []
# Create MCP client manager
mcp_manager = MCPClientManager(mcp_servers)
# Initialize and load tools (async)
success = asyncio.run(mcp_manager.initialize())
if success:
tools = mcp_manager.get_langchain_tools()
print(f"β
Integrated {len(tools)} MCP tools into agent")
print(f"π Available Tools: {[t.name for t in tools]}")
return tools
else:
print("β οΈ MCP initialization failed")
return []
except Exception as e:
print(f"β οΈ Failed to load MCP tools: {e}")
import traceback
traceback.print_exc()
return []
def _build_graph(self) -> StateGraph:
"""Builds the LangGraph state graph with tool support."""
workflow = StateGraph(ConversationalAgentState)
# Add nodes
workflow.add_node("prepare", self._prepare_messages)
workflow.add_node("agent", self._call_agent)
workflow.add_node("tools", ToolNode(self.tools, messages_key="llm_messages"))
# Define edges
workflow.set_entry_point("prepare")
workflow.add_edge("prepare", "agent")
# Conditional edge: if agent calls tools, go to tools node; otherwise end
workflow.add_conditional_edges(
"agent",
self._should_continue,
{
"continue": "tools",
"end": END
}
)
# After tools, go back to agent
workflow.add_edge("tools", "agent")
return workflow.compile()
def _prepare_messages(self, state: ConversationalAgentState) -> ConversationalAgentState:
"""
Node 1: Prepare LLM messages from conversation history.
"""
try:
llm_messages = [
SystemMessage(content=self.SYSTEM_PROMPT)
]
# Add conversation history - handle different Gradio formats
for item in state["history"]:
# Handle tuple/list format: [user_msg, assistant_msg]
if isinstance(item, (list, tuple)) and len(item) == 2:
user_msg, assistant_msg = item
if user_msg:
llm_messages.append(HumanMessage(content=user_msg))
if assistant_msg:
llm_messages.append(AIMessage(content=assistant_msg))
# Handle dict format: {"role": "user", "content": "..."}
elif isinstance(item, dict):
role = item.get("role")
content = item.get("content")
if role == "user" and content:
llm_messages.append(HumanMessage(content=content))
elif role == "assistant" and content:
llm_messages.append(AIMessage(content=content))
# Add current query
llm_messages.append(HumanMessage(content=state["message"]))
return {"llm_messages": llm_messages}
except Exception as e:
return {"error": f"Error preparing messages: {str(e)}"}
def _call_agent(self, state: ConversationalAgentState) -> Dict[str, Any]:
"""
Node 2: Call the LLM agent (may invoke tools).
"""
if state.get("error"):
return {}
try:
llm_messages = state["llm_messages"]
response = self.llm.invoke(llm_messages)
# Return the new message to be appended
return {"llm_messages": [response]}
except Exception as e:
print(f"ERROR in _call_agent: {str(e)}")
return {"error": f"Error calling agent: {str(e)}"}
def _should_continue(self, state: ConversationalAgentState) -> str:
"""
Conditional edge: Determine if we should continue to tools or end.
"""
if state.get("error"):
return "end"
last_message = state["llm_messages"][-1]
# If the last message has tool calls, continue to tools
if hasattr(last_message, "tool_calls") and last_message.tool_calls:
return "continue"
return "end"
async def generate_response(self, message: str, history: List[List[str]]):
"""
Main entry point - generates a streaming response using the conversational agent.
ASYNC VERSION: Required to support async MCP tools (Notion integration).
Args:
message: The user's current message
history: Conversation history in Gradio format [[user, bot], ...]
Yields:
Response chunks (strings)
"""
# Initialize state
initial_state: ConversationalAgentState = {
"message": message,
"history": history,
"llm_messages": [],
"response": "",
"error": None
}
try:
# Use astream (async) to get intermediate events
# This is REQUIRED for async MCP tools to work properly
final_response = ""
async for event in self.graph.astream(initial_state):
# Handle agent events
if "agent" in event:
agent_update = event["agent"]
if "llm_messages" in agent_update:
last_msg = agent_update["llm_messages"][-1]
# Check for tool calls
if hasattr(last_msg, "tool_calls") and last_msg.tool_calls:
for tool_call in last_msg.tool_calls:
tool_name = tool_call.get("name", "")
if tool_name == "transcribe_uploaded_video":
yield "π¬ Starting video transcription... (this may take a few minutes)\n"
elif tool_name == "upload_transcription_to_pinecone":
yield "πΎ Uploading to Pinecone...\n"
elif tool_name == "search_meetings":
yield "π Searching your meetings...\n"
elif "API-" in tool_name or "notion" in tool_name.lower():
yield f"π Calling Notion: {tool_name}...\n"
# Check for final response (AIMessage without tool calls)
elif isinstance(last_msg, AIMessage) and last_msg.content:
final_response = last_msg.content
yield final_response
# Do not return here to allow the stream to finish naturally
# return
# Handle tool execution events (to catch errors)
if "tools" in event:
tools_update = event["tools"]
# Check for tool errors
if "llm_messages" in tools_update:
for msg in tools_update["llm_messages"]:
if hasattr(msg, "status") and msg.status == "error":
yield (f"β οΈ Tool error: {msg.content}\n", None)
# Handle error events
if "error" in event:
yield (f"β Error: {event['error']}", None)
return
# If we didn't get a final response in the stream
if not final_response:
yield "I'm thinking... (processing completed without final output)"
except Exception as e:
import traceback
print(f"Error in generate_response: {traceback.format_exc()}")
yield f"Error generating response: {str(e)}"
# Alias for clarity
ConversationalAgent = ConversationalMeetingAgent
|