Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import numpy as np | |
| import random | |
| import torch | |
| import spaces | |
| from PIL import Image | |
| from diffusers import FlowMatchEulerDiscreteScheduler | |
| from optimization import optimize_pipeline_ | |
| from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline | |
| from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel | |
| from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3 | |
| import math | |
| from huggingface_hub import hf_hub_download | |
| from safetensors.torch import load_file | |
| import os | |
| # -------------------------- | |
| # 🔹 CONFIGURACIÓN DEL TOKEN 🔹 | |
| # -------------------------- | |
| ACCESS_TOKEN = os.environ.get("Token_Nuevo") | |
| # --- Model Loading --- | |
| dtype = torch.bfloat16 | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| pipe = QwenImageEditPlusPipeline.from_pretrained( | |
| "Qwen/Qwen-Image-Edit-2509", | |
| transformer=QwenImageTransformer2DModel.from_pretrained( | |
| "linoyts/Qwen-Image-Edit-Rapid-AIO", | |
| subfolder="transformer", | |
| torch_dtype=dtype, | |
| device_map="cuda", | |
| ), | |
| torch_dtype=dtype, | |
| ).to(device) | |
| pipe.load_lora_weights( | |
| "eigen-ai-labs/eigen-banana-qwen-image-edit", | |
| weight_name="eigen-banana-qwen-image-edit-fp16-lora.safetensors", | |
| adapter_name="eigen-banana", | |
| ) | |
| pipe.set_adapters(["eigen-banana"], adapter_weights=[1.0]) | |
| pipe.fuse_lora(adapter_names=["eigen-banana"], lora_scale=1.0) | |
| pipe.unload_lora_weights() | |
| pipe.transformer.__class__ = QwenImageTransformer2DModel | |
| pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3()) | |
| optimize_pipeline_( | |
| pipe, | |
| image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))], | |
| prompt="prompt", | |
| ) | |
| MAX_SEED = np.iinfo(np.int32).max | |
| def convert_to_anime( | |
| image, | |
| prompt, | |
| seed, | |
| randomize_seed, | |
| true_guidance_scale, | |
| num_inference_steps, | |
| height, | |
| width, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| if not prompt or prompt.strip() == "": | |
| prompt = "edit" | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| pil_images = [] | |
| if image is not None: | |
| if isinstance(image, Image.Image): | |
| pil_images.append(image.convert("RGB")) | |
| elif hasattr(image, "name"): | |
| pil_images.append(Image.open(image.name).convert("RGB")) | |
| if len(pil_images) == 0: | |
| raise gr.Error("Please upload an image first.") | |
| result = pipe( | |
| image=pil_images, | |
| prompt=prompt, | |
| height=height if height != 0 else None, | |
| width=width if width != 0 else None, | |
| num_inference_steps=num_inference_steps, | |
| generator=generator, | |
| true_cfg_scale=true_guidance_scale, | |
| num_images_per_prompt=1, | |
| ).images[0] | |
| return result, seed | |
| # --- UI --- | |
| css = ''' | |
| #col-container { | |
| max-width: 900px; | |
| margin: 0 auto; | |
| padding: 2rem; | |
| font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Helvetica, Arial, sans-serif; | |
| } | |
| .gradio-container.light { | |
| background: linear-gradient(to bottom, #f5f5f7, #ffffff); | |
| } | |
| .gradio-container.dark { | |
| background: linear-gradient(to bottom, #1a1a1a, #0d0d0d); | |
| } | |
| #title { | |
| text-align: center; | |
| font-size: 2.5rem; | |
| font-weight: 600; | |
| margin-bottom: 0.5rem; | |
| } | |
| ''' | |
| def update_dimensions_on_upload(image): | |
| if image is None: | |
| return 1024, 1024 | |
| original_width, original_height = image.size | |
| if original_width > original_height: | |
| new_width = 1024 | |
| new_height = int((original_height / original_width) * new_width) | |
| else: | |
| new_height = 1024 | |
| new_width = int((original_width / original_height) * new_height) | |
| new_width = (new_width // 8) * 8 | |
| new_height = (new_height // 8) * 8 | |
| return new_width, new_height | |
| with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo: | |
| # ---------- LOGIN PANEL ---------- | |
| with gr.Column(): | |
| gr.Markdown("## 🔒 Acceso restringido") | |
| token_input = gr.Textbox( | |
| label="Introduce tu token", | |
| type="password", | |
| placeholder="Token", | |
| ) | |
| status_text = gr.Textbox( | |
| label="Estado", | |
| interactive=False, | |
| value="", | |
| ) | |
| login_btn = gr.Button("Ingresar") | |
| # ---------- APP AREA (oculta hasta login) ---------- | |
| with gr.Column(visible=False) as app_area: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown( | |
| "# 🍌 Eigen-Banana-Qwen-Image-Edit: Fast Image Editing with Qwen-Image-Edit LoRA", | |
| elem_id="title", | |
| ) | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| image = gr.Image(label="Upload Photo", type="pil") | |
| prompt = gr.Textbox(label="Prompt", value="Edit") | |
| with gr.Accordion("⚙️ Advanced Settings", open=False): | |
| seed = gr.Slider(0, MAX_SEED, value=0) | |
| randomize_seed = gr.Checkbox(value=True) | |
| true_guidance_scale = gr.Slider(1.0, 10.0, value=1.0) | |
| num_inference_steps = gr.Slider(1, 40, value=4) | |
| height = gr.Slider(256, 2048, step=8, value=1024, visible=False) | |
| width = gr.Slider(256, 2048, step=8, value=1024, visible=False) | |
| convert_btn = gr.Button("Edit", variant="primary") | |
| with gr.Column(scale=1): | |
| result = gr.Image(label="Result") | |
| convert_btn.click( | |
| fn=convert_to_anime, | |
| inputs=[ | |
| image, | |
| prompt, | |
| seed, | |
| randomize_seed, | |
| true_guidance_scale, | |
| num_inference_steps, | |
| height, | |
| width, | |
| ], | |
| outputs=[result, seed], | |
| ) | |
| image.upload( | |
| fn=update_dimensions_on_upload, | |
| inputs=[image], | |
| outputs=[width, height], | |
| ) | |
| # ---------- LOGIN LOGIC ---------- | |
| def check_token_func(token_value): | |
| if token_value == ACCESS_TOKEN: | |
| return gr.update(visible=True), "Token correcto. Acceso concedido." | |
| else: | |
| return gr.update(visible=False), "Token incorrecto. Acceso denegado." | |
| login_btn.click( | |
| fn=check_token_func, | |
| inputs=token_input, | |
| outputs=[app_area, status_text], | |
| ) | |
| demo.launch() | |