JYTeam2025's picture
Update app.py
7b7bb52 verified
import gradio as gr
import numpy as np
import random
import torch
import spaces
from PIL import Image
from diffusers import FlowMatchEulerDiscreteScheduler
from optimization import optimize_pipeline_
from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3
import math
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
import os
# --------------------------
# 🔹 CONFIGURACIÓN DEL TOKEN 🔹
# --------------------------
ACCESS_TOKEN = os.environ.get("Token_Nuevo")
# --- Model Loading ---
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = QwenImageEditPlusPipeline.from_pretrained(
"Qwen/Qwen-Image-Edit-2509",
transformer=QwenImageTransformer2DModel.from_pretrained(
"linoyts/Qwen-Image-Edit-Rapid-AIO",
subfolder="transformer",
torch_dtype=dtype,
device_map="cuda",
),
torch_dtype=dtype,
).to(device)
pipe.load_lora_weights(
"eigen-ai-labs/eigen-banana-qwen-image-edit",
weight_name="eigen-banana-qwen-image-edit-fp16-lora.safetensors",
adapter_name="eigen-banana",
)
pipe.set_adapters(["eigen-banana"], adapter_weights=[1.0])
pipe.fuse_lora(adapter_names=["eigen-banana"], lora_scale=1.0)
pipe.unload_lora_weights()
pipe.transformer.__class__ = QwenImageTransformer2DModel
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
optimize_pipeline_(
pipe,
image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))],
prompt="prompt",
)
MAX_SEED = np.iinfo(np.int32).max
@spaces.GPU
def convert_to_anime(
image,
prompt,
seed,
randomize_seed,
true_guidance_scale,
num_inference_steps,
height,
width,
progress=gr.Progress(track_tqdm=True),
):
if not prompt or prompt.strip() == "":
prompt = "edit"
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
pil_images = []
if image is not None:
if isinstance(image, Image.Image):
pil_images.append(image.convert("RGB"))
elif hasattr(image, "name"):
pil_images.append(Image.open(image.name).convert("RGB"))
if len(pil_images) == 0:
raise gr.Error("Please upload an image first.")
result = pipe(
image=pil_images,
prompt=prompt,
height=height if height != 0 else None,
width=width if width != 0 else None,
num_inference_steps=num_inference_steps,
generator=generator,
true_cfg_scale=true_guidance_scale,
num_images_per_prompt=1,
).images[0]
return result, seed
# --- UI ---
css = '''
#col-container {
max-width: 900px;
margin: 0 auto;
padding: 2rem;
font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Helvetica, Arial, sans-serif;
}
.gradio-container.light {
background: linear-gradient(to bottom, #f5f5f7, #ffffff);
}
.gradio-container.dark {
background: linear-gradient(to bottom, #1a1a1a, #0d0d0d);
}
#title {
text-align: center;
font-size: 2.5rem;
font-weight: 600;
margin-bottom: 0.5rem;
}
'''
def update_dimensions_on_upload(image):
if image is None:
return 1024, 1024
original_width, original_height = image.size
if original_width > original_height:
new_width = 1024
new_height = int((original_height / original_width) * new_width)
else:
new_height = 1024
new_width = int((original_width / original_height) * new_height)
new_width = (new_width // 8) * 8
new_height = (new_height // 8) * 8
return new_width, new_height
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
# ---------- LOGIN PANEL ----------
with gr.Column():
gr.Markdown("## 🔒 Acceso restringido")
token_input = gr.Textbox(
label="Introduce tu token",
type="password",
placeholder="Token",
)
status_text = gr.Textbox(
label="Estado",
interactive=False,
value="",
)
login_btn = gr.Button("Ingresar")
# ---------- APP AREA (oculta hasta login) ----------
with gr.Column(visible=False) as app_area:
with gr.Column(elem_id="col-container"):
gr.Markdown(
"# 🍌 Eigen-Banana-Qwen-Image-Edit: Fast Image Editing with Qwen-Image-Edit LoRA",
elem_id="title",
)
with gr.Row():
with gr.Column(scale=1):
image = gr.Image(label="Upload Photo", type="pil")
prompt = gr.Textbox(label="Prompt", value="Edit")
with gr.Accordion("⚙️ Advanced Settings", open=False):
seed = gr.Slider(0, MAX_SEED, value=0)
randomize_seed = gr.Checkbox(value=True)
true_guidance_scale = gr.Slider(1.0, 10.0, value=1.0)
num_inference_steps = gr.Slider(1, 40, value=4)
height = gr.Slider(256, 2048, step=8, value=1024, visible=False)
width = gr.Slider(256, 2048, step=8, value=1024, visible=False)
convert_btn = gr.Button("Edit", variant="primary")
with gr.Column(scale=1):
result = gr.Image(label="Result")
convert_btn.click(
fn=convert_to_anime,
inputs=[
image,
prompt,
seed,
randomize_seed,
true_guidance_scale,
num_inference_steps,
height,
width,
],
outputs=[result, seed],
)
image.upload(
fn=update_dimensions_on_upload,
inputs=[image],
outputs=[width, height],
)
# ---------- LOGIN LOGIC ----------
def check_token_func(token_value):
if token_value == ACCESS_TOKEN:
return gr.update(visible=True), "Token correcto. Acceso concedido."
else:
return gr.update(visible=False), "Token incorrecto. Acceso denegado."
login_btn.click(
fn=check_token_func,
inputs=token_input,
outputs=[app_area, status_text],
)
demo.launch()