Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import spaces ## For ZeroGPU | |
| import torch | |
| import torchaudio | |
| from transformers import Wav2Vec2FeatureExtractor, Wav2Vec2ForSequenceClassification | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| model_name = "Hatman/audio-emotion-detection" | |
| feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name) | |
| model = Wav2Vec2ForSequenceClassification.from_pretrained(model_name) | |
| def preprocess_audio(audio): | |
| waveform, sampling_rate = torchaudio.load(audio) | |
| resampled_waveform = torchaudio.transforms.Resample(orig_freq=sampling_rate, new_freq=16000)(waveform) | |
| return {'speech': resampled_waveform.numpy().flatten(), 'sampling_rate': 16000} | |
| ## For ZeroGPU | |
| def inference(audio): | |
| example = preprocess_audio(audio) | |
| inputs = feature_extractor(example['speech'], sampling_rate=16000, return_tensors="pt", padding=True) | |
| inputs = {k: v.to('cpu') for k, v in inputs.items()} # Not necessary on ZeroGPU | |
| with torch.no_grad(): | |
| logits = model(**inputs).logits | |
| predicted_ids = torch.argmax(logits, dim=-1) | |
| return model.config.id2label[predicted_ids.item()], logits, predicted_ids | |
| ## For ZeroGPU | |
| def inference_label(audio): | |
| example = preprocess_audio(audio) | |
| inputs = feature_extractor(example['speech'], sampling_rate=16000, return_tensors="pt", padding=True) | |
| inputs = {k: v.to('cpu') for k, v in inputs.items()} # Not necessary on ZeroGPU | |
| with torch.no_grad(): | |
| logits = model(**inputs).logits | |
| predicted_ids = torch.argmax(logits, dim=-1) | |
| return model.config.id2label[predicted_ids.item()] | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# Audio Sentiment Analysis") | |
| with gr.Tab("Label Only Inference"): | |
| gr.Interface( | |
| fn=inference_label, | |
| inputs=gr.Audio(type="filepath"), | |
| outputs=gr.Label(label="Predicted Sentiment"), | |
| title="Audio Sentiment Analysis", | |
| description="Upload an audio file or record one to get the predicted sentiment label." | |
| ) | |
| with gr.Tab("Full Inference"): | |
| gr.Interface( | |
| fn=inference, | |
| inputs=gr.Audio(type="filepath"), | |
| outputs=[gr.Label(label="Predicted Sentiment"), gr.Textbox(label="Logits"), gr.Textbox(label="Predicted IDs")], | |
| title="Audio Sentiment Analysis (Full)", | |
| description="Upload an audio file or record one to analyze sentiment and get detailed results." | |
| ) | |
| demo.launch(share=True) |