Spaces:
Running
on
Zero
Running
on
Zero
Init
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- CODE_OF_CONDUCT.md +128 -0
- LICENSE +201 -0
- MANIFEST.in +12 -0
- README.md +7 -4
- __pycache__/app.cpython-38.pyc +0 -0
- app.py +27 -0
- config/config.yaml +33 -0
- docker/build_docker.bat +3 -0
- docker/run_docker.bat +1 -0
- docker/run_docker.sh +1 -0
- environment.yaml +14 -0
- imcui/__init__.py +0 -0
- imcui/__pycache__/__init__.cpython-38.pyc +0 -0
- imcui/api/__init__.py +47 -0
- imcui/api/client.py +232 -0
- imcui/api/config/api.yaml +51 -0
- imcui/api/core.py +308 -0
- imcui/api/server.py +170 -0
- imcui/api/test/CMakeLists.txt +17 -0
- imcui/api/test/build_and_run.sh +16 -0
- imcui/api/test/client.cpp +81 -0
- imcui/api/test/helper.h +405 -0
- imcui/datasets/.gitignore +0 -0
- imcui/hloc/__init__.py +65 -0
- imcui/hloc/__pycache__/__init__.cpython-38.pyc +0 -0
- imcui/hloc/__pycache__/extract_features.cpython-38.pyc +0 -0
- imcui/hloc/__pycache__/match_dense.cpython-38.pyc +0 -0
- imcui/hloc/__pycache__/match_features.cpython-38.pyc +0 -0
- imcui/hloc/colmap_from_nvm.py +216 -0
- imcui/hloc/extract_features.py +607 -0
- imcui/hloc/extractors/__init__.py +0 -0
- imcui/hloc/extractors/__pycache__/__init__.cpython-38.pyc +0 -0
- imcui/hloc/extractors/alike.py +61 -0
- imcui/hloc/extractors/aliked.py +32 -0
- imcui/hloc/extractors/cosplace.py +44 -0
- imcui/hloc/extractors/d2net.py +60 -0
- imcui/hloc/extractors/darkfeat.py +44 -0
- imcui/hloc/extractors/dedode.py +86 -0
- imcui/hloc/extractors/dir.py +78 -0
- imcui/hloc/extractors/disk.py +35 -0
- imcui/hloc/extractors/dog.py +135 -0
- imcui/hloc/extractors/eigenplaces.py +57 -0
- imcui/hloc/extractors/example.py +56 -0
- imcui/hloc/extractors/fire.py +72 -0
- imcui/hloc/extractors/fire_local.py +84 -0
- imcui/hloc/extractors/lanet.py +63 -0
- imcui/hloc/extractors/netvlad.py +146 -0
- imcui/hloc/extractors/openibl.py +26 -0
- imcui/hloc/extractors/r2d2.py +73 -0
- imcui/hloc/extractors/rekd.py +60 -0
CODE_OF_CONDUCT.md
ADDED
|
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Contributor Covenant Code of Conduct
|
| 2 |
+
|
| 3 |
+
## Our Pledge
|
| 4 |
+
|
| 5 |
+
We as members, contributors, and leaders pledge to make participation in our
|
| 6 |
+
community a harassment-free experience for everyone, regardless of age, body
|
| 7 |
+
size, visible or invisible disability, ethnicity, sex characteristics, gender
|
| 8 |
+
identity and expression, level of experience, education, socio-economic status,
|
| 9 |
+
nationality, personal appearance, race, religion, or sexual identity
|
| 10 |
+
and orientation.
|
| 11 |
+
|
| 12 |
+
We pledge to act and interact in ways that contribute to an open, welcoming,
|
| 13 |
+
diverse, inclusive, and healthy community.
|
| 14 |
+
|
| 15 |
+
## Our Standards
|
| 16 |
+
|
| 17 |
+
Examples of behavior that contributes to a positive environment for our
|
| 18 |
+
community include:
|
| 19 |
+
|
| 20 |
+
* Demonstrating empathy and kindness toward other people
|
| 21 |
+
* Being respectful of differing opinions, viewpoints, and experiences
|
| 22 |
+
* Giving and gracefully accepting constructive feedback
|
| 23 |
+
* Accepting responsibility and apologizing to those affected by our mistakes,
|
| 24 |
+
and learning from the experience
|
| 25 |
+
* Focusing on what is best not just for us as individuals, but for the
|
| 26 |
+
overall community
|
| 27 |
+
|
| 28 |
+
Examples of unacceptable behavior include:
|
| 29 |
+
|
| 30 |
+
* The use of sexualized language or imagery, and sexual attention or
|
| 31 |
+
advances of any kind
|
| 32 |
+
* Trolling, insulting or derogatory comments, and personal or political attacks
|
| 33 |
+
* Public or private harassment
|
| 34 |
+
* Publishing others' private information, such as a physical or email
|
| 35 |
+
address, without their explicit permission
|
| 36 |
+
* Other conduct which could reasonably be considered inappropriate in a
|
| 37 |
+
professional setting
|
| 38 |
+
|
| 39 |
+
## Enforcement Responsibilities
|
| 40 |
+
|
| 41 |
+
Community leaders are responsible for clarifying and enforcing our standards of
|
| 42 |
+
acceptable behavior and will take appropriate and fair corrective action in
|
| 43 |
+
response to any behavior that they deem inappropriate, threatening, offensive,
|
| 44 |
+
or harmful.
|
| 45 |
+
|
| 46 |
+
Community leaders have the right and responsibility to remove, edit, or reject
|
| 47 |
+
comments, commits, code, wiki edits, issues, and other contributions that are
|
| 48 |
+
not aligned to this Code of Conduct, and will communicate reasons for moderation
|
| 49 |
+
decisions when appropriate.
|
| 50 |
+
|
| 51 |
+
## Scope
|
| 52 |
+
|
| 53 |
+
This Code of Conduct applies within all community spaces, and also applies when
|
| 54 |
+
an individual is officially representing the community in public spaces.
|
| 55 |
+
Examples of representing our community include using an official e-mail address,
|
| 56 |
+
posting via an official social media account, or acting as an appointed
|
| 57 |
+
representative at an online or offline event.
|
| 58 |
+
|
| 59 |
+
## Enforcement
|
| 60 |
+
|
| 61 |
+
Instances of abusive, harassing, or otherwise unacceptable behavior may be
|
| 62 |
+
reported to the community leaders responsible for enforcement at
|
| 63 | |
| 64 |
+
All complaints will be reviewed and investigated promptly and fairly.
|
| 65 |
+
|
| 66 |
+
All community leaders are obligated to respect the privacy and security of the
|
| 67 |
+
reporter of any incident.
|
| 68 |
+
|
| 69 |
+
## Enforcement Guidelines
|
| 70 |
+
|
| 71 |
+
Community leaders will follow these Community Impact Guidelines in determining
|
| 72 |
+
the consequences for any action they deem in violation of this Code of Conduct:
|
| 73 |
+
|
| 74 |
+
### 1. Correction
|
| 75 |
+
|
| 76 |
+
**Community Impact**: Use of inappropriate language or other behavior deemed
|
| 77 |
+
unprofessional or unwelcome in the community.
|
| 78 |
+
|
| 79 |
+
**Consequence**: A private, written warning from community leaders, providing
|
| 80 |
+
clarity around the nature of the violation and an explanation of why the
|
| 81 |
+
behavior was inappropriate. A public apology may be requested.
|
| 82 |
+
|
| 83 |
+
### 2. Warning
|
| 84 |
+
|
| 85 |
+
**Community Impact**: A violation through a single incident or series
|
| 86 |
+
of actions.
|
| 87 |
+
|
| 88 |
+
**Consequence**: A warning with consequences for continued behavior. No
|
| 89 |
+
interaction with the people involved, including unsolicited interaction with
|
| 90 |
+
those enforcing the Code of Conduct, for a specified period of time. This
|
| 91 |
+
includes avoiding interactions in community spaces as well as external channels
|
| 92 |
+
like social media. Violating these terms may lead to a temporary or
|
| 93 |
+
permanent ban.
|
| 94 |
+
|
| 95 |
+
### 3. Temporary Ban
|
| 96 |
+
|
| 97 |
+
**Community Impact**: A serious violation of community standards, including
|
| 98 |
+
sustained inappropriate behavior.
|
| 99 |
+
|
| 100 |
+
**Consequence**: A temporary ban from any sort of interaction or public
|
| 101 |
+
communication with the community for a specified period of time. No public or
|
| 102 |
+
private interaction with the people involved, including unsolicited interaction
|
| 103 |
+
with those enforcing the Code of Conduct, is allowed during this period.
|
| 104 |
+
Violating these terms may lead to a permanent ban.
|
| 105 |
+
|
| 106 |
+
### 4. Permanent Ban
|
| 107 |
+
|
| 108 |
+
**Community Impact**: Demonstrating a pattern of violation of community
|
| 109 |
+
standards, including sustained inappropriate behavior, harassment of an
|
| 110 |
+
individual, or aggression toward or disparagement of classes of individuals.
|
| 111 |
+
|
| 112 |
+
**Consequence**: A permanent ban from any sort of public interaction within
|
| 113 |
+
the community.
|
| 114 |
+
|
| 115 |
+
## Attribution
|
| 116 |
+
|
| 117 |
+
This Code of Conduct is adapted from the [Contributor Covenant][homepage],
|
| 118 |
+
version 2.0, available at
|
| 119 |
+
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html.
|
| 120 |
+
|
| 121 |
+
Community Impact Guidelines were inspired by [Mozilla's code of conduct
|
| 122 |
+
enforcement ladder](https://github.com/mozilla/diversity).
|
| 123 |
+
|
| 124 |
+
[homepage]: https://www.contributor-covenant.org
|
| 125 |
+
|
| 126 |
+
For answers to common questions about this code of conduct, see the FAQ at
|
| 127 |
+
https://www.contributor-covenant.org/faq. Translations are available at
|
| 128 |
+
https://www.contributor-covenant.org/translations.
|
LICENSE
ADDED
|
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Apache License
|
| 2 |
+
Version 2.0, January 2004
|
| 3 |
+
http://www.apache.org/licenses/
|
| 4 |
+
|
| 5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
| 6 |
+
|
| 7 |
+
1. Definitions.
|
| 8 |
+
|
| 9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
| 10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
| 11 |
+
|
| 12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
| 13 |
+
the copyright owner that is granting the License.
|
| 14 |
+
|
| 15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
| 16 |
+
other entities that control, are controlled by, or are under common
|
| 17 |
+
control with that entity. For the purposes of this definition,
|
| 18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
| 19 |
+
direction or management of such entity, whether by contract or
|
| 20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
| 21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
| 22 |
+
|
| 23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
| 24 |
+
exercising permissions granted by this License.
|
| 25 |
+
|
| 26 |
+
"Source" form shall mean the preferred form for making modifications,
|
| 27 |
+
including but not limited to software source code, documentation
|
| 28 |
+
source, and configuration files.
|
| 29 |
+
|
| 30 |
+
"Object" form shall mean any form resulting from mechanical
|
| 31 |
+
transformation or translation of a Source form, including but
|
| 32 |
+
not limited to compiled object code, generated documentation,
|
| 33 |
+
and conversions to other media types.
|
| 34 |
+
|
| 35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
| 36 |
+
Object form, made available under the License, as indicated by a
|
| 37 |
+
copyright notice that is included in or attached to the work
|
| 38 |
+
(an example is provided in the Appendix below).
|
| 39 |
+
|
| 40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
| 41 |
+
form, that is based on (or derived from) the Work and for which the
|
| 42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
| 43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
| 44 |
+
of this License, Derivative Works shall not include works that remain
|
| 45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
| 46 |
+
the Work and Derivative Works thereof.
|
| 47 |
+
|
| 48 |
+
"Contribution" shall mean any work of authorship, including
|
| 49 |
+
the original version of the Work and any modifications or additions
|
| 50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
| 51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
| 52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
| 53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
| 54 |
+
means any form of electronic, verbal, or written communication sent
|
| 55 |
+
to the Licensor or its representatives, including but not limited to
|
| 56 |
+
communication on electronic mailing lists, source code control systems,
|
| 57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
| 58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
| 59 |
+
excluding communication that is conspicuously marked or otherwise
|
| 60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
| 61 |
+
|
| 62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
| 63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
| 64 |
+
subsequently incorporated within the Work.
|
| 65 |
+
|
| 66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
| 67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
| 68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
| 69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
| 70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
| 71 |
+
Work and such Derivative Works in Source or Object form.
|
| 72 |
+
|
| 73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
| 74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
| 75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
| 76 |
+
(except as stated in this section) patent license to make, have made,
|
| 77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
| 78 |
+
where such license applies only to those patent claims licensable
|
| 79 |
+
by such Contributor that are necessarily infringed by their
|
| 80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
| 81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
| 82 |
+
institute patent litigation against any entity (including a
|
| 83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
| 84 |
+
or a Contribution incorporated within the Work constitutes direct
|
| 85 |
+
or contributory patent infringement, then any patent licenses
|
| 86 |
+
granted to You under this License for that Work shall terminate
|
| 87 |
+
as of the date such litigation is filed.
|
| 88 |
+
|
| 89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
| 90 |
+
Work or Derivative Works thereof in any medium, with or without
|
| 91 |
+
modifications, and in Source or Object form, provided that You
|
| 92 |
+
meet the following conditions:
|
| 93 |
+
|
| 94 |
+
(a) You must give any other recipients of the Work or
|
| 95 |
+
Derivative Works a copy of this License; and
|
| 96 |
+
|
| 97 |
+
(b) You must cause any modified files to carry prominent notices
|
| 98 |
+
stating that You changed the files; and
|
| 99 |
+
|
| 100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
| 101 |
+
that You distribute, all copyright, patent, trademark, and
|
| 102 |
+
attribution notices from the Source form of the Work,
|
| 103 |
+
excluding those notices that do not pertain to any part of
|
| 104 |
+
the Derivative Works; and
|
| 105 |
+
|
| 106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
| 107 |
+
distribution, then any Derivative Works that You distribute must
|
| 108 |
+
include a readable copy of the attribution notices contained
|
| 109 |
+
within such NOTICE file, excluding those notices that do not
|
| 110 |
+
pertain to any part of the Derivative Works, in at least one
|
| 111 |
+
of the following places: within a NOTICE text file distributed
|
| 112 |
+
as part of the Derivative Works; within the Source form or
|
| 113 |
+
documentation, if provided along with the Derivative Works; or,
|
| 114 |
+
within a display generated by the Derivative Works, if and
|
| 115 |
+
wherever such third-party notices normally appear. The contents
|
| 116 |
+
of the NOTICE file are for informational purposes only and
|
| 117 |
+
do not modify the License. You may add Your own attribution
|
| 118 |
+
notices within Derivative Works that You distribute, alongside
|
| 119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
| 120 |
+
that such additional attribution notices cannot be construed
|
| 121 |
+
as modifying the License.
|
| 122 |
+
|
| 123 |
+
You may add Your own copyright statement to Your modifications and
|
| 124 |
+
may provide additional or different license terms and conditions
|
| 125 |
+
for use, reproduction, or distribution of Your modifications, or
|
| 126 |
+
for any such Derivative Works as a whole, provided Your use,
|
| 127 |
+
reproduction, and distribution of the Work otherwise complies with
|
| 128 |
+
the conditions stated in this License.
|
| 129 |
+
|
| 130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
| 131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
| 132 |
+
by You to the Licensor shall be under the terms and conditions of
|
| 133 |
+
this License, without any additional terms or conditions.
|
| 134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
| 135 |
+
the terms of any separate license agreement you may have executed
|
| 136 |
+
with Licensor regarding such Contributions.
|
| 137 |
+
|
| 138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
| 139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
| 140 |
+
except as required for reasonable and customary use in describing the
|
| 141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
| 142 |
+
|
| 143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
| 144 |
+
agreed to in writing, Licensor provides the Work (and each
|
| 145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
| 146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
| 147 |
+
implied, including, without limitation, any warranties or conditions
|
| 148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
| 149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
| 150 |
+
appropriateness of using or redistributing the Work and assume any
|
| 151 |
+
risks associated with Your exercise of permissions under this License.
|
| 152 |
+
|
| 153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
| 154 |
+
whether in tort (including negligence), contract, or otherwise,
|
| 155 |
+
unless required by applicable law (such as deliberate and grossly
|
| 156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
| 157 |
+
liable to You for damages, including any direct, indirect, special,
|
| 158 |
+
incidental, or consequential damages of any character arising as a
|
| 159 |
+
result of this License or out of the use or inability to use the
|
| 160 |
+
Work (including but not limited to damages for loss of goodwill,
|
| 161 |
+
work stoppage, computer failure or malfunction, or any and all
|
| 162 |
+
other commercial damages or losses), even if such Contributor
|
| 163 |
+
has been advised of the possibility of such damages.
|
| 164 |
+
|
| 165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
| 166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
| 167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
| 168 |
+
or other liability obligations and/or rights consistent with this
|
| 169 |
+
License. However, in accepting such obligations, You may act only
|
| 170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
| 171 |
+
of any other Contributor, and only if You agree to indemnify,
|
| 172 |
+
defend, and hold each Contributor harmless for any liability
|
| 173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
| 174 |
+
of your accepting any such warranty or additional liability.
|
| 175 |
+
|
| 176 |
+
END OF TERMS AND CONDITIONS
|
| 177 |
+
|
| 178 |
+
APPENDIX: How to apply the Apache License to your work.
|
| 179 |
+
|
| 180 |
+
To apply the Apache License to your work, attach the following
|
| 181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
| 182 |
+
replaced with your own identifying information. (Don't include
|
| 183 |
+
the brackets!) The text should be enclosed in the appropriate
|
| 184 |
+
comment syntax for the file format. We also recommend that a
|
| 185 |
+
file or class name and description of purpose be included on the
|
| 186 |
+
same "printed page" as the copyright notice for easier
|
| 187 |
+
identification within third-party archives.
|
| 188 |
+
|
| 189 |
+
Copyright [yyyy] [name of copyright owner]
|
| 190 |
+
|
| 191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
| 192 |
+
you may not use this file except in compliance with the License.
|
| 193 |
+
You may obtain a copy of the License at
|
| 194 |
+
|
| 195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
| 196 |
+
|
| 197 |
+
Unless required by applicable law or agreed to in writing, software
|
| 198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
| 199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 200 |
+
See the License for the specific language governing permissions and
|
| 201 |
+
limitations under the License.
|
MANIFEST.in
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# logo
|
| 2 |
+
include imcui/assets/logo.webp
|
| 3 |
+
|
| 4 |
+
recursive-include imcui/ui *.yaml
|
| 5 |
+
recursive-include imcui/api *.yaml
|
| 6 |
+
recursive-include imcui/third_party *.yaml *.cfg *.yml
|
| 7 |
+
|
| 8 |
+
# ui examples
|
| 9 |
+
recursive-include imcui/datasets *.JPG *.jpg *.png
|
| 10 |
+
|
| 11 |
+
# model
|
| 12 |
+
recursive-include imcui/third_party/SuperGluePretrainedNetwork *.pth
|
README.md
CHANGED
|
@@ -1,12 +1,15 @@
|
|
| 1 |
---
|
| 2 |
-
title: MatchAnything
|
| 3 |
-
emoji:
|
| 4 |
colorFrom: red
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
|
|
|
|
|
|
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
+
title: MatchAnything-Det
|
| 3 |
+
emoji: 🏢
|
| 4 |
colorFrom: red
|
| 5 |
+
colorTo: blue
|
| 6 |
sdk: gradio
|
| 7 |
+
python_version: 3.10.13
|
| 8 |
+
sdk_version: 4.44.0
|
| 9 |
+
# sdk_version: 5.23.0
|
| 10 |
app_file: app.py
|
| 11 |
pinned: false
|
| 12 |
+
license: apache-2.0
|
| 13 |
---
|
| 14 |
|
| 15 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
__pycache__/app.cpython-38.pyc
ADDED
|
Binary file (690 Bytes). View file
|
|
|
app.py
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# import spaces
|
| 2 |
+
import argparse
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
from imcui.ui.app_class import ImageMatchingApp
|
| 5 |
+
|
| 6 |
+
if __name__ == "__main__":
|
| 7 |
+
parser = argparse.ArgumentParser()
|
| 8 |
+
parser.add_argument(
|
| 9 |
+
"--server_name",
|
| 10 |
+
type=str,
|
| 11 |
+
default="0.0.0.0",
|
| 12 |
+
help="server name",
|
| 13 |
+
)
|
| 14 |
+
parser.add_argument(
|
| 15 |
+
"--server_port",
|
| 16 |
+
type=int,
|
| 17 |
+
default=7860,
|
| 18 |
+
help="server port",
|
| 19 |
+
)
|
| 20 |
+
parser.add_argument(
|
| 21 |
+
"--config",
|
| 22 |
+
type=str,
|
| 23 |
+
default=Path(__file__).parent / "config/config.yaml",
|
| 24 |
+
help="config file",
|
| 25 |
+
)
|
| 26 |
+
args = parser.parse_args()
|
| 27 |
+
ImageMatchingApp(args.server_name, args.server_port, config=args.config).run()
|
config/config.yaml
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
server:
|
| 2 |
+
name: "0.0.0.0"
|
| 3 |
+
port: 16010
|
| 4 |
+
|
| 5 |
+
defaults:
|
| 6 |
+
setting_threshold: 0.1
|
| 7 |
+
max_keypoints: 2000
|
| 8 |
+
keypoint_threshold: 0.05
|
| 9 |
+
enable_ransac: true
|
| 10 |
+
ransac_method: CV2_USAC_MAGSAC
|
| 11 |
+
ransac_reproj_threshold: 8
|
| 12 |
+
ransac_confidence: 0.999
|
| 13 |
+
ransac_max_iter: 10000
|
| 14 |
+
ransac_num_samples: 4
|
| 15 |
+
match_threshold: 0.2
|
| 16 |
+
setting_geometry: Homography
|
| 17 |
+
|
| 18 |
+
matcher_zoo:
|
| 19 |
+
matchanything:
|
| 20 |
+
matcher: matchanything
|
| 21 |
+
dense: true
|
| 22 |
+
info:
|
| 23 |
+
name: MatchAnything #dispaly name
|
| 24 |
+
source: "ZJU3DV"
|
| 25 |
+
display: true
|
| 26 |
+
|
| 27 |
+
retrieval_zoo:
|
| 28 |
+
netvlad:
|
| 29 |
+
enable: true
|
| 30 |
+
openibl:
|
| 31 |
+
enable: true
|
| 32 |
+
cosplace:
|
| 33 |
+
enable: true
|
docker/build_docker.bat
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
docker build -t image-matching-webui:latest . --no-cache
|
| 2 |
+
# docker tag image-matching-webui:latest vincentqin/image-matching-webui:latest
|
| 3 |
+
# docker push vincentqin/image-matching-webui:latest
|
docker/run_docker.bat
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
docker run -it -p 7860:7860 vincentqin/image-matching-webui:latest python app.py --server_name "0.0.0.0" --server_port=7860
|
docker/run_docker.sh
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
docker run -it -p 7860:7860 vincentqin/image-matching-webui:latest python app.py --server_name "0.0.0.0" --server_port=7860
|
environment.yaml
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
name: imw
|
| 2 |
+
channels:
|
| 3 |
+
- pytorch
|
| 4 |
+
- nvidia
|
| 5 |
+
- conda-forge
|
| 6 |
+
- defaults
|
| 7 |
+
dependencies:
|
| 8 |
+
- python=3.8
|
| 9 |
+
- pytorch-cuda=11.7
|
| 10 |
+
- pytorch=1.12.0
|
| 11 |
+
- torchvision=0.13.1
|
| 12 |
+
- pip
|
| 13 |
+
- pip:
|
| 14 |
+
- -r requirements.txt
|
imcui/__init__.py
ADDED
|
File without changes
|
imcui/__pycache__/__init__.cpython-38.pyc
ADDED
|
Binary file (144 Bytes). View file
|
|
|
imcui/api/__init__.py
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import base64
|
| 2 |
+
import io
|
| 3 |
+
from typing import List
|
| 4 |
+
|
| 5 |
+
import numpy as np
|
| 6 |
+
from fastapi.exceptions import HTTPException
|
| 7 |
+
from PIL import Image
|
| 8 |
+
from pydantic import BaseModel
|
| 9 |
+
|
| 10 |
+
from ..hloc import logger
|
| 11 |
+
from .core import ImageMatchingAPI
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class ImagesInput(BaseModel):
|
| 15 |
+
data: List[str] = []
|
| 16 |
+
max_keypoints: List[int] = []
|
| 17 |
+
timestamps: List[str] = []
|
| 18 |
+
grayscale: bool = False
|
| 19 |
+
image_hw: List[List[int]] = [[], []]
|
| 20 |
+
feature_type: int = 0
|
| 21 |
+
rotates: List[float] = []
|
| 22 |
+
scales: List[float] = []
|
| 23 |
+
reference_points: List[List[float]] = []
|
| 24 |
+
binarize: bool = False
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def decode_base64_to_image(encoding):
|
| 28 |
+
if encoding.startswith("data:image/"):
|
| 29 |
+
encoding = encoding.split(";")[1].split(",")[1]
|
| 30 |
+
try:
|
| 31 |
+
image = Image.open(io.BytesIO(base64.b64decode(encoding)))
|
| 32 |
+
return image
|
| 33 |
+
except Exception as e:
|
| 34 |
+
logger.warning(f"API cannot decode image: {e}")
|
| 35 |
+
raise HTTPException(status_code=500, detail="Invalid encoded image") from e
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def to_base64_nparray(encoding: str) -> np.ndarray:
|
| 39 |
+
return np.array(decode_base64_to_image(encoding)).astype("uint8")
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
__all__ = [
|
| 43 |
+
"ImageMatchingAPI",
|
| 44 |
+
"ImagesInput",
|
| 45 |
+
"decode_base64_to_image",
|
| 46 |
+
"to_base64_nparray",
|
| 47 |
+
]
|
imcui/api/client.py
ADDED
|
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import base64
|
| 3 |
+
import os
|
| 4 |
+
import pickle
|
| 5 |
+
import time
|
| 6 |
+
from typing import Dict, List
|
| 7 |
+
|
| 8 |
+
import cv2
|
| 9 |
+
import numpy as np
|
| 10 |
+
import requests
|
| 11 |
+
|
| 12 |
+
ENDPOINT = "http://127.0.0.1:8001"
|
| 13 |
+
if "REMOTE_URL_RAILWAY" in os.environ:
|
| 14 |
+
ENDPOINT = os.environ["REMOTE_URL_RAILWAY"]
|
| 15 |
+
|
| 16 |
+
print(f"API ENDPOINT: {ENDPOINT}")
|
| 17 |
+
|
| 18 |
+
API_VERSION = f"{ENDPOINT}/version"
|
| 19 |
+
API_URL_MATCH = f"{ENDPOINT}/v1/match"
|
| 20 |
+
API_URL_EXTRACT = f"{ENDPOINT}/v1/extract"
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def read_image(path: str) -> str:
|
| 24 |
+
"""
|
| 25 |
+
Read an image from a file, encode it as a JPEG and then as a base64 string.
|
| 26 |
+
|
| 27 |
+
Args:
|
| 28 |
+
path (str): The path to the image to read.
|
| 29 |
+
|
| 30 |
+
Returns:
|
| 31 |
+
str: The base64 encoded image.
|
| 32 |
+
"""
|
| 33 |
+
# Read the image from the file
|
| 34 |
+
img = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
|
| 35 |
+
|
| 36 |
+
# Encode the image as a png, NO COMPRESSION!!!
|
| 37 |
+
retval, buffer = cv2.imencode(".png", img)
|
| 38 |
+
|
| 39 |
+
# Encode the JPEG as a base64 string
|
| 40 |
+
b64img = base64.b64encode(buffer).decode("utf-8")
|
| 41 |
+
|
| 42 |
+
return b64img
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def do_api_requests(url=API_URL_EXTRACT, **kwargs):
|
| 46 |
+
"""
|
| 47 |
+
Helper function to send an API request to the image matching service.
|
| 48 |
+
|
| 49 |
+
Args:
|
| 50 |
+
url (str): The URL of the API endpoint to use. Defaults to the
|
| 51 |
+
feature extraction endpoint.
|
| 52 |
+
**kwargs: Additional keyword arguments to pass to the API.
|
| 53 |
+
|
| 54 |
+
Returns:
|
| 55 |
+
List[Dict[str, np.ndarray]]: A list of dictionaries containing the
|
| 56 |
+
extracted features. The keys are "keypoints", "descriptors", and
|
| 57 |
+
"scores", and the values are ndarrays of shape (N, 2), (N, ?),
|
| 58 |
+
and (N,), respectively.
|
| 59 |
+
"""
|
| 60 |
+
# Set up the request body
|
| 61 |
+
reqbody = {
|
| 62 |
+
# List of image data base64 encoded
|
| 63 |
+
"data": [],
|
| 64 |
+
# List of maximum number of keypoints to extract from each image
|
| 65 |
+
"max_keypoints": [100, 100],
|
| 66 |
+
# List of timestamps for each image (not used?)
|
| 67 |
+
"timestamps": ["0", "1"],
|
| 68 |
+
# Whether to convert the images to grayscale
|
| 69 |
+
"grayscale": 0,
|
| 70 |
+
# List of image height and width
|
| 71 |
+
"image_hw": [[640, 480], [320, 240]],
|
| 72 |
+
# Type of feature to extract
|
| 73 |
+
"feature_type": 0,
|
| 74 |
+
# List of rotation angles for each image
|
| 75 |
+
"rotates": [0.0, 0.0],
|
| 76 |
+
# List of scale factors for each image
|
| 77 |
+
"scales": [1.0, 1.0],
|
| 78 |
+
# List of reference points for each image (not used)
|
| 79 |
+
"reference_points": [[640, 480], [320, 240]],
|
| 80 |
+
# Whether to binarize the descriptors
|
| 81 |
+
"binarize": True,
|
| 82 |
+
}
|
| 83 |
+
# Update the request body with the additional keyword arguments
|
| 84 |
+
reqbody.update(kwargs)
|
| 85 |
+
try:
|
| 86 |
+
# Send the request
|
| 87 |
+
r = requests.post(url, json=reqbody)
|
| 88 |
+
if r.status_code == 200:
|
| 89 |
+
# Return the response
|
| 90 |
+
return r.json()
|
| 91 |
+
else:
|
| 92 |
+
# Print an error message if the response code is not 200
|
| 93 |
+
print(f"Error: Response code {r.status_code} - {r.text}")
|
| 94 |
+
except Exception as e:
|
| 95 |
+
# Print an error message if an exception occurs
|
| 96 |
+
print(f"An error occurred: {e}")
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
def send_request_match(path0: str, path1: str) -> Dict[str, np.ndarray]:
|
| 100 |
+
"""
|
| 101 |
+
Send a request to the API to generate a match between two images.
|
| 102 |
+
|
| 103 |
+
Args:
|
| 104 |
+
path0 (str): The path to the first image.
|
| 105 |
+
path1 (str): The path to the second image.
|
| 106 |
+
|
| 107 |
+
Returns:
|
| 108 |
+
Dict[str, np.ndarray]: A dictionary containing the generated matches.
|
| 109 |
+
The keys are "keypoints0", "keypoints1", "matches0", and "matches1",
|
| 110 |
+
and the values are ndarrays of shape (N, 2), (N, 2), (N, 2), and
|
| 111 |
+
(N, 2), respectively.
|
| 112 |
+
"""
|
| 113 |
+
files = {"image0": open(path0, "rb"), "image1": open(path1, "rb")}
|
| 114 |
+
try:
|
| 115 |
+
# TODO: replace files with post json
|
| 116 |
+
response = requests.post(API_URL_MATCH, files=files)
|
| 117 |
+
pred = {}
|
| 118 |
+
if response.status_code == 200:
|
| 119 |
+
pred = response.json()
|
| 120 |
+
for key in list(pred.keys()):
|
| 121 |
+
pred[key] = np.array(pred[key])
|
| 122 |
+
else:
|
| 123 |
+
print(f"Error: Response code {response.status_code} - {response.text}")
|
| 124 |
+
finally:
|
| 125 |
+
files["image0"].close()
|
| 126 |
+
files["image1"].close()
|
| 127 |
+
return pred
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
def send_request_extract(
|
| 131 |
+
input_images: str, viz: bool = False
|
| 132 |
+
) -> List[Dict[str, np.ndarray]]:
|
| 133 |
+
"""
|
| 134 |
+
Send a request to the API to extract features from an image.
|
| 135 |
+
|
| 136 |
+
Args:
|
| 137 |
+
input_images (str): The path to the image.
|
| 138 |
+
|
| 139 |
+
Returns:
|
| 140 |
+
List[Dict[str, np.ndarray]]: A list of dictionaries containing the
|
| 141 |
+
extracted features. The keys are "keypoints", "descriptors", and
|
| 142 |
+
"scores", and the values are ndarrays of shape (N, 2), (N, 128),
|
| 143 |
+
and (N,), respectively.
|
| 144 |
+
"""
|
| 145 |
+
image_data = read_image(input_images)
|
| 146 |
+
inputs = {
|
| 147 |
+
"data": [image_data],
|
| 148 |
+
}
|
| 149 |
+
response = do_api_requests(
|
| 150 |
+
url=API_URL_EXTRACT,
|
| 151 |
+
**inputs,
|
| 152 |
+
)
|
| 153 |
+
# breakpoint()
|
| 154 |
+
# print("Keypoints detected: {}".format(len(response[0]["keypoints"])))
|
| 155 |
+
|
| 156 |
+
# draw matching, debug only
|
| 157 |
+
if viz:
|
| 158 |
+
from hloc.utils.viz import plot_keypoints
|
| 159 |
+
from ui.viz import fig2im, plot_images
|
| 160 |
+
|
| 161 |
+
kpts = np.array(response[0]["keypoints_orig"])
|
| 162 |
+
if "image_orig" in response[0].keys():
|
| 163 |
+
img_orig = np.array(["image_orig"])
|
| 164 |
+
|
| 165 |
+
output_keypoints = plot_images([img_orig], titles="titles", dpi=300)
|
| 166 |
+
plot_keypoints([kpts])
|
| 167 |
+
output_keypoints = fig2im(output_keypoints)
|
| 168 |
+
cv2.imwrite(
|
| 169 |
+
"demo_match.jpg",
|
| 170 |
+
output_keypoints[:, :, ::-1].copy(), # RGB -> BGR
|
| 171 |
+
)
|
| 172 |
+
return response
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
def get_api_version():
|
| 176 |
+
try:
|
| 177 |
+
response = requests.get(API_VERSION).json()
|
| 178 |
+
print("API VERSION: {}".format(response["version"]))
|
| 179 |
+
except Exception as e:
|
| 180 |
+
print(f"An error occurred: {e}")
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
if __name__ == "__main__":
|
| 184 |
+
from pathlib import Path
|
| 185 |
+
|
| 186 |
+
parser = argparse.ArgumentParser(
|
| 187 |
+
description="Send text to stable audio server and receive generated audio."
|
| 188 |
+
)
|
| 189 |
+
parser.add_argument(
|
| 190 |
+
"--image0",
|
| 191 |
+
required=False,
|
| 192 |
+
help="Path for the file's melody",
|
| 193 |
+
default=str(
|
| 194 |
+
Path(__file__).parents[1]
|
| 195 |
+
/ "datasets/sacre_coeur/mapping_rot/02928139_3448003521_rot45.jpg"
|
| 196 |
+
),
|
| 197 |
+
)
|
| 198 |
+
parser.add_argument(
|
| 199 |
+
"--image1",
|
| 200 |
+
required=False,
|
| 201 |
+
help="Path for the file's melody",
|
| 202 |
+
default=str(
|
| 203 |
+
Path(__file__).parents[1]
|
| 204 |
+
/ "datasets/sacre_coeur/mapping_rot/02928139_3448003521_rot90.jpg"
|
| 205 |
+
),
|
| 206 |
+
)
|
| 207 |
+
args = parser.parse_args()
|
| 208 |
+
|
| 209 |
+
# get api version
|
| 210 |
+
get_api_version()
|
| 211 |
+
|
| 212 |
+
# request match
|
| 213 |
+
# for i in range(10):
|
| 214 |
+
# t1 = time.time()
|
| 215 |
+
# preds = send_request_match(args.image0, args.image1)
|
| 216 |
+
# t2 = time.time()
|
| 217 |
+
# print(
|
| 218 |
+
# "Time cost1: {} seconds, matched: {}".format(
|
| 219 |
+
# (t2 - t1), len(preds["mmkeypoints0_orig"])
|
| 220 |
+
# )
|
| 221 |
+
# )
|
| 222 |
+
|
| 223 |
+
# request extract
|
| 224 |
+
for i in range(1000):
|
| 225 |
+
t1 = time.time()
|
| 226 |
+
preds = send_request_extract(args.image0)
|
| 227 |
+
t2 = time.time()
|
| 228 |
+
print(f"Time cost2: {(t2 - t1)} seconds")
|
| 229 |
+
|
| 230 |
+
# dump preds
|
| 231 |
+
with open("preds.pkl", "wb") as f:
|
| 232 |
+
pickle.dump(preds, f)
|
imcui/api/config/api.yaml
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# This file was generated using the `serve build` command on Ray v2.38.0.
|
| 2 |
+
|
| 3 |
+
proxy_location: EveryNode
|
| 4 |
+
http_options:
|
| 5 |
+
host: 0.0.0.0
|
| 6 |
+
port: 8001
|
| 7 |
+
|
| 8 |
+
grpc_options:
|
| 9 |
+
port: 9000
|
| 10 |
+
grpc_servicer_functions: []
|
| 11 |
+
|
| 12 |
+
logging_config:
|
| 13 |
+
encoding: TEXT
|
| 14 |
+
log_level: INFO
|
| 15 |
+
logs_dir: null
|
| 16 |
+
enable_access_log: true
|
| 17 |
+
|
| 18 |
+
applications:
|
| 19 |
+
- name: app1
|
| 20 |
+
route_prefix: /
|
| 21 |
+
import_path: api.server:service
|
| 22 |
+
runtime_env: {}
|
| 23 |
+
deployments:
|
| 24 |
+
- name: ImageMatchingService
|
| 25 |
+
num_replicas: 4
|
| 26 |
+
ray_actor_options:
|
| 27 |
+
num_cpus: 2.0
|
| 28 |
+
num_gpus: 1.0
|
| 29 |
+
|
| 30 |
+
api:
|
| 31 |
+
feature:
|
| 32 |
+
output: feats-superpoint-n4096-rmax1600
|
| 33 |
+
model:
|
| 34 |
+
name: superpoint
|
| 35 |
+
nms_radius: 3
|
| 36 |
+
max_keypoints: 4096
|
| 37 |
+
keypoint_threshold: 0.005
|
| 38 |
+
preprocessing:
|
| 39 |
+
grayscale: True
|
| 40 |
+
force_resize: True
|
| 41 |
+
resize_max: 1600
|
| 42 |
+
width: 640
|
| 43 |
+
height: 480
|
| 44 |
+
dfactor: 8
|
| 45 |
+
matcher:
|
| 46 |
+
output: matches-NN-mutual
|
| 47 |
+
model:
|
| 48 |
+
name: nearest_neighbor
|
| 49 |
+
do_mutual_check: True
|
| 50 |
+
match_threshold: 0.2
|
| 51 |
+
dense: False
|
imcui/api/core.py
ADDED
|
@@ -0,0 +1,308 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# api.py
|
| 2 |
+
import warnings
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
from typing import Any, Dict, Optional
|
| 5 |
+
|
| 6 |
+
import cv2
|
| 7 |
+
import matplotlib.pyplot as plt
|
| 8 |
+
import numpy as np
|
| 9 |
+
import torch
|
| 10 |
+
|
| 11 |
+
from ..hloc import extract_features, logger, match_dense, match_features
|
| 12 |
+
from ..hloc.utils.viz import add_text, plot_keypoints
|
| 13 |
+
from ..ui.utils import filter_matches, get_feature_model, get_model
|
| 14 |
+
from ..ui.viz import display_matches, fig2im, plot_images
|
| 15 |
+
|
| 16 |
+
warnings.simplefilter("ignore")
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class ImageMatchingAPI(torch.nn.Module):
|
| 20 |
+
default_conf = {
|
| 21 |
+
"ransac": {
|
| 22 |
+
"enable": True,
|
| 23 |
+
"estimator": "poselib",
|
| 24 |
+
"geometry": "homography",
|
| 25 |
+
"method": "RANSAC",
|
| 26 |
+
"reproj_threshold": 3,
|
| 27 |
+
"confidence": 0.9999,
|
| 28 |
+
"max_iter": 10000,
|
| 29 |
+
},
|
| 30 |
+
}
|
| 31 |
+
|
| 32 |
+
def __init__(
|
| 33 |
+
self,
|
| 34 |
+
conf: dict = {},
|
| 35 |
+
device: str = "cpu",
|
| 36 |
+
detect_threshold: float = 0.015,
|
| 37 |
+
max_keypoints: int = 1024,
|
| 38 |
+
match_threshold: float = 0.2,
|
| 39 |
+
) -> None:
|
| 40 |
+
"""
|
| 41 |
+
Initializes an instance of the ImageMatchingAPI class.
|
| 42 |
+
|
| 43 |
+
Args:
|
| 44 |
+
conf (dict): A dictionary containing the configuration parameters.
|
| 45 |
+
device (str, optional): The device to use for computation. Defaults to "cpu".
|
| 46 |
+
detect_threshold (float, optional): The threshold for detecting keypoints. Defaults to 0.015.
|
| 47 |
+
max_keypoints (int, optional): The maximum number of keypoints to extract. Defaults to 1024.
|
| 48 |
+
match_threshold (float, optional): The threshold for matching keypoints. Defaults to 0.2.
|
| 49 |
+
|
| 50 |
+
Returns:
|
| 51 |
+
None
|
| 52 |
+
"""
|
| 53 |
+
super().__init__()
|
| 54 |
+
self.device = device
|
| 55 |
+
self.conf = {**self.default_conf, **conf}
|
| 56 |
+
self._updata_config(detect_threshold, max_keypoints, match_threshold)
|
| 57 |
+
self._init_models()
|
| 58 |
+
if device == "cuda":
|
| 59 |
+
memory_allocated = torch.cuda.memory_allocated(device)
|
| 60 |
+
memory_reserved = torch.cuda.memory_reserved(device)
|
| 61 |
+
logger.info(f"GPU memory allocated: {memory_allocated / 1024**2:.3f} MB")
|
| 62 |
+
logger.info(f"GPU memory reserved: {memory_reserved / 1024**2:.3f} MB")
|
| 63 |
+
self.pred = None
|
| 64 |
+
|
| 65 |
+
def parse_match_config(self, conf):
|
| 66 |
+
if conf["dense"]:
|
| 67 |
+
return {
|
| 68 |
+
**conf,
|
| 69 |
+
"matcher": match_dense.confs.get(conf["matcher"]["model"]["name"]),
|
| 70 |
+
"dense": True,
|
| 71 |
+
}
|
| 72 |
+
else:
|
| 73 |
+
return {
|
| 74 |
+
**conf,
|
| 75 |
+
"feature": extract_features.confs.get(conf["feature"]["model"]["name"]),
|
| 76 |
+
"matcher": match_features.confs.get(conf["matcher"]["model"]["name"]),
|
| 77 |
+
"dense": False,
|
| 78 |
+
}
|
| 79 |
+
|
| 80 |
+
def _updata_config(
|
| 81 |
+
self,
|
| 82 |
+
detect_threshold: float = 0.015,
|
| 83 |
+
max_keypoints: int = 1024,
|
| 84 |
+
match_threshold: float = 0.2,
|
| 85 |
+
):
|
| 86 |
+
self.dense = self.conf["dense"]
|
| 87 |
+
if self.conf["dense"]:
|
| 88 |
+
try:
|
| 89 |
+
self.conf["matcher"]["model"]["match_threshold"] = match_threshold
|
| 90 |
+
except TypeError as e:
|
| 91 |
+
logger.error(e)
|
| 92 |
+
else:
|
| 93 |
+
self.conf["feature"]["model"]["max_keypoints"] = max_keypoints
|
| 94 |
+
self.conf["feature"]["model"]["keypoint_threshold"] = detect_threshold
|
| 95 |
+
self.extract_conf = self.conf["feature"]
|
| 96 |
+
|
| 97 |
+
self.match_conf = self.conf["matcher"]
|
| 98 |
+
|
| 99 |
+
def _init_models(self):
|
| 100 |
+
# initialize matcher
|
| 101 |
+
self.matcher = get_model(self.match_conf)
|
| 102 |
+
# initialize extractor
|
| 103 |
+
if self.dense:
|
| 104 |
+
self.extractor = None
|
| 105 |
+
else:
|
| 106 |
+
self.extractor = get_feature_model(self.conf["feature"])
|
| 107 |
+
|
| 108 |
+
def _forward(self, img0, img1):
|
| 109 |
+
if self.dense:
|
| 110 |
+
pred = match_dense.match_images(
|
| 111 |
+
self.matcher,
|
| 112 |
+
img0,
|
| 113 |
+
img1,
|
| 114 |
+
self.match_conf["preprocessing"],
|
| 115 |
+
device=self.device,
|
| 116 |
+
)
|
| 117 |
+
last_fixed = "{}".format( # noqa: F841
|
| 118 |
+
self.match_conf["model"]["name"]
|
| 119 |
+
)
|
| 120 |
+
else:
|
| 121 |
+
pred0 = extract_features.extract(
|
| 122 |
+
self.extractor, img0, self.extract_conf["preprocessing"]
|
| 123 |
+
)
|
| 124 |
+
pred1 = extract_features.extract(
|
| 125 |
+
self.extractor, img1, self.extract_conf["preprocessing"]
|
| 126 |
+
)
|
| 127 |
+
pred = match_features.match_images(self.matcher, pred0, pred1)
|
| 128 |
+
return pred
|
| 129 |
+
|
| 130 |
+
def _convert_pred(self, pred):
|
| 131 |
+
ret = {
|
| 132 |
+
k: v.cpu().detach()[0].numpy() if isinstance(v, torch.Tensor) else v
|
| 133 |
+
for k, v in pred.items()
|
| 134 |
+
}
|
| 135 |
+
ret = {
|
| 136 |
+
k: v[0].cpu().detach().numpy() if isinstance(v, list) else v
|
| 137 |
+
for k, v in ret.items()
|
| 138 |
+
}
|
| 139 |
+
return ret
|
| 140 |
+
|
| 141 |
+
@torch.inference_mode()
|
| 142 |
+
def extract(self, img0: np.ndarray, **kwargs) -> Dict[str, np.ndarray]:
|
| 143 |
+
"""Extract features from a single image.
|
| 144 |
+
|
| 145 |
+
Args:
|
| 146 |
+
img0 (np.ndarray): image
|
| 147 |
+
|
| 148 |
+
Returns:
|
| 149 |
+
Dict[str, np.ndarray]: feature dict
|
| 150 |
+
"""
|
| 151 |
+
|
| 152 |
+
# setting prams
|
| 153 |
+
self.extractor.conf["max_keypoints"] = kwargs.get("max_keypoints", 512)
|
| 154 |
+
self.extractor.conf["keypoint_threshold"] = kwargs.get(
|
| 155 |
+
"keypoint_threshold", 0.0
|
| 156 |
+
)
|
| 157 |
+
|
| 158 |
+
pred = extract_features.extract(
|
| 159 |
+
self.extractor, img0, self.extract_conf["preprocessing"]
|
| 160 |
+
)
|
| 161 |
+
pred = self._convert_pred(pred)
|
| 162 |
+
# back to origin scale
|
| 163 |
+
s0 = pred["original_size"] / pred["size"]
|
| 164 |
+
pred["keypoints_orig"] = (
|
| 165 |
+
match_features.scale_keypoints(pred["keypoints"] + 0.5, s0) - 0.5
|
| 166 |
+
)
|
| 167 |
+
# TODO: rotate back
|
| 168 |
+
binarize = kwargs.get("binarize", False)
|
| 169 |
+
if binarize:
|
| 170 |
+
assert "descriptors" in pred
|
| 171 |
+
pred["descriptors"] = (pred["descriptors"] > 0).astype(np.uint8)
|
| 172 |
+
pred["descriptors"] = pred["descriptors"].T # N x DIM
|
| 173 |
+
return pred
|
| 174 |
+
|
| 175 |
+
@torch.inference_mode()
|
| 176 |
+
def forward(
|
| 177 |
+
self,
|
| 178 |
+
img0: np.ndarray,
|
| 179 |
+
img1: np.ndarray,
|
| 180 |
+
) -> Dict[str, np.ndarray]:
|
| 181 |
+
"""
|
| 182 |
+
Forward pass of the image matching API.
|
| 183 |
+
|
| 184 |
+
Args:
|
| 185 |
+
img0: A 3D NumPy array of shape (H, W, C) representing the first image.
|
| 186 |
+
Values are in the range [0, 1] and are in RGB mode.
|
| 187 |
+
img1: A 3D NumPy array of shape (H, W, C) representing the second image.
|
| 188 |
+
Values are in the range [0, 1] and are in RGB mode.
|
| 189 |
+
|
| 190 |
+
Returns:
|
| 191 |
+
A dictionary containing the following keys:
|
| 192 |
+
- image0_orig: The original image 0.
|
| 193 |
+
- image1_orig: The original image 1.
|
| 194 |
+
- keypoints0_orig: The keypoints detected in image 0.
|
| 195 |
+
- keypoints1_orig: The keypoints detected in image 1.
|
| 196 |
+
- mkeypoints0_orig: The raw matches between image 0 and image 1.
|
| 197 |
+
- mkeypoints1_orig: The raw matches between image 1 and image 0.
|
| 198 |
+
- mmkeypoints0_orig: The RANSAC inliers in image 0.
|
| 199 |
+
- mmkeypoints1_orig: The RANSAC inliers in image 1.
|
| 200 |
+
- mconf: The confidence scores for the raw matches.
|
| 201 |
+
- mmconf: The confidence scores for the RANSAC inliers.
|
| 202 |
+
"""
|
| 203 |
+
# Take as input a pair of images (not a batch)
|
| 204 |
+
assert isinstance(img0, np.ndarray)
|
| 205 |
+
assert isinstance(img1, np.ndarray)
|
| 206 |
+
self.pred = self._forward(img0, img1)
|
| 207 |
+
if self.conf["ransac"]["enable"]:
|
| 208 |
+
self.pred = self._geometry_check(self.pred)
|
| 209 |
+
return self.pred
|
| 210 |
+
|
| 211 |
+
def _geometry_check(
|
| 212 |
+
self,
|
| 213 |
+
pred: Dict[str, Any],
|
| 214 |
+
) -> Dict[str, Any]:
|
| 215 |
+
"""
|
| 216 |
+
Filter matches using RANSAC. If keypoints are available, filter by keypoints.
|
| 217 |
+
If lines are available, filter by lines. If both keypoints and lines are
|
| 218 |
+
available, filter by keypoints.
|
| 219 |
+
|
| 220 |
+
Args:
|
| 221 |
+
pred (Dict[str, Any]): dict of matches, including original keypoints.
|
| 222 |
+
See :func:`filter_matches` for the expected keys.
|
| 223 |
+
|
| 224 |
+
Returns:
|
| 225 |
+
Dict[str, Any]: filtered matches
|
| 226 |
+
"""
|
| 227 |
+
pred = filter_matches(
|
| 228 |
+
pred,
|
| 229 |
+
ransac_method=self.conf["ransac"]["method"],
|
| 230 |
+
ransac_reproj_threshold=self.conf["ransac"]["reproj_threshold"],
|
| 231 |
+
ransac_confidence=self.conf["ransac"]["confidence"],
|
| 232 |
+
ransac_max_iter=self.conf["ransac"]["max_iter"],
|
| 233 |
+
)
|
| 234 |
+
return pred
|
| 235 |
+
|
| 236 |
+
def visualize(
|
| 237 |
+
self,
|
| 238 |
+
log_path: Optional[Path] = None,
|
| 239 |
+
) -> None:
|
| 240 |
+
"""
|
| 241 |
+
Visualize the matches.
|
| 242 |
+
|
| 243 |
+
Args:
|
| 244 |
+
log_path (Path, optional): The directory to save the images. Defaults to None.
|
| 245 |
+
|
| 246 |
+
Returns:
|
| 247 |
+
None
|
| 248 |
+
"""
|
| 249 |
+
if self.conf["dense"]:
|
| 250 |
+
postfix = str(self.conf["matcher"]["model"]["name"])
|
| 251 |
+
else:
|
| 252 |
+
postfix = "{}_{}".format(
|
| 253 |
+
str(self.conf["feature"]["model"]["name"]),
|
| 254 |
+
str(self.conf["matcher"]["model"]["name"]),
|
| 255 |
+
)
|
| 256 |
+
titles = [
|
| 257 |
+
"Image 0 - Keypoints",
|
| 258 |
+
"Image 1 - Keypoints",
|
| 259 |
+
]
|
| 260 |
+
pred: Dict[str, Any] = self.pred
|
| 261 |
+
image0: np.ndarray = pred["image0_orig"]
|
| 262 |
+
image1: np.ndarray = pred["image1_orig"]
|
| 263 |
+
output_keypoints: np.ndarray = plot_images(
|
| 264 |
+
[image0, image1], titles=titles, dpi=300
|
| 265 |
+
)
|
| 266 |
+
if "keypoints0_orig" in pred.keys() and "keypoints1_orig" in pred.keys():
|
| 267 |
+
plot_keypoints([pred["keypoints0_orig"], pred["keypoints1_orig"]])
|
| 268 |
+
text: str = (
|
| 269 |
+
f"# keypoints0: {len(pred['keypoints0_orig'])} \n"
|
| 270 |
+
+ f"# keypoints1: {len(pred['keypoints1_orig'])}"
|
| 271 |
+
)
|
| 272 |
+
add_text(0, text, fs=15)
|
| 273 |
+
output_keypoints = fig2im(output_keypoints)
|
| 274 |
+
# plot images with raw matches
|
| 275 |
+
titles = [
|
| 276 |
+
"Image 0 - Raw matched keypoints",
|
| 277 |
+
"Image 1 - Raw matched keypoints",
|
| 278 |
+
]
|
| 279 |
+
output_matches_raw, num_matches_raw = display_matches(
|
| 280 |
+
pred, titles=titles, tag="KPTS_RAW"
|
| 281 |
+
)
|
| 282 |
+
# plot images with ransac matches
|
| 283 |
+
titles = [
|
| 284 |
+
"Image 0 - Ransac matched keypoints",
|
| 285 |
+
"Image 1 - Ransac matched keypoints",
|
| 286 |
+
]
|
| 287 |
+
output_matches_ransac, num_matches_ransac = display_matches(
|
| 288 |
+
pred, titles=titles, tag="KPTS_RANSAC"
|
| 289 |
+
)
|
| 290 |
+
if log_path is not None:
|
| 291 |
+
img_keypoints_path: Path = log_path / f"img_keypoints_{postfix}.png"
|
| 292 |
+
img_matches_raw_path: Path = log_path / f"img_matches_raw_{postfix}.png"
|
| 293 |
+
img_matches_ransac_path: Path = (
|
| 294 |
+
log_path / f"img_matches_ransac_{postfix}.png"
|
| 295 |
+
)
|
| 296 |
+
cv2.imwrite(
|
| 297 |
+
str(img_keypoints_path),
|
| 298 |
+
output_keypoints[:, :, ::-1].copy(), # RGB -> BGR
|
| 299 |
+
)
|
| 300 |
+
cv2.imwrite(
|
| 301 |
+
str(img_matches_raw_path),
|
| 302 |
+
output_matches_raw[:, :, ::-1].copy(), # RGB -> BGR
|
| 303 |
+
)
|
| 304 |
+
cv2.imwrite(
|
| 305 |
+
str(img_matches_ransac_path),
|
| 306 |
+
output_matches_ransac[:, :, ::-1].copy(), # RGB -> BGR
|
| 307 |
+
)
|
| 308 |
+
plt.close("all")
|
imcui/api/server.py
ADDED
|
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# server.py
|
| 2 |
+
import warnings
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
from typing import Union
|
| 5 |
+
|
| 6 |
+
import numpy as np
|
| 7 |
+
import ray
|
| 8 |
+
import torch
|
| 9 |
+
import yaml
|
| 10 |
+
from fastapi import FastAPI, File, UploadFile
|
| 11 |
+
from fastapi.responses import JSONResponse
|
| 12 |
+
from PIL import Image
|
| 13 |
+
from ray import serve
|
| 14 |
+
|
| 15 |
+
from . import ImagesInput, to_base64_nparray
|
| 16 |
+
from .core import ImageMatchingAPI
|
| 17 |
+
from ..hloc import DEVICE
|
| 18 |
+
from ..ui import get_version
|
| 19 |
+
|
| 20 |
+
warnings.simplefilter("ignore")
|
| 21 |
+
app = FastAPI()
|
| 22 |
+
if ray.is_initialized():
|
| 23 |
+
ray.shutdown()
|
| 24 |
+
ray.init(
|
| 25 |
+
dashboard_port=8265,
|
| 26 |
+
ignore_reinit_error=True,
|
| 27 |
+
)
|
| 28 |
+
serve.start(
|
| 29 |
+
http_options={"host": "0.0.0.0", "port": 8001},
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
num_gpus = 1 if torch.cuda.is_available() else 0
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
@serve.deployment(
|
| 36 |
+
num_replicas=4, ray_actor_options={"num_cpus": 2, "num_gpus": num_gpus}
|
| 37 |
+
)
|
| 38 |
+
@serve.ingress(app)
|
| 39 |
+
class ImageMatchingService:
|
| 40 |
+
def __init__(self, conf: dict, device: str):
|
| 41 |
+
self.conf = conf
|
| 42 |
+
self.api = ImageMatchingAPI(conf=conf, device=device)
|
| 43 |
+
|
| 44 |
+
@app.get("/")
|
| 45 |
+
def root(self):
|
| 46 |
+
return "Hello, world!"
|
| 47 |
+
|
| 48 |
+
@app.get("/version")
|
| 49 |
+
async def version(self):
|
| 50 |
+
return {"version": get_version()}
|
| 51 |
+
|
| 52 |
+
@app.post("/v1/match")
|
| 53 |
+
async def match(
|
| 54 |
+
self, image0: UploadFile = File(...), image1: UploadFile = File(...)
|
| 55 |
+
):
|
| 56 |
+
"""
|
| 57 |
+
Handle the image matching request and return the processed result.
|
| 58 |
+
|
| 59 |
+
Args:
|
| 60 |
+
image0 (UploadFile): The first image file for matching.
|
| 61 |
+
image1 (UploadFile): The second image file for matching.
|
| 62 |
+
|
| 63 |
+
Returns:
|
| 64 |
+
JSONResponse: A JSON response containing the filtered match results
|
| 65 |
+
or an error message in case of failure.
|
| 66 |
+
"""
|
| 67 |
+
try:
|
| 68 |
+
# Load the images from the uploaded files
|
| 69 |
+
image0_array = self.load_image(image0)
|
| 70 |
+
image1_array = self.load_image(image1)
|
| 71 |
+
|
| 72 |
+
# Perform image matching using the API
|
| 73 |
+
output = self.api(image0_array, image1_array)
|
| 74 |
+
|
| 75 |
+
# Keys to skip in the output
|
| 76 |
+
skip_keys = ["image0_orig", "image1_orig"]
|
| 77 |
+
|
| 78 |
+
# Postprocess the output to filter unwanted data
|
| 79 |
+
pred = self.postprocess(output, skip_keys)
|
| 80 |
+
|
| 81 |
+
# Return the filtered prediction as a JSON response
|
| 82 |
+
return JSONResponse(content=pred)
|
| 83 |
+
except Exception as e:
|
| 84 |
+
# Return an error message with status code 500 in case of exception
|
| 85 |
+
return JSONResponse(content={"error": str(e)}, status_code=500)
|
| 86 |
+
|
| 87 |
+
@app.post("/v1/extract")
|
| 88 |
+
async def extract(self, input_info: ImagesInput):
|
| 89 |
+
"""
|
| 90 |
+
Extract keypoints and descriptors from images.
|
| 91 |
+
|
| 92 |
+
Args:
|
| 93 |
+
input_info: An object containing the image data and options.
|
| 94 |
+
|
| 95 |
+
Returns:
|
| 96 |
+
A list of dictionaries containing the keypoints and descriptors.
|
| 97 |
+
"""
|
| 98 |
+
try:
|
| 99 |
+
preds = []
|
| 100 |
+
for i, input_image in enumerate(input_info.data):
|
| 101 |
+
# Load the image from the input data
|
| 102 |
+
image_array = to_base64_nparray(input_image)
|
| 103 |
+
# Extract keypoints and descriptors
|
| 104 |
+
output = self.api.extract(
|
| 105 |
+
image_array,
|
| 106 |
+
max_keypoints=input_info.max_keypoints[i],
|
| 107 |
+
binarize=input_info.binarize,
|
| 108 |
+
)
|
| 109 |
+
# Do not return the original image and image_orig
|
| 110 |
+
# skip_keys = ["image", "image_orig"]
|
| 111 |
+
skip_keys = []
|
| 112 |
+
|
| 113 |
+
# Postprocess the output
|
| 114 |
+
pred = self.postprocess(output, skip_keys)
|
| 115 |
+
preds.append(pred)
|
| 116 |
+
# Return the list of extracted features
|
| 117 |
+
return JSONResponse(content=preds)
|
| 118 |
+
except Exception as e:
|
| 119 |
+
# Return an error message if an exception occurs
|
| 120 |
+
return JSONResponse(content={"error": str(e)}, status_code=500)
|
| 121 |
+
|
| 122 |
+
def load_image(self, file_path: Union[str, UploadFile]) -> np.ndarray:
|
| 123 |
+
"""
|
| 124 |
+
Reads an image from a file path or an UploadFile object.
|
| 125 |
+
|
| 126 |
+
Args:
|
| 127 |
+
file_path: A file path or an UploadFile object.
|
| 128 |
+
|
| 129 |
+
Returns:
|
| 130 |
+
A numpy array representing the image.
|
| 131 |
+
"""
|
| 132 |
+
if isinstance(file_path, str):
|
| 133 |
+
file_path = Path(file_path).resolve(strict=False)
|
| 134 |
+
else:
|
| 135 |
+
file_path = file_path.file
|
| 136 |
+
with Image.open(file_path) as img:
|
| 137 |
+
image_array = np.array(img)
|
| 138 |
+
return image_array
|
| 139 |
+
|
| 140 |
+
def postprocess(self, output: dict, skip_keys: list, binarize: bool = True) -> dict:
|
| 141 |
+
pred = {}
|
| 142 |
+
for key, value in output.items():
|
| 143 |
+
if key in skip_keys:
|
| 144 |
+
continue
|
| 145 |
+
if isinstance(value, np.ndarray):
|
| 146 |
+
pred[key] = value.tolist()
|
| 147 |
+
return pred
|
| 148 |
+
|
| 149 |
+
def run(self, host: str = "0.0.0.0", port: int = 8001):
|
| 150 |
+
import uvicorn
|
| 151 |
+
|
| 152 |
+
uvicorn.run(app, host=host, port=port)
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
def read_config(config_path: Path) -> dict:
|
| 156 |
+
with open(config_path, "r") as f:
|
| 157 |
+
conf = yaml.safe_load(f)
|
| 158 |
+
return conf
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
# api server
|
| 162 |
+
conf = read_config(Path(__file__).parent / "config/api.yaml")
|
| 163 |
+
service = ImageMatchingService.bind(conf=conf["api"], device=DEVICE)
|
| 164 |
+
handle = serve.run(service, route_prefix="/")
|
| 165 |
+
|
| 166 |
+
# serve run api.server_ray:service
|
| 167 |
+
|
| 168 |
+
# build to generate config file
|
| 169 |
+
# serve build api.server_ray:service -o api/config/ray.yaml
|
| 170 |
+
# serve run api/config/ray.yaml
|
imcui/api/test/CMakeLists.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
cmake_minimum_required(VERSION 3.10)
|
| 2 |
+
project(imatchui)
|
| 3 |
+
|
| 4 |
+
set(OpenCV_DIR /usr/include/opencv4)
|
| 5 |
+
find_package(OpenCV REQUIRED)
|
| 6 |
+
|
| 7 |
+
find_package(Boost REQUIRED COMPONENTS system)
|
| 8 |
+
if(Boost_FOUND)
|
| 9 |
+
include_directories(${Boost_INCLUDE_DIRS})
|
| 10 |
+
endif()
|
| 11 |
+
|
| 12 |
+
add_executable(client client.cpp)
|
| 13 |
+
|
| 14 |
+
target_include_directories(client PRIVATE ${Boost_LIBRARIES}
|
| 15 |
+
${OpenCV_INCLUDE_DIRS})
|
| 16 |
+
|
| 17 |
+
target_link_libraries(client PRIVATE curl jsoncpp b64 ${OpenCV_LIBS})
|
imcui/api/test/build_and_run.sh
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# g++ main.cpp -I/usr/include/opencv4 -lcurl -ljsoncpp -lb64 -lopencv_core -lopencv_imgcodecs -o main
|
| 2 |
+
# sudo apt-get update
|
| 3 |
+
# sudo apt-get install libboost-all-dev -y
|
| 4 |
+
# sudo apt-get install libcurl4-openssl-dev libjsoncpp-dev libb64-dev libopencv-dev -y
|
| 5 |
+
|
| 6 |
+
cd build
|
| 7 |
+
cmake ..
|
| 8 |
+
make -j12
|
| 9 |
+
|
| 10 |
+
echo " ======== RUN DEMO ========"
|
| 11 |
+
|
| 12 |
+
./client
|
| 13 |
+
|
| 14 |
+
echo " ======== END DEMO ========"
|
| 15 |
+
|
| 16 |
+
cd ..
|
imcui/api/test/client.cpp
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#include <curl/curl.h>
|
| 2 |
+
#include <opencv2/opencv.hpp>
|
| 3 |
+
#include "helper.h"
|
| 4 |
+
|
| 5 |
+
int main() {
|
| 6 |
+
std::string img_path =
|
| 7 |
+
"../../../datasets/sacre_coeur/mapping_rot/02928139_3448003521_rot45.jpg";
|
| 8 |
+
cv::Mat original_img = cv::imread(img_path, cv::IMREAD_GRAYSCALE);
|
| 9 |
+
|
| 10 |
+
if (original_img.empty()) {
|
| 11 |
+
throw std::runtime_error("Failed to decode image");
|
| 12 |
+
}
|
| 13 |
+
|
| 14 |
+
// Convert the image to Base64
|
| 15 |
+
std::string base64_img = image_to_base64(original_img);
|
| 16 |
+
|
| 17 |
+
// Convert the Base64 back to an image
|
| 18 |
+
cv::Mat decoded_img = base64_to_image(base64_img);
|
| 19 |
+
cv::imwrite("decoded_image.jpg", decoded_img);
|
| 20 |
+
cv::imwrite("original_img.jpg", original_img);
|
| 21 |
+
|
| 22 |
+
// The images should be identical
|
| 23 |
+
if (cv::countNonZero(original_img != decoded_img) != 0) {
|
| 24 |
+
std::cerr << "The images are not identical" << std::endl;
|
| 25 |
+
return -1;
|
| 26 |
+
} else {
|
| 27 |
+
std::cout << "The images are identical!" << std::endl;
|
| 28 |
+
}
|
| 29 |
+
|
| 30 |
+
// construct params
|
| 31 |
+
APIParams params{.data = {base64_img},
|
| 32 |
+
.max_keypoints = {100, 100},
|
| 33 |
+
.timestamps = {"0", "1"},
|
| 34 |
+
.grayscale = {0},
|
| 35 |
+
.image_hw = {{480, 640}, {240, 320}},
|
| 36 |
+
.feature_type = 0,
|
| 37 |
+
.rotates = {0.0f, 0.0f},
|
| 38 |
+
.scales = {1.0f, 1.0f},
|
| 39 |
+
.reference_points = {{1.23e+2f, 1.2e+1f},
|
| 40 |
+
{5.0e-1f, 3.0e-1f},
|
| 41 |
+
{2.3e+2f, 2.2e+1f},
|
| 42 |
+
{6.0e-1f, 4.0e-1f}},
|
| 43 |
+
.binarize = {1}};
|
| 44 |
+
|
| 45 |
+
KeyPointResults kpts_results;
|
| 46 |
+
|
| 47 |
+
// Convert the parameters to JSON
|
| 48 |
+
Json::Value jsonData = paramsToJson(params);
|
| 49 |
+
std::string url = "http://127.0.0.1:8001/v1/extract";
|
| 50 |
+
Json::StreamWriterBuilder writer;
|
| 51 |
+
std::string output = Json::writeString(writer, jsonData);
|
| 52 |
+
|
| 53 |
+
CURL* curl;
|
| 54 |
+
CURLcode res;
|
| 55 |
+
std::string readBuffer;
|
| 56 |
+
|
| 57 |
+
curl_global_init(CURL_GLOBAL_DEFAULT);
|
| 58 |
+
curl = curl_easy_init();
|
| 59 |
+
if (curl) {
|
| 60 |
+
struct curl_slist* hs = NULL;
|
| 61 |
+
hs = curl_slist_append(hs, "Content-Type: application/json");
|
| 62 |
+
curl_easy_setopt(curl, CURLOPT_HTTPHEADER, hs);
|
| 63 |
+
curl_easy_setopt(curl, CURLOPT_URL, url.c_str());
|
| 64 |
+
curl_easy_setopt(curl, CURLOPT_POSTFIELDS, output.c_str());
|
| 65 |
+
curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION, WriteCallback);
|
| 66 |
+
curl_easy_setopt(curl, CURLOPT_WRITEDATA, &readBuffer);
|
| 67 |
+
res = curl_easy_perform(curl);
|
| 68 |
+
|
| 69 |
+
if (res != CURLE_OK)
|
| 70 |
+
fprintf(
|
| 71 |
+
stderr, "curl_easy_perform() failed: %s\n", curl_easy_strerror(res));
|
| 72 |
+
else {
|
| 73 |
+
// std::cout << "Response from server: " << readBuffer << std::endl;
|
| 74 |
+
kpts_results = decode_response(readBuffer);
|
| 75 |
+
}
|
| 76 |
+
curl_easy_cleanup(curl);
|
| 77 |
+
}
|
| 78 |
+
curl_global_cleanup();
|
| 79 |
+
|
| 80 |
+
return 0;
|
| 81 |
+
}
|
imcui/api/test/helper.h
ADDED
|
@@ -0,0 +1,405 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
#include <b64/encode.h>
|
| 3 |
+
#include <fstream>
|
| 4 |
+
#include <jsoncpp/json/json.h>
|
| 5 |
+
#include <opencv2/opencv.hpp>
|
| 6 |
+
#include <sstream>
|
| 7 |
+
#include <vector>
|
| 8 |
+
|
| 9 |
+
// base64 to image
|
| 10 |
+
#include <boost/archive/iterators/base64_from_binary.hpp>
|
| 11 |
+
#include <boost/archive/iterators/binary_from_base64.hpp>
|
| 12 |
+
#include <boost/archive/iterators/transform_width.hpp>
|
| 13 |
+
|
| 14 |
+
/// Parameters used in the API
|
| 15 |
+
struct APIParams {
|
| 16 |
+
/// A list of images, base64 encoded
|
| 17 |
+
std::vector<std::string> data;
|
| 18 |
+
|
| 19 |
+
/// The maximum number of keypoints to detect for each image
|
| 20 |
+
std::vector<int> max_keypoints;
|
| 21 |
+
|
| 22 |
+
/// The timestamps of the images
|
| 23 |
+
std::vector<std::string> timestamps;
|
| 24 |
+
|
| 25 |
+
/// Whether to convert the images to grayscale
|
| 26 |
+
bool grayscale;
|
| 27 |
+
|
| 28 |
+
/// The height and width of each image
|
| 29 |
+
std::vector<std::vector<int>> image_hw;
|
| 30 |
+
|
| 31 |
+
/// The type of feature detector to use
|
| 32 |
+
int feature_type;
|
| 33 |
+
|
| 34 |
+
/// The rotations of the images
|
| 35 |
+
std::vector<double> rotates;
|
| 36 |
+
|
| 37 |
+
/// The scales of the images
|
| 38 |
+
std::vector<double> scales;
|
| 39 |
+
|
| 40 |
+
/// The reference points of the images
|
| 41 |
+
std::vector<std::vector<float>> reference_points;
|
| 42 |
+
|
| 43 |
+
/// Whether to binarize the descriptors
|
| 44 |
+
bool binarize;
|
| 45 |
+
};
|
| 46 |
+
|
| 47 |
+
/**
|
| 48 |
+
* @brief Contains the results of a keypoint detector.
|
| 49 |
+
*
|
| 50 |
+
* @details Stores the keypoints and descriptors for each image.
|
| 51 |
+
*/
|
| 52 |
+
class KeyPointResults {
|
| 53 |
+
public:
|
| 54 |
+
KeyPointResults() {
|
| 55 |
+
}
|
| 56 |
+
|
| 57 |
+
/**
|
| 58 |
+
* @brief Constructor.
|
| 59 |
+
*
|
| 60 |
+
* @param kp The keypoints for each image.
|
| 61 |
+
*/
|
| 62 |
+
KeyPointResults(const std::vector<std::vector<cv::KeyPoint>>& kp,
|
| 63 |
+
const std::vector<cv::Mat>& desc)
|
| 64 |
+
: keypoints(kp), descriptors(desc) {
|
| 65 |
+
}
|
| 66 |
+
|
| 67 |
+
/**
|
| 68 |
+
* @brief Append keypoints to the result.
|
| 69 |
+
*
|
| 70 |
+
* @param kpts The keypoints to append.
|
| 71 |
+
*/
|
| 72 |
+
inline void append_keypoints(std::vector<cv::KeyPoint>& kpts) {
|
| 73 |
+
keypoints.emplace_back(kpts);
|
| 74 |
+
}
|
| 75 |
+
|
| 76 |
+
/**
|
| 77 |
+
* @brief Append descriptors to the result.
|
| 78 |
+
*
|
| 79 |
+
* @param desc The descriptors to append.
|
| 80 |
+
*/
|
| 81 |
+
inline void append_descriptors(cv::Mat& desc) {
|
| 82 |
+
descriptors.emplace_back(desc);
|
| 83 |
+
}
|
| 84 |
+
|
| 85 |
+
/**
|
| 86 |
+
* @brief Get the keypoints.
|
| 87 |
+
*
|
| 88 |
+
* @return The keypoints.
|
| 89 |
+
*/
|
| 90 |
+
inline std::vector<std::vector<cv::KeyPoint>> get_keypoints() {
|
| 91 |
+
return keypoints;
|
| 92 |
+
}
|
| 93 |
+
|
| 94 |
+
/**
|
| 95 |
+
* @brief Get the descriptors.
|
| 96 |
+
*
|
| 97 |
+
* @return The descriptors.
|
| 98 |
+
*/
|
| 99 |
+
inline std::vector<cv::Mat> get_descriptors() {
|
| 100 |
+
return descriptors;
|
| 101 |
+
}
|
| 102 |
+
|
| 103 |
+
private:
|
| 104 |
+
std::vector<std::vector<cv::KeyPoint>> keypoints;
|
| 105 |
+
std::vector<cv::Mat> descriptors;
|
| 106 |
+
std::vector<std::vector<float>> scores;
|
| 107 |
+
};
|
| 108 |
+
|
| 109 |
+
/**
|
| 110 |
+
* @brief Decodes a base64 encoded string.
|
| 111 |
+
*
|
| 112 |
+
* @param base64 The base64 encoded string to decode.
|
| 113 |
+
* @return The decoded string.
|
| 114 |
+
*/
|
| 115 |
+
std::string base64_decode(const std::string& base64) {
|
| 116 |
+
using namespace boost::archive::iterators;
|
| 117 |
+
using It = transform_width<binary_from_base64<std::string::const_iterator>, 8, 6>;
|
| 118 |
+
|
| 119 |
+
// Find the position of the last non-whitespace character
|
| 120 |
+
auto end = base64.find_last_not_of(" \t\n\r");
|
| 121 |
+
if (end != std::string::npos) {
|
| 122 |
+
// Move one past the last non-whitespace character
|
| 123 |
+
end += 1;
|
| 124 |
+
}
|
| 125 |
+
|
| 126 |
+
// Decode the base64 string and return the result
|
| 127 |
+
return std::string(It(base64.begin()), It(base64.begin() + end));
|
| 128 |
+
}
|
| 129 |
+
|
| 130 |
+
/**
|
| 131 |
+
* @brief Decodes a base64 string into an OpenCV image
|
| 132 |
+
*
|
| 133 |
+
* @param base64 The base64 encoded string
|
| 134 |
+
* @return The decoded OpenCV image
|
| 135 |
+
*/
|
| 136 |
+
cv::Mat base64_to_image(const std::string& base64) {
|
| 137 |
+
// Decode the base64 string
|
| 138 |
+
std::string decodedStr = base64_decode(base64);
|
| 139 |
+
|
| 140 |
+
// Decode the image
|
| 141 |
+
std::vector<uchar> data(decodedStr.begin(), decodedStr.end());
|
| 142 |
+
cv::Mat img = cv::imdecode(data, cv::IMREAD_GRAYSCALE);
|
| 143 |
+
|
| 144 |
+
// Check for errors
|
| 145 |
+
if (img.empty()) {
|
| 146 |
+
throw std::runtime_error("Failed to decode image");
|
| 147 |
+
}
|
| 148 |
+
|
| 149 |
+
return img;
|
| 150 |
+
}
|
| 151 |
+
|
| 152 |
+
/**
|
| 153 |
+
* @brief Encodes an OpenCV image into a base64 string
|
| 154 |
+
*
|
| 155 |
+
* This function takes an OpenCV image and encodes it into a base64 string.
|
| 156 |
+
* The image is first encoded as a PNG image, and then the resulting
|
| 157 |
+
* bytes are encoded as a base64 string.
|
| 158 |
+
*
|
| 159 |
+
* @param img The OpenCV image
|
| 160 |
+
* @return The base64 encoded string
|
| 161 |
+
*
|
| 162 |
+
* @throws std::runtime_error if the image is empty or encoding fails
|
| 163 |
+
*/
|
| 164 |
+
std::string image_to_base64(cv::Mat& img) {
|
| 165 |
+
if (img.empty()) {
|
| 166 |
+
throw std::runtime_error("Failed to read image");
|
| 167 |
+
}
|
| 168 |
+
|
| 169 |
+
// Encode the image as a PNG
|
| 170 |
+
std::vector<uchar> buf;
|
| 171 |
+
if (!cv::imencode(".png", img, buf)) {
|
| 172 |
+
throw std::runtime_error("Failed to encode image");
|
| 173 |
+
}
|
| 174 |
+
|
| 175 |
+
// Encode the bytes as a base64 string
|
| 176 |
+
using namespace boost::archive::iterators;
|
| 177 |
+
using It =
|
| 178 |
+
base64_from_binary<transform_width<std::vector<uchar>::const_iterator, 6, 8>>;
|
| 179 |
+
std::string base64(It(buf.begin()), It(buf.end()));
|
| 180 |
+
|
| 181 |
+
// Pad the string with '=' characters to a multiple of 4 bytes
|
| 182 |
+
base64.append((3 - buf.size() % 3) % 3, '=');
|
| 183 |
+
|
| 184 |
+
return base64;
|
| 185 |
+
}
|
| 186 |
+
|
| 187 |
+
/**
|
| 188 |
+
* @brief Callback function for libcurl to write data to a string
|
| 189 |
+
*
|
| 190 |
+
* This function is used as a callback for libcurl to write data to a string.
|
| 191 |
+
* It takes the contents, size, and nmemb as parameters, and writes the data to
|
| 192 |
+
* the string.
|
| 193 |
+
*
|
| 194 |
+
* @param contents The data to write
|
| 195 |
+
* @param size The size of the data
|
| 196 |
+
* @param nmemb The number of members in the data
|
| 197 |
+
* @param s The string to write the data to
|
| 198 |
+
* @return The number of bytes written
|
| 199 |
+
*/
|
| 200 |
+
size_t WriteCallback(void* contents, size_t size, size_t nmemb, std::string* s) {
|
| 201 |
+
size_t newLength = size * nmemb;
|
| 202 |
+
try {
|
| 203 |
+
// Resize the string to fit the new data
|
| 204 |
+
s->resize(s->size() + newLength);
|
| 205 |
+
} catch (std::bad_alloc& e) {
|
| 206 |
+
// If there's an error allocating memory, return 0
|
| 207 |
+
return 0;
|
| 208 |
+
}
|
| 209 |
+
|
| 210 |
+
// Copy the data to the string
|
| 211 |
+
std::copy(static_cast<const char*>(contents),
|
| 212 |
+
static_cast<const char*>(contents) + newLength,
|
| 213 |
+
s->begin() + s->size() - newLength);
|
| 214 |
+
return newLength;
|
| 215 |
+
}
|
| 216 |
+
|
| 217 |
+
// Helper functions
|
| 218 |
+
|
| 219 |
+
/**
|
| 220 |
+
* @brief Helper function to convert a type to a Json::Value
|
| 221 |
+
*
|
| 222 |
+
* This function takes a value of type T and converts it to a Json::Value.
|
| 223 |
+
* It is used to simplify the process of converting a type to a Json::Value.
|
| 224 |
+
*
|
| 225 |
+
* @param val The value to convert
|
| 226 |
+
* @return The converted Json::Value
|
| 227 |
+
*/
|
| 228 |
+
template <typename T> Json::Value toJson(const T& val) {
|
| 229 |
+
return Json::Value(val);
|
| 230 |
+
}
|
| 231 |
+
|
| 232 |
+
/**
|
| 233 |
+
* @brief Converts a vector to a Json::Value
|
| 234 |
+
*
|
| 235 |
+
* This function takes a vector of type T and converts it to a Json::Value.
|
| 236 |
+
* Each element in the vector is appended to the Json::Value array.
|
| 237 |
+
*
|
| 238 |
+
* @param vec The vector to convert to Json::Value
|
| 239 |
+
* @return The Json::Value representing the vector
|
| 240 |
+
*/
|
| 241 |
+
template <typename T> Json::Value vectorToJson(const std::vector<T>& vec) {
|
| 242 |
+
Json::Value json(Json::arrayValue);
|
| 243 |
+
for (const auto& item : vec) {
|
| 244 |
+
json.append(item);
|
| 245 |
+
}
|
| 246 |
+
return json;
|
| 247 |
+
}
|
| 248 |
+
|
| 249 |
+
/**
|
| 250 |
+
* @brief Converts a nested vector to a Json::Value
|
| 251 |
+
*
|
| 252 |
+
* This function takes a nested vector of type T and converts it to a
|
| 253 |
+
* Json::Value. Each sub-vector is converted to a Json::Value array and appended
|
| 254 |
+
* to the main Json::Value array.
|
| 255 |
+
*
|
| 256 |
+
* @param vec The nested vector to convert to Json::Value
|
| 257 |
+
* @return The Json::Value representing the nested vector
|
| 258 |
+
*/
|
| 259 |
+
template <typename T>
|
| 260 |
+
Json::Value nestedVectorToJson(const std::vector<std::vector<T>>& vec) {
|
| 261 |
+
Json::Value json(Json::arrayValue);
|
| 262 |
+
for (const auto& subVec : vec) {
|
| 263 |
+
json.append(vectorToJson(subVec));
|
| 264 |
+
}
|
| 265 |
+
return json;
|
| 266 |
+
}
|
| 267 |
+
|
| 268 |
+
/**
|
| 269 |
+
* @brief Converts the APIParams struct to a Json::Value
|
| 270 |
+
*
|
| 271 |
+
* This function takes an APIParams struct and converts it to a Json::Value.
|
| 272 |
+
* The Json::Value is a JSON object with the following fields:
|
| 273 |
+
* - data: a JSON array of base64 encoded images
|
| 274 |
+
* - max_keypoints: a JSON array of integers, max number of keypoints for each
|
| 275 |
+
* image
|
| 276 |
+
* - timestamps: a JSON array of timestamps, one for each image
|
| 277 |
+
* - grayscale: a JSON boolean, whether to convert images to grayscale
|
| 278 |
+
* - image_hw: a nested JSON array, each sub-array contains the height and width
|
| 279 |
+
* of an image
|
| 280 |
+
* - feature_type: a JSON integer, the type of feature detector to use
|
| 281 |
+
* - rotates: a JSON array of doubles, the rotation of each image
|
| 282 |
+
* - scales: a JSON array of doubles, the scale of each image
|
| 283 |
+
* - reference_points: a nested JSON array, each sub-array contains the
|
| 284 |
+
* reference points of an image
|
| 285 |
+
* - binarize: a JSON boolean, whether to binarize the descriptors
|
| 286 |
+
*
|
| 287 |
+
* @param params The APIParams struct to convert
|
| 288 |
+
* @return The Json::Value representing the APIParams struct
|
| 289 |
+
*/
|
| 290 |
+
Json::Value paramsToJson(const APIParams& params) {
|
| 291 |
+
Json::Value json;
|
| 292 |
+
json["data"] = vectorToJson(params.data);
|
| 293 |
+
json["max_keypoints"] = vectorToJson(params.max_keypoints);
|
| 294 |
+
json["timestamps"] = vectorToJson(params.timestamps);
|
| 295 |
+
json["grayscale"] = toJson(params.grayscale);
|
| 296 |
+
json["image_hw"] = nestedVectorToJson(params.image_hw);
|
| 297 |
+
json["feature_type"] = toJson(params.feature_type);
|
| 298 |
+
json["rotates"] = vectorToJson(params.rotates);
|
| 299 |
+
json["scales"] = vectorToJson(params.scales);
|
| 300 |
+
json["reference_points"] = nestedVectorToJson(params.reference_points);
|
| 301 |
+
json["binarize"] = toJson(params.binarize);
|
| 302 |
+
return json;
|
| 303 |
+
}
|
| 304 |
+
|
| 305 |
+
template <typename T> cv::Mat jsonToMat(Json::Value json) {
|
| 306 |
+
int rows = json.size();
|
| 307 |
+
int cols = json[0].size();
|
| 308 |
+
|
| 309 |
+
// Create a single array to hold all the data.
|
| 310 |
+
std::vector<T> data;
|
| 311 |
+
data.reserve(rows * cols);
|
| 312 |
+
|
| 313 |
+
for (int i = 0; i < rows; i++) {
|
| 314 |
+
for (int j = 0; j < cols; j++) {
|
| 315 |
+
data.push_back(static_cast<T>(json[i][j].asInt()));
|
| 316 |
+
}
|
| 317 |
+
}
|
| 318 |
+
|
| 319 |
+
// Create a cv::Mat object that points to the data.
|
| 320 |
+
cv::Mat mat(rows, cols, CV_8UC1,
|
| 321 |
+
data.data()); // Change the type if necessary.
|
| 322 |
+
// cv::Mat mat(cols, rows,CV_8UC1, data.data()); // Change the type if
|
| 323 |
+
// necessary.
|
| 324 |
+
|
| 325 |
+
return mat;
|
| 326 |
+
}
|
| 327 |
+
|
| 328 |
+
/**
|
| 329 |
+
* @brief Decodes the response of the server and prints the keypoints
|
| 330 |
+
*
|
| 331 |
+
* This function takes the response of the server, a JSON string, and decodes
|
| 332 |
+
* it. It then prints the keypoints and draws them on the original image.
|
| 333 |
+
*
|
| 334 |
+
* @param response The response of the server
|
| 335 |
+
* @return The keypoints and descriptors
|
| 336 |
+
*/
|
| 337 |
+
KeyPointResults decode_response(const std::string& response, bool viz = true) {
|
| 338 |
+
Json::CharReaderBuilder builder;
|
| 339 |
+
Json::CharReader* reader = builder.newCharReader();
|
| 340 |
+
|
| 341 |
+
Json::Value jsonData;
|
| 342 |
+
std::string errors;
|
| 343 |
+
|
| 344 |
+
// Parse the JSON response
|
| 345 |
+
bool parsingSuccessful = reader->parse(
|
| 346 |
+
response.c_str(), response.c_str() + response.size(), &jsonData, &errors);
|
| 347 |
+
delete reader;
|
| 348 |
+
|
| 349 |
+
if (!parsingSuccessful) {
|
| 350 |
+
// Handle error
|
| 351 |
+
std::cout << "Failed to parse the JSON, errors:" << std::endl;
|
| 352 |
+
std::cout << errors << std::endl;
|
| 353 |
+
return KeyPointResults();
|
| 354 |
+
}
|
| 355 |
+
|
| 356 |
+
KeyPointResults kpts_results;
|
| 357 |
+
|
| 358 |
+
// Iterate over the images
|
| 359 |
+
for (const auto& jsonItem : jsonData) {
|
| 360 |
+
auto jkeypoints = jsonItem["keypoints"];
|
| 361 |
+
auto jkeypoints_orig = jsonItem["keypoints_orig"];
|
| 362 |
+
auto jdescriptors = jsonItem["descriptors"];
|
| 363 |
+
auto jscores = jsonItem["scores"];
|
| 364 |
+
auto jimageSize = jsonItem["image_size"];
|
| 365 |
+
auto joriginalSize = jsonItem["original_size"];
|
| 366 |
+
auto jsize = jsonItem["size"];
|
| 367 |
+
|
| 368 |
+
std::vector<cv::KeyPoint> vkeypoints;
|
| 369 |
+
std::vector<float> vscores;
|
| 370 |
+
|
| 371 |
+
// Iterate over the keypoints
|
| 372 |
+
int counter = 0;
|
| 373 |
+
for (const auto& keypoint : jkeypoints_orig) {
|
| 374 |
+
if (counter < 10) {
|
| 375 |
+
// Print the first 10 keypoints
|
| 376 |
+
std::cout << keypoint[0].asFloat() << ", " << keypoint[1].asFloat()
|
| 377 |
+
<< std::endl;
|
| 378 |
+
}
|
| 379 |
+
counter++;
|
| 380 |
+
// Convert the Json::Value to a cv::KeyPoint
|
| 381 |
+
vkeypoints.emplace_back(
|
| 382 |
+
cv::KeyPoint(keypoint[0].asFloat(), keypoint[1].asFloat(), 0.0));
|
| 383 |
+
}
|
| 384 |
+
|
| 385 |
+
if (viz && jsonItem.isMember("image_orig")) {
|
| 386 |
+
auto jimg_orig = jsonItem["image_orig"];
|
| 387 |
+
cv::Mat img = jsonToMat<uchar>(jimg_orig);
|
| 388 |
+
cv::imwrite("viz_image_orig.jpg", img);
|
| 389 |
+
|
| 390 |
+
// Draw keypoints on the image
|
| 391 |
+
cv::Mat imgWithKeypoints;
|
| 392 |
+
cv::drawKeypoints(img, vkeypoints, imgWithKeypoints, cv::Scalar(0, 0, 255));
|
| 393 |
+
|
| 394 |
+
// Write the image with keypoints
|
| 395 |
+
std::string filename = "viz_image_orig_keypoints.jpg";
|
| 396 |
+
cv::imwrite(filename, imgWithKeypoints);
|
| 397 |
+
}
|
| 398 |
+
|
| 399 |
+
// Iterate over the descriptors
|
| 400 |
+
cv::Mat descriptors = jsonToMat<uchar>(jdescriptors);
|
| 401 |
+
kpts_results.append_keypoints(vkeypoints);
|
| 402 |
+
kpts_results.append_descriptors(descriptors);
|
| 403 |
+
}
|
| 404 |
+
return kpts_results;
|
| 405 |
+
}
|
imcui/datasets/.gitignore
ADDED
|
File without changes
|
imcui/hloc/__init__.py
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
import sys
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
from packaging import version
|
| 6 |
+
|
| 7 |
+
__version__ = "1.5"
|
| 8 |
+
|
| 9 |
+
LOG_PATH = "log.txt"
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def read_logs():
|
| 13 |
+
sys.stdout.flush()
|
| 14 |
+
with open(LOG_PATH, "r") as f:
|
| 15 |
+
return f.read()
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def flush_logs():
|
| 19 |
+
sys.stdout.flush()
|
| 20 |
+
logs = open(LOG_PATH, "w")
|
| 21 |
+
logs.close()
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
formatter = logging.Formatter(
|
| 25 |
+
fmt="[%(asctime)s %(name)s %(levelname)s] %(message)s",
|
| 26 |
+
datefmt="%Y/%m/%d %H:%M:%S",
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
logs_file = open(LOG_PATH, "w")
|
| 30 |
+
logs_file.close()
|
| 31 |
+
|
| 32 |
+
file_handler = logging.FileHandler(filename=LOG_PATH)
|
| 33 |
+
file_handler.setFormatter(formatter)
|
| 34 |
+
file_handler.setLevel(logging.INFO)
|
| 35 |
+
stdout_handler = logging.StreamHandler()
|
| 36 |
+
stdout_handler.setFormatter(formatter)
|
| 37 |
+
stdout_handler.setLevel(logging.INFO)
|
| 38 |
+
logger = logging.getLogger("hloc")
|
| 39 |
+
logger.setLevel(logging.INFO)
|
| 40 |
+
logger.addHandler(file_handler)
|
| 41 |
+
logger.addHandler(stdout_handler)
|
| 42 |
+
logger.propagate = False
|
| 43 |
+
|
| 44 |
+
try:
|
| 45 |
+
import pycolmap
|
| 46 |
+
except ImportError:
|
| 47 |
+
logger.warning("pycolmap is not installed, some features may not work.")
|
| 48 |
+
else:
|
| 49 |
+
min_version = version.parse("0.6.0")
|
| 50 |
+
found_version = pycolmap.__version__
|
| 51 |
+
if found_version != "dev":
|
| 52 |
+
version = version.parse(found_version)
|
| 53 |
+
if version < min_version:
|
| 54 |
+
s = f"pycolmap>={min_version}"
|
| 55 |
+
logger.warning(
|
| 56 |
+
"hloc requires %s but found pycolmap==%s, "
|
| 57 |
+
'please upgrade with `pip install --upgrade "%s"`',
|
| 58 |
+
s,
|
| 59 |
+
found_version,
|
| 60 |
+
s,
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 64 |
+
|
| 65 |
+
MODEL_REPO_ID = "LittleFrog/MatchAnything_checkpoints"
|
imcui/hloc/__pycache__/__init__.cpython-38.pyc
ADDED
|
Binary file (1.64 kB). View file
|
|
|
imcui/hloc/__pycache__/extract_features.cpython-38.pyc
ADDED
|
Binary file (11.2 kB). View file
|
|
|
imcui/hloc/__pycache__/match_dense.cpython-38.pyc
ADDED
|
Binary file (18.9 kB). View file
|
|
|
imcui/hloc/__pycache__/match_features.cpython-38.pyc
ADDED
|
Binary file (10.7 kB). View file
|
|
|
imcui/hloc/colmap_from_nvm.py
ADDED
|
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import sqlite3
|
| 3 |
+
from collections import defaultdict
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
|
| 6 |
+
import numpy as np
|
| 7 |
+
from tqdm import tqdm
|
| 8 |
+
|
| 9 |
+
from . import logger
|
| 10 |
+
from .utils.read_write_model import (
|
| 11 |
+
CAMERA_MODEL_NAMES,
|
| 12 |
+
Camera,
|
| 13 |
+
Image,
|
| 14 |
+
Point3D,
|
| 15 |
+
write_model,
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def recover_database_images_and_ids(database_path):
|
| 20 |
+
images = {}
|
| 21 |
+
cameras = {}
|
| 22 |
+
db = sqlite3.connect(str(database_path))
|
| 23 |
+
ret = db.execute("SELECT name, image_id, camera_id FROM images;")
|
| 24 |
+
for name, image_id, camera_id in ret:
|
| 25 |
+
images[name] = image_id
|
| 26 |
+
cameras[name] = camera_id
|
| 27 |
+
db.close()
|
| 28 |
+
logger.info(f"Found {len(images)} images and {len(cameras)} cameras in database.")
|
| 29 |
+
return images, cameras
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def quaternion_to_rotation_matrix(qvec):
|
| 33 |
+
qvec = qvec / np.linalg.norm(qvec)
|
| 34 |
+
w, x, y, z = qvec
|
| 35 |
+
R = np.array(
|
| 36 |
+
[
|
| 37 |
+
[
|
| 38 |
+
1 - 2 * y * y - 2 * z * z,
|
| 39 |
+
2 * x * y - 2 * z * w,
|
| 40 |
+
2 * x * z + 2 * y * w,
|
| 41 |
+
],
|
| 42 |
+
[
|
| 43 |
+
2 * x * y + 2 * z * w,
|
| 44 |
+
1 - 2 * x * x - 2 * z * z,
|
| 45 |
+
2 * y * z - 2 * x * w,
|
| 46 |
+
],
|
| 47 |
+
[
|
| 48 |
+
2 * x * z - 2 * y * w,
|
| 49 |
+
2 * y * z + 2 * x * w,
|
| 50 |
+
1 - 2 * x * x - 2 * y * y,
|
| 51 |
+
],
|
| 52 |
+
]
|
| 53 |
+
)
|
| 54 |
+
return R
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def camera_center_to_translation(c, qvec):
|
| 58 |
+
R = quaternion_to_rotation_matrix(qvec)
|
| 59 |
+
return (-1) * np.matmul(R, c)
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def read_nvm_model(nvm_path, intrinsics_path, image_ids, camera_ids, skip_points=False):
|
| 63 |
+
with open(intrinsics_path, "r") as f:
|
| 64 |
+
raw_intrinsics = f.readlines()
|
| 65 |
+
|
| 66 |
+
logger.info(f"Reading {len(raw_intrinsics)} cameras...")
|
| 67 |
+
cameras = {}
|
| 68 |
+
for intrinsics in raw_intrinsics:
|
| 69 |
+
intrinsics = intrinsics.strip("\n").split(" ")
|
| 70 |
+
name, camera_model, width, height = intrinsics[:4]
|
| 71 |
+
params = [float(p) for p in intrinsics[4:]]
|
| 72 |
+
camera_model = CAMERA_MODEL_NAMES[camera_model]
|
| 73 |
+
assert len(params) == camera_model.num_params
|
| 74 |
+
camera_id = camera_ids[name]
|
| 75 |
+
camera = Camera(
|
| 76 |
+
id=camera_id,
|
| 77 |
+
model=camera_model.model_name,
|
| 78 |
+
width=int(width),
|
| 79 |
+
height=int(height),
|
| 80 |
+
params=params,
|
| 81 |
+
)
|
| 82 |
+
cameras[camera_id] = camera
|
| 83 |
+
|
| 84 |
+
nvm_f = open(nvm_path, "r")
|
| 85 |
+
line = nvm_f.readline()
|
| 86 |
+
while line == "\n" or line.startswith("NVM_V3"):
|
| 87 |
+
line = nvm_f.readline()
|
| 88 |
+
num_images = int(line)
|
| 89 |
+
assert num_images == len(cameras)
|
| 90 |
+
|
| 91 |
+
logger.info(f"Reading {num_images} images...")
|
| 92 |
+
image_idx_to_db_image_id = []
|
| 93 |
+
image_data = []
|
| 94 |
+
i = 0
|
| 95 |
+
while i < num_images:
|
| 96 |
+
line = nvm_f.readline()
|
| 97 |
+
if line == "\n":
|
| 98 |
+
continue
|
| 99 |
+
data = line.strip("\n").split(" ")
|
| 100 |
+
image_data.append(data)
|
| 101 |
+
image_idx_to_db_image_id.append(image_ids[data[0]])
|
| 102 |
+
i += 1
|
| 103 |
+
|
| 104 |
+
line = nvm_f.readline()
|
| 105 |
+
while line == "\n":
|
| 106 |
+
line = nvm_f.readline()
|
| 107 |
+
num_points = int(line)
|
| 108 |
+
|
| 109 |
+
if skip_points:
|
| 110 |
+
logger.info(f"Skipping {num_points} points.")
|
| 111 |
+
num_points = 0
|
| 112 |
+
else:
|
| 113 |
+
logger.info(f"Reading {num_points} points...")
|
| 114 |
+
points3D = {}
|
| 115 |
+
image_idx_to_keypoints = defaultdict(list)
|
| 116 |
+
i = 0
|
| 117 |
+
pbar = tqdm(total=num_points, unit="pts")
|
| 118 |
+
while i < num_points:
|
| 119 |
+
line = nvm_f.readline()
|
| 120 |
+
if line == "\n":
|
| 121 |
+
continue
|
| 122 |
+
|
| 123 |
+
data = line.strip("\n").split(" ")
|
| 124 |
+
x, y, z, r, g, b, num_observations = data[:7]
|
| 125 |
+
obs_image_ids, point2D_idxs = [], []
|
| 126 |
+
for j in range(int(num_observations)):
|
| 127 |
+
s = 7 + 4 * j
|
| 128 |
+
img_index, kp_index, kx, ky = data[s : s + 4]
|
| 129 |
+
image_idx_to_keypoints[int(img_index)].append(
|
| 130 |
+
(int(kp_index), float(kx), float(ky), i)
|
| 131 |
+
)
|
| 132 |
+
db_image_id = image_idx_to_db_image_id[int(img_index)]
|
| 133 |
+
obs_image_ids.append(db_image_id)
|
| 134 |
+
point2D_idxs.append(kp_index)
|
| 135 |
+
|
| 136 |
+
point = Point3D(
|
| 137 |
+
id=i,
|
| 138 |
+
xyz=np.array([x, y, z], float),
|
| 139 |
+
rgb=np.array([r, g, b], int),
|
| 140 |
+
error=1.0, # fake
|
| 141 |
+
image_ids=np.array(obs_image_ids, int),
|
| 142 |
+
point2D_idxs=np.array(point2D_idxs, int),
|
| 143 |
+
)
|
| 144 |
+
points3D[i] = point
|
| 145 |
+
|
| 146 |
+
i += 1
|
| 147 |
+
pbar.update(1)
|
| 148 |
+
pbar.close()
|
| 149 |
+
|
| 150 |
+
logger.info("Parsing image data...")
|
| 151 |
+
images = {}
|
| 152 |
+
for i, data in enumerate(image_data):
|
| 153 |
+
# Skip the focal length. Skip the distortion and terminal 0.
|
| 154 |
+
name, _, qw, qx, qy, qz, cx, cy, cz, _, _ = data
|
| 155 |
+
qvec = np.array([qw, qx, qy, qz], float)
|
| 156 |
+
c = np.array([cx, cy, cz], float)
|
| 157 |
+
t = camera_center_to_translation(c, qvec)
|
| 158 |
+
|
| 159 |
+
if i in image_idx_to_keypoints:
|
| 160 |
+
# NVM only stores triangulated 2D keypoints: add dummy ones
|
| 161 |
+
keypoints = image_idx_to_keypoints[i]
|
| 162 |
+
point2D_idxs = np.array([d[0] for d in keypoints])
|
| 163 |
+
tri_xys = np.array([[x, y] for _, x, y, _ in keypoints])
|
| 164 |
+
tri_ids = np.array([i for _, _, _, i in keypoints])
|
| 165 |
+
|
| 166 |
+
num_2Dpoints = max(point2D_idxs) + 1
|
| 167 |
+
xys = np.zeros((num_2Dpoints, 2), float)
|
| 168 |
+
point3D_ids = np.full(num_2Dpoints, -1, int)
|
| 169 |
+
xys[point2D_idxs] = tri_xys
|
| 170 |
+
point3D_ids[point2D_idxs] = tri_ids
|
| 171 |
+
else:
|
| 172 |
+
xys = np.zeros((0, 2), float)
|
| 173 |
+
point3D_ids = np.full(0, -1, int)
|
| 174 |
+
|
| 175 |
+
image_id = image_ids[name]
|
| 176 |
+
image = Image(
|
| 177 |
+
id=image_id,
|
| 178 |
+
qvec=qvec,
|
| 179 |
+
tvec=t,
|
| 180 |
+
camera_id=camera_ids[name],
|
| 181 |
+
name=name,
|
| 182 |
+
xys=xys,
|
| 183 |
+
point3D_ids=point3D_ids,
|
| 184 |
+
)
|
| 185 |
+
images[image_id] = image
|
| 186 |
+
|
| 187 |
+
return cameras, images, points3D
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
def main(nvm, intrinsics, database, output, skip_points=False):
|
| 191 |
+
assert nvm.exists(), nvm
|
| 192 |
+
assert intrinsics.exists(), intrinsics
|
| 193 |
+
assert database.exists(), database
|
| 194 |
+
|
| 195 |
+
image_ids, camera_ids = recover_database_images_and_ids(database)
|
| 196 |
+
|
| 197 |
+
logger.info("Reading the NVM model...")
|
| 198 |
+
model = read_nvm_model(
|
| 199 |
+
nvm, intrinsics, image_ids, camera_ids, skip_points=skip_points
|
| 200 |
+
)
|
| 201 |
+
|
| 202 |
+
logger.info("Writing the COLMAP model...")
|
| 203 |
+
output.mkdir(exist_ok=True, parents=True)
|
| 204 |
+
write_model(*model, path=str(output), ext=".bin")
|
| 205 |
+
logger.info("Done.")
|
| 206 |
+
|
| 207 |
+
|
| 208 |
+
if __name__ == "__main__":
|
| 209 |
+
parser = argparse.ArgumentParser()
|
| 210 |
+
parser.add_argument("--nvm", required=True, type=Path)
|
| 211 |
+
parser.add_argument("--intrinsics", required=True, type=Path)
|
| 212 |
+
parser.add_argument("--database", required=True, type=Path)
|
| 213 |
+
parser.add_argument("--output", required=True, type=Path)
|
| 214 |
+
parser.add_argument("--skip_points", action="store_true")
|
| 215 |
+
args = parser.parse_args()
|
| 216 |
+
main(**args.__dict__)
|
imcui/hloc/extract_features.py
ADDED
|
@@ -0,0 +1,607 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import collections.abc as collections
|
| 3 |
+
import pprint
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
from types import SimpleNamespace
|
| 6 |
+
from typing import Dict, List, Optional, Union
|
| 7 |
+
|
| 8 |
+
import cv2
|
| 9 |
+
import h5py
|
| 10 |
+
import numpy as np
|
| 11 |
+
import PIL.Image
|
| 12 |
+
import torch
|
| 13 |
+
import torchvision.transforms.functional as F
|
| 14 |
+
from tqdm import tqdm
|
| 15 |
+
|
| 16 |
+
from . import extractors, logger
|
| 17 |
+
from .utils.base_model import dynamic_load
|
| 18 |
+
from .utils.io import list_h5_names, read_image
|
| 19 |
+
from .utils.parsers import parse_image_lists
|
| 20 |
+
|
| 21 |
+
"""
|
| 22 |
+
A set of standard configurations that can be directly selected from the command
|
| 23 |
+
line using their name. Each is a dictionary with the following entries:
|
| 24 |
+
- output: the name of the feature file that will be generated.
|
| 25 |
+
- model: the model configuration, as passed to a feature extractor.
|
| 26 |
+
- preprocessing: how to preprocess the images read from disk.
|
| 27 |
+
"""
|
| 28 |
+
confs = {
|
| 29 |
+
"superpoint_aachen": {
|
| 30 |
+
"output": "feats-superpoint-n4096-r1024",
|
| 31 |
+
"model": {
|
| 32 |
+
"name": "superpoint",
|
| 33 |
+
"nms_radius": 3,
|
| 34 |
+
"max_keypoints": 4096,
|
| 35 |
+
"keypoint_threshold": 0.005,
|
| 36 |
+
},
|
| 37 |
+
"preprocessing": {
|
| 38 |
+
"grayscale": True,
|
| 39 |
+
"force_resize": True,
|
| 40 |
+
"resize_max": 1600,
|
| 41 |
+
"width": 640,
|
| 42 |
+
"height": 480,
|
| 43 |
+
"dfactor": 8,
|
| 44 |
+
},
|
| 45 |
+
},
|
| 46 |
+
# Resize images to 1600px even if they are originally smaller.
|
| 47 |
+
# Improves the keypoint localization if the images are of good quality.
|
| 48 |
+
"superpoint_max": {
|
| 49 |
+
"output": "feats-superpoint-n4096-rmax1600",
|
| 50 |
+
"model": {
|
| 51 |
+
"name": "superpoint",
|
| 52 |
+
"nms_radius": 3,
|
| 53 |
+
"max_keypoints": 4096,
|
| 54 |
+
"keypoint_threshold": 0.005,
|
| 55 |
+
},
|
| 56 |
+
"preprocessing": {
|
| 57 |
+
"grayscale": True,
|
| 58 |
+
"force_resize": True,
|
| 59 |
+
"resize_max": 1600,
|
| 60 |
+
"width": 640,
|
| 61 |
+
"height": 480,
|
| 62 |
+
"dfactor": 8,
|
| 63 |
+
},
|
| 64 |
+
},
|
| 65 |
+
"superpoint_inloc": {
|
| 66 |
+
"output": "feats-superpoint-n4096-r1600",
|
| 67 |
+
"model": {
|
| 68 |
+
"name": "superpoint",
|
| 69 |
+
"nms_radius": 4,
|
| 70 |
+
"max_keypoints": 4096,
|
| 71 |
+
"keypoint_threshold": 0.005,
|
| 72 |
+
},
|
| 73 |
+
"preprocessing": {
|
| 74 |
+
"grayscale": True,
|
| 75 |
+
"resize_max": 1600,
|
| 76 |
+
},
|
| 77 |
+
},
|
| 78 |
+
"r2d2": {
|
| 79 |
+
"output": "feats-r2d2-n5000-r1024",
|
| 80 |
+
"model": {
|
| 81 |
+
"name": "r2d2",
|
| 82 |
+
"max_keypoints": 5000,
|
| 83 |
+
"reliability_threshold": 0.7,
|
| 84 |
+
"repetability_threshold": 0.7,
|
| 85 |
+
},
|
| 86 |
+
"preprocessing": {
|
| 87 |
+
"grayscale": False,
|
| 88 |
+
"force_resize": True,
|
| 89 |
+
"resize_max": 1024,
|
| 90 |
+
"width": 640,
|
| 91 |
+
"height": 480,
|
| 92 |
+
"dfactor": 8,
|
| 93 |
+
},
|
| 94 |
+
},
|
| 95 |
+
"d2net-ss": {
|
| 96 |
+
"output": "feats-d2net-ss-n5000-r1600",
|
| 97 |
+
"model": {
|
| 98 |
+
"name": "d2net",
|
| 99 |
+
"multiscale": False,
|
| 100 |
+
"max_keypoints": 5000,
|
| 101 |
+
},
|
| 102 |
+
"preprocessing": {
|
| 103 |
+
"grayscale": False,
|
| 104 |
+
"resize_max": 1600,
|
| 105 |
+
},
|
| 106 |
+
},
|
| 107 |
+
"d2net-ms": {
|
| 108 |
+
"output": "feats-d2net-ms-n5000-r1600",
|
| 109 |
+
"model": {
|
| 110 |
+
"name": "d2net",
|
| 111 |
+
"multiscale": True,
|
| 112 |
+
"max_keypoints": 5000,
|
| 113 |
+
},
|
| 114 |
+
"preprocessing": {
|
| 115 |
+
"grayscale": False,
|
| 116 |
+
"resize_max": 1600,
|
| 117 |
+
},
|
| 118 |
+
},
|
| 119 |
+
"rord": {
|
| 120 |
+
"output": "feats-rord-ss-n5000-r1600",
|
| 121 |
+
"model": {
|
| 122 |
+
"name": "rord",
|
| 123 |
+
"multiscale": False,
|
| 124 |
+
"max_keypoints": 5000,
|
| 125 |
+
},
|
| 126 |
+
"preprocessing": {
|
| 127 |
+
"grayscale": False,
|
| 128 |
+
"resize_max": 1600,
|
| 129 |
+
},
|
| 130 |
+
},
|
| 131 |
+
"rootsift": {
|
| 132 |
+
"output": "feats-rootsift-n5000-r1600",
|
| 133 |
+
"model": {
|
| 134 |
+
"name": "dog",
|
| 135 |
+
"descriptor": "rootsift",
|
| 136 |
+
"max_keypoints": 5000,
|
| 137 |
+
},
|
| 138 |
+
"preprocessing": {
|
| 139 |
+
"grayscale": True,
|
| 140 |
+
"force_resize": True,
|
| 141 |
+
"resize_max": 1600,
|
| 142 |
+
"width": 640,
|
| 143 |
+
"height": 480,
|
| 144 |
+
"dfactor": 8,
|
| 145 |
+
},
|
| 146 |
+
},
|
| 147 |
+
"sift": {
|
| 148 |
+
"output": "feats-sift-n5000-r1600",
|
| 149 |
+
"model": {
|
| 150 |
+
"name": "sift",
|
| 151 |
+
"rootsift": True,
|
| 152 |
+
"max_keypoints": 5000,
|
| 153 |
+
},
|
| 154 |
+
"preprocessing": {
|
| 155 |
+
"grayscale": True,
|
| 156 |
+
"force_resize": True,
|
| 157 |
+
"resize_max": 1600,
|
| 158 |
+
"width": 640,
|
| 159 |
+
"height": 480,
|
| 160 |
+
"dfactor": 8,
|
| 161 |
+
},
|
| 162 |
+
},
|
| 163 |
+
"sosnet": {
|
| 164 |
+
"output": "feats-sosnet-n5000-r1600",
|
| 165 |
+
"model": {
|
| 166 |
+
"name": "dog",
|
| 167 |
+
"descriptor": "sosnet",
|
| 168 |
+
"max_keypoints": 5000,
|
| 169 |
+
},
|
| 170 |
+
"preprocessing": {
|
| 171 |
+
"grayscale": True,
|
| 172 |
+
"resize_max": 1600,
|
| 173 |
+
"force_resize": True,
|
| 174 |
+
"width": 640,
|
| 175 |
+
"height": 480,
|
| 176 |
+
"dfactor": 8,
|
| 177 |
+
},
|
| 178 |
+
},
|
| 179 |
+
"hardnet": {
|
| 180 |
+
"output": "feats-hardnet-n5000-r1600",
|
| 181 |
+
"model": {
|
| 182 |
+
"name": "dog",
|
| 183 |
+
"descriptor": "hardnet",
|
| 184 |
+
"max_keypoints": 5000,
|
| 185 |
+
},
|
| 186 |
+
"preprocessing": {
|
| 187 |
+
"grayscale": True,
|
| 188 |
+
"resize_max": 1600,
|
| 189 |
+
"force_resize": True,
|
| 190 |
+
"width": 640,
|
| 191 |
+
"height": 480,
|
| 192 |
+
"dfactor": 8,
|
| 193 |
+
},
|
| 194 |
+
},
|
| 195 |
+
"disk": {
|
| 196 |
+
"output": "feats-disk-n5000-r1600",
|
| 197 |
+
"model": {
|
| 198 |
+
"name": "disk",
|
| 199 |
+
"max_keypoints": 5000,
|
| 200 |
+
},
|
| 201 |
+
"preprocessing": {
|
| 202 |
+
"grayscale": False,
|
| 203 |
+
"resize_max": 1600,
|
| 204 |
+
},
|
| 205 |
+
},
|
| 206 |
+
"xfeat": {
|
| 207 |
+
"output": "feats-xfeat-n5000-r1600",
|
| 208 |
+
"model": {
|
| 209 |
+
"name": "xfeat",
|
| 210 |
+
"max_keypoints": 5000,
|
| 211 |
+
},
|
| 212 |
+
"preprocessing": {
|
| 213 |
+
"grayscale": False,
|
| 214 |
+
"resize_max": 1600,
|
| 215 |
+
},
|
| 216 |
+
},
|
| 217 |
+
"aliked-n16-rot": {
|
| 218 |
+
"output": "feats-aliked-n16-rot",
|
| 219 |
+
"model": {
|
| 220 |
+
"name": "aliked",
|
| 221 |
+
"model_name": "aliked-n16rot",
|
| 222 |
+
"max_num_keypoints": -1,
|
| 223 |
+
"detection_threshold": 0.2,
|
| 224 |
+
"nms_radius": 2,
|
| 225 |
+
},
|
| 226 |
+
"preprocessing": {
|
| 227 |
+
"grayscale": False,
|
| 228 |
+
"resize_max": 1024,
|
| 229 |
+
},
|
| 230 |
+
},
|
| 231 |
+
"aliked-n16": {
|
| 232 |
+
"output": "feats-aliked-n16",
|
| 233 |
+
"model": {
|
| 234 |
+
"name": "aliked",
|
| 235 |
+
"model_name": "aliked-n16",
|
| 236 |
+
"max_num_keypoints": -1,
|
| 237 |
+
"detection_threshold": 0.2,
|
| 238 |
+
"nms_radius": 2,
|
| 239 |
+
},
|
| 240 |
+
"preprocessing": {
|
| 241 |
+
"grayscale": False,
|
| 242 |
+
"resize_max": 1024,
|
| 243 |
+
},
|
| 244 |
+
},
|
| 245 |
+
"alike": {
|
| 246 |
+
"output": "feats-alike-n5000-r1600",
|
| 247 |
+
"model": {
|
| 248 |
+
"name": "alike",
|
| 249 |
+
"max_keypoints": 5000,
|
| 250 |
+
"use_relu": True,
|
| 251 |
+
"multiscale": False,
|
| 252 |
+
"detection_threshold": 0.5,
|
| 253 |
+
"top_k": -1,
|
| 254 |
+
"sub_pixel": False,
|
| 255 |
+
},
|
| 256 |
+
"preprocessing": {
|
| 257 |
+
"grayscale": False,
|
| 258 |
+
"resize_max": 1600,
|
| 259 |
+
},
|
| 260 |
+
},
|
| 261 |
+
"lanet": {
|
| 262 |
+
"output": "feats-lanet-n5000-r1600",
|
| 263 |
+
"model": {
|
| 264 |
+
"name": "lanet",
|
| 265 |
+
"keypoint_threshold": 0.1,
|
| 266 |
+
"max_keypoints": 5000,
|
| 267 |
+
},
|
| 268 |
+
"preprocessing": {
|
| 269 |
+
"grayscale": False,
|
| 270 |
+
"resize_max": 1600,
|
| 271 |
+
},
|
| 272 |
+
},
|
| 273 |
+
"darkfeat": {
|
| 274 |
+
"output": "feats-darkfeat-n5000-r1600",
|
| 275 |
+
"model": {
|
| 276 |
+
"name": "darkfeat",
|
| 277 |
+
"max_keypoints": 5000,
|
| 278 |
+
"reliability_threshold": 0.7,
|
| 279 |
+
"repetability_threshold": 0.7,
|
| 280 |
+
},
|
| 281 |
+
"preprocessing": {
|
| 282 |
+
"grayscale": False,
|
| 283 |
+
"force_resize": True,
|
| 284 |
+
"resize_max": 1600,
|
| 285 |
+
"width": 640,
|
| 286 |
+
"height": 480,
|
| 287 |
+
"dfactor": 8,
|
| 288 |
+
},
|
| 289 |
+
},
|
| 290 |
+
"dedode": {
|
| 291 |
+
"output": "feats-dedode-n5000-r1600",
|
| 292 |
+
"model": {
|
| 293 |
+
"name": "dedode",
|
| 294 |
+
"max_keypoints": 5000,
|
| 295 |
+
},
|
| 296 |
+
"preprocessing": {
|
| 297 |
+
"grayscale": False,
|
| 298 |
+
"force_resize": True,
|
| 299 |
+
"resize_max": 1600,
|
| 300 |
+
"width": 768,
|
| 301 |
+
"height": 768,
|
| 302 |
+
"dfactor": 8,
|
| 303 |
+
},
|
| 304 |
+
},
|
| 305 |
+
"example": {
|
| 306 |
+
"output": "feats-example-n2000-r1024",
|
| 307 |
+
"model": {
|
| 308 |
+
"name": "example",
|
| 309 |
+
"keypoint_threshold": 0.1,
|
| 310 |
+
"max_keypoints": 2000,
|
| 311 |
+
"model_name": "model.pth",
|
| 312 |
+
},
|
| 313 |
+
"preprocessing": {
|
| 314 |
+
"grayscale": False,
|
| 315 |
+
"force_resize": True,
|
| 316 |
+
"resize_max": 1024,
|
| 317 |
+
"width": 768,
|
| 318 |
+
"height": 768,
|
| 319 |
+
"dfactor": 8,
|
| 320 |
+
},
|
| 321 |
+
},
|
| 322 |
+
"sfd2": {
|
| 323 |
+
"output": "feats-sfd2-n4096-r1600",
|
| 324 |
+
"model": {
|
| 325 |
+
"name": "sfd2",
|
| 326 |
+
"max_keypoints": 4096,
|
| 327 |
+
},
|
| 328 |
+
"preprocessing": {
|
| 329 |
+
"grayscale": False,
|
| 330 |
+
"force_resize": True,
|
| 331 |
+
"resize_max": 1600,
|
| 332 |
+
"width": 640,
|
| 333 |
+
"height": 480,
|
| 334 |
+
"conf_th": 0.001,
|
| 335 |
+
"multiscale": False,
|
| 336 |
+
"scales": [1.0],
|
| 337 |
+
},
|
| 338 |
+
},
|
| 339 |
+
# Global descriptors
|
| 340 |
+
"dir": {
|
| 341 |
+
"output": "global-feats-dir",
|
| 342 |
+
"model": {"name": "dir"},
|
| 343 |
+
"preprocessing": {"resize_max": 1024},
|
| 344 |
+
},
|
| 345 |
+
"netvlad": {
|
| 346 |
+
"output": "global-feats-netvlad",
|
| 347 |
+
"model": {"name": "netvlad"},
|
| 348 |
+
"preprocessing": {"resize_max": 1024},
|
| 349 |
+
},
|
| 350 |
+
"openibl": {
|
| 351 |
+
"output": "global-feats-openibl",
|
| 352 |
+
"model": {"name": "openibl"},
|
| 353 |
+
"preprocessing": {"resize_max": 1024},
|
| 354 |
+
},
|
| 355 |
+
"cosplace": {
|
| 356 |
+
"output": "global-feats-cosplace",
|
| 357 |
+
"model": {"name": "cosplace"},
|
| 358 |
+
"preprocessing": {"resize_max": 1024},
|
| 359 |
+
},
|
| 360 |
+
"eigenplaces": {
|
| 361 |
+
"output": "global-feats-eigenplaces",
|
| 362 |
+
"model": {"name": "eigenplaces"},
|
| 363 |
+
"preprocessing": {"resize_max": 1024},
|
| 364 |
+
},
|
| 365 |
+
}
|
| 366 |
+
|
| 367 |
+
|
| 368 |
+
def resize_image(image, size, interp):
|
| 369 |
+
if interp.startswith("cv2_"):
|
| 370 |
+
interp = getattr(cv2, "INTER_" + interp[len("cv2_") :].upper())
|
| 371 |
+
h, w = image.shape[:2]
|
| 372 |
+
if interp == cv2.INTER_AREA and (w < size[0] or h < size[1]):
|
| 373 |
+
interp = cv2.INTER_LINEAR
|
| 374 |
+
resized = cv2.resize(image, size, interpolation=interp)
|
| 375 |
+
elif interp.startswith("pil_"):
|
| 376 |
+
interp = getattr(PIL.Image, interp[len("pil_") :].upper())
|
| 377 |
+
resized = PIL.Image.fromarray(image.astype(np.uint8))
|
| 378 |
+
resized = resized.resize(size, resample=interp)
|
| 379 |
+
resized = np.asarray(resized, dtype=image.dtype)
|
| 380 |
+
else:
|
| 381 |
+
raise ValueError(f"Unknown interpolation {interp}.")
|
| 382 |
+
return resized
|
| 383 |
+
|
| 384 |
+
|
| 385 |
+
class ImageDataset(torch.utils.data.Dataset):
|
| 386 |
+
default_conf = {
|
| 387 |
+
"globs": ["*.jpg", "*.png", "*.jpeg", "*.JPG", "*.PNG"],
|
| 388 |
+
"grayscale": False,
|
| 389 |
+
"resize_max": None,
|
| 390 |
+
"force_resize": False,
|
| 391 |
+
"interpolation": "cv2_area", # pil_linear is more accurate but slower
|
| 392 |
+
}
|
| 393 |
+
|
| 394 |
+
def __init__(self, root, conf, paths=None):
|
| 395 |
+
self.conf = conf = SimpleNamespace(**{**self.default_conf, **conf})
|
| 396 |
+
self.root = root
|
| 397 |
+
|
| 398 |
+
if paths is None:
|
| 399 |
+
paths = []
|
| 400 |
+
for g in conf.globs:
|
| 401 |
+
paths += list(Path(root).glob("**/" + g))
|
| 402 |
+
if len(paths) == 0:
|
| 403 |
+
raise ValueError(f"Could not find any image in root: {root}.")
|
| 404 |
+
paths = sorted(list(set(paths)))
|
| 405 |
+
self.names = [i.relative_to(root).as_posix() for i in paths]
|
| 406 |
+
logger.info(f"Found {len(self.names)} images in root {root}.")
|
| 407 |
+
else:
|
| 408 |
+
if isinstance(paths, (Path, str)):
|
| 409 |
+
self.names = parse_image_lists(paths)
|
| 410 |
+
elif isinstance(paths, collections.Iterable):
|
| 411 |
+
self.names = [p.as_posix() if isinstance(p, Path) else p for p in paths]
|
| 412 |
+
else:
|
| 413 |
+
raise ValueError(f"Unknown format for path argument {paths}.")
|
| 414 |
+
|
| 415 |
+
for name in self.names:
|
| 416 |
+
if not (root / name).exists():
|
| 417 |
+
raise ValueError(f"Image {name} does not exists in root: {root}.")
|
| 418 |
+
|
| 419 |
+
def __getitem__(self, idx):
|
| 420 |
+
name = self.names[idx]
|
| 421 |
+
image = read_image(self.root / name, self.conf.grayscale)
|
| 422 |
+
image = image.astype(np.float32)
|
| 423 |
+
size = image.shape[:2][::-1]
|
| 424 |
+
|
| 425 |
+
if self.conf.resize_max and (
|
| 426 |
+
self.conf.force_resize or max(size) > self.conf.resize_max
|
| 427 |
+
):
|
| 428 |
+
scale = self.conf.resize_max / max(size)
|
| 429 |
+
size_new = tuple(int(round(x * scale)) for x in size)
|
| 430 |
+
image = resize_image(image, size_new, self.conf.interpolation)
|
| 431 |
+
|
| 432 |
+
if self.conf.grayscale:
|
| 433 |
+
image = image[None]
|
| 434 |
+
else:
|
| 435 |
+
image = image.transpose((2, 0, 1)) # HxWxC to CxHxW
|
| 436 |
+
image = image / 255.0
|
| 437 |
+
|
| 438 |
+
data = {
|
| 439 |
+
"image": image,
|
| 440 |
+
"original_size": np.array(size),
|
| 441 |
+
}
|
| 442 |
+
return data
|
| 443 |
+
|
| 444 |
+
def __len__(self):
|
| 445 |
+
return len(self.names)
|
| 446 |
+
|
| 447 |
+
|
| 448 |
+
def extract(model, image_0, conf):
|
| 449 |
+
default_conf = {
|
| 450 |
+
"grayscale": True,
|
| 451 |
+
"resize_max": 1024,
|
| 452 |
+
"dfactor": 8,
|
| 453 |
+
"cache_images": False,
|
| 454 |
+
"force_resize": False,
|
| 455 |
+
"width": 320,
|
| 456 |
+
"height": 240,
|
| 457 |
+
"interpolation": "cv2_area",
|
| 458 |
+
}
|
| 459 |
+
conf = SimpleNamespace(**{**default_conf, **conf})
|
| 460 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 461 |
+
|
| 462 |
+
def preprocess(image: np.ndarray, conf: SimpleNamespace):
|
| 463 |
+
image = image.astype(np.float32, copy=False)
|
| 464 |
+
size = image.shape[:2][::-1]
|
| 465 |
+
scale = np.array([1.0, 1.0])
|
| 466 |
+
if conf.resize_max:
|
| 467 |
+
scale = conf.resize_max / max(size)
|
| 468 |
+
if scale < 1.0:
|
| 469 |
+
size_new = tuple(int(round(x * scale)) for x in size)
|
| 470 |
+
image = resize_image(image, size_new, "cv2_area")
|
| 471 |
+
scale = np.array(size) / np.array(size_new)
|
| 472 |
+
if conf.force_resize:
|
| 473 |
+
image = resize_image(image, (conf.width, conf.height), "cv2_area")
|
| 474 |
+
size_new = (conf.width, conf.height)
|
| 475 |
+
scale = np.array(size) / np.array(size_new)
|
| 476 |
+
if conf.grayscale:
|
| 477 |
+
assert image.ndim == 2, image.shape
|
| 478 |
+
image = image[None]
|
| 479 |
+
else:
|
| 480 |
+
image = image.transpose((2, 0, 1)) # HxWxC to CxHxW
|
| 481 |
+
image = torch.from_numpy(image / 255.0).float()
|
| 482 |
+
|
| 483 |
+
# assure that the size is divisible by dfactor
|
| 484 |
+
size_new = tuple(
|
| 485 |
+
map(
|
| 486 |
+
lambda x: int(x // conf.dfactor * conf.dfactor),
|
| 487 |
+
image.shape[-2:],
|
| 488 |
+
)
|
| 489 |
+
)
|
| 490 |
+
image = F.resize(image, size=size_new, antialias=True)
|
| 491 |
+
input_ = image.to(device, non_blocking=True)[None]
|
| 492 |
+
data = {
|
| 493 |
+
"image": input_,
|
| 494 |
+
"image_orig": image_0,
|
| 495 |
+
"original_size": np.array(size),
|
| 496 |
+
"size": np.array(image.shape[1:][::-1]),
|
| 497 |
+
}
|
| 498 |
+
return data
|
| 499 |
+
|
| 500 |
+
# convert to grayscale if needed
|
| 501 |
+
if len(image_0.shape) == 3 and conf.grayscale:
|
| 502 |
+
image0 = cv2.cvtColor(image_0, cv2.COLOR_RGB2GRAY)
|
| 503 |
+
else:
|
| 504 |
+
image0 = image_0
|
| 505 |
+
# comment following lines, image is always RGB mode
|
| 506 |
+
# if not conf.grayscale and len(image_0.shape) == 3:
|
| 507 |
+
# image0 = image_0[:, :, ::-1] # BGR to RGB
|
| 508 |
+
data = preprocess(image0, conf)
|
| 509 |
+
pred = model({"image": data["image"]})
|
| 510 |
+
pred["image_size"] = data["original_size"]
|
| 511 |
+
pred = {**pred, **data}
|
| 512 |
+
return pred
|
| 513 |
+
|
| 514 |
+
|
| 515 |
+
@torch.no_grad()
|
| 516 |
+
def main(
|
| 517 |
+
conf: Dict,
|
| 518 |
+
image_dir: Path,
|
| 519 |
+
export_dir: Optional[Path] = None,
|
| 520 |
+
as_half: bool = True,
|
| 521 |
+
image_list: Optional[Union[Path, List[str]]] = None,
|
| 522 |
+
feature_path: Optional[Path] = None,
|
| 523 |
+
overwrite: bool = False,
|
| 524 |
+
) -> Path:
|
| 525 |
+
logger.info(
|
| 526 |
+
"Extracting local features with configuration:" f"\n{pprint.pformat(conf)}"
|
| 527 |
+
)
|
| 528 |
+
|
| 529 |
+
dataset = ImageDataset(image_dir, conf["preprocessing"], image_list)
|
| 530 |
+
if feature_path is None:
|
| 531 |
+
feature_path = Path(export_dir, conf["output"] + ".h5")
|
| 532 |
+
feature_path.parent.mkdir(exist_ok=True, parents=True)
|
| 533 |
+
skip_names = set(
|
| 534 |
+
list_h5_names(feature_path) if feature_path.exists() and not overwrite else ()
|
| 535 |
+
)
|
| 536 |
+
dataset.names = [n for n in dataset.names if n not in skip_names]
|
| 537 |
+
if len(dataset.names) == 0:
|
| 538 |
+
logger.info("Skipping the extraction.")
|
| 539 |
+
return feature_path
|
| 540 |
+
|
| 541 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 542 |
+
Model = dynamic_load(extractors, conf["model"]["name"])
|
| 543 |
+
model = Model(conf["model"]).eval().to(device)
|
| 544 |
+
|
| 545 |
+
loader = torch.utils.data.DataLoader(
|
| 546 |
+
dataset, num_workers=1, shuffle=False, pin_memory=True
|
| 547 |
+
)
|
| 548 |
+
for idx, data in enumerate(tqdm(loader)):
|
| 549 |
+
name = dataset.names[idx]
|
| 550 |
+
pred = model({"image": data["image"].to(device, non_blocking=True)})
|
| 551 |
+
pred = {k: v[0].cpu().numpy() for k, v in pred.items()}
|
| 552 |
+
|
| 553 |
+
pred["image_size"] = original_size = data["original_size"][0].numpy()
|
| 554 |
+
if "keypoints" in pred:
|
| 555 |
+
size = np.array(data["image"].shape[-2:][::-1])
|
| 556 |
+
scales = (original_size / size).astype(np.float32)
|
| 557 |
+
pred["keypoints"] = (pred["keypoints"] + 0.5) * scales[None] - 0.5
|
| 558 |
+
if "scales" in pred:
|
| 559 |
+
pred["scales"] *= scales.mean()
|
| 560 |
+
# add keypoint uncertainties scaled to the original resolution
|
| 561 |
+
uncertainty = getattr(model, "detection_noise", 1) * scales.mean()
|
| 562 |
+
|
| 563 |
+
if as_half:
|
| 564 |
+
for k in pred:
|
| 565 |
+
dt = pred[k].dtype
|
| 566 |
+
if (dt == np.float32) and (dt != np.float16):
|
| 567 |
+
pred[k] = pred[k].astype(np.float16)
|
| 568 |
+
|
| 569 |
+
with h5py.File(str(feature_path), "a", libver="latest") as fd:
|
| 570 |
+
try:
|
| 571 |
+
if name in fd:
|
| 572 |
+
del fd[name]
|
| 573 |
+
grp = fd.create_group(name)
|
| 574 |
+
for k, v in pred.items():
|
| 575 |
+
grp.create_dataset(k, data=v)
|
| 576 |
+
if "keypoints" in pred:
|
| 577 |
+
grp["keypoints"].attrs["uncertainty"] = uncertainty
|
| 578 |
+
except OSError as error:
|
| 579 |
+
if "No space left on device" in error.args[0]:
|
| 580 |
+
logger.error(
|
| 581 |
+
"Out of disk space: storing features on disk can take "
|
| 582 |
+
"significant space, did you enable the as_half flag?"
|
| 583 |
+
)
|
| 584 |
+
del grp, fd[name]
|
| 585 |
+
raise error
|
| 586 |
+
|
| 587 |
+
del pred
|
| 588 |
+
|
| 589 |
+
logger.info("Finished exporting features.")
|
| 590 |
+
return feature_path
|
| 591 |
+
|
| 592 |
+
|
| 593 |
+
if __name__ == "__main__":
|
| 594 |
+
parser = argparse.ArgumentParser()
|
| 595 |
+
parser.add_argument("--image_dir", type=Path, required=True)
|
| 596 |
+
parser.add_argument("--export_dir", type=Path, required=True)
|
| 597 |
+
parser.add_argument(
|
| 598 |
+
"--conf",
|
| 599 |
+
type=str,
|
| 600 |
+
default="superpoint_aachen",
|
| 601 |
+
choices=list(confs.keys()),
|
| 602 |
+
)
|
| 603 |
+
parser.add_argument("--as_half", action="store_true")
|
| 604 |
+
parser.add_argument("--image_list", type=Path)
|
| 605 |
+
parser.add_argument("--feature_path", type=Path)
|
| 606 |
+
args = parser.parse_args()
|
| 607 |
+
main(confs[args.conf], args.image_dir, args.export_dir, args.as_half)
|
imcui/hloc/extractors/__init__.py
ADDED
|
File without changes
|
imcui/hloc/extractors/__pycache__/__init__.cpython-38.pyc
ADDED
|
Binary file (160 Bytes). View file
|
|
|
imcui/hloc/extractors/alike.py
ADDED
|
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
from .. import MODEL_REPO_ID, logger
|
| 7 |
+
|
| 8 |
+
from ..utils.base_model import BaseModel
|
| 9 |
+
|
| 10 |
+
alike_path = Path(__file__).parent / "../../third_party/ALIKE"
|
| 11 |
+
sys.path.append(str(alike_path))
|
| 12 |
+
from alike import ALike as Alike_
|
| 13 |
+
from alike import configs
|
| 14 |
+
|
| 15 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
class Alike(BaseModel):
|
| 19 |
+
default_conf = {
|
| 20 |
+
"model_name": "alike-t", # 'alike-t', 'alike-s', 'alike-n', 'alike-l'
|
| 21 |
+
"use_relu": True,
|
| 22 |
+
"multiscale": False,
|
| 23 |
+
"max_keypoints": 1000,
|
| 24 |
+
"detection_threshold": 0.5,
|
| 25 |
+
"top_k": -1,
|
| 26 |
+
"sub_pixel": False,
|
| 27 |
+
}
|
| 28 |
+
|
| 29 |
+
required_inputs = ["image"]
|
| 30 |
+
|
| 31 |
+
def _init(self, conf):
|
| 32 |
+
model_path = self._download_model(
|
| 33 |
+
repo_id=MODEL_REPO_ID,
|
| 34 |
+
filename="{}/{}.pth".format(Path(__file__).stem, self.conf["model_name"]),
|
| 35 |
+
)
|
| 36 |
+
logger.info("Loaded Alike model from {}".format(model_path))
|
| 37 |
+
configs[conf["model_name"]]["model_path"] = model_path
|
| 38 |
+
self.net = Alike_(
|
| 39 |
+
**configs[conf["model_name"]],
|
| 40 |
+
device=device,
|
| 41 |
+
top_k=conf["top_k"],
|
| 42 |
+
scores_th=conf["detection_threshold"],
|
| 43 |
+
n_limit=conf["max_keypoints"],
|
| 44 |
+
)
|
| 45 |
+
logger.info("Load Alike model done.")
|
| 46 |
+
|
| 47 |
+
def _forward(self, data):
|
| 48 |
+
image = data["image"]
|
| 49 |
+
image = image.permute(0, 2, 3, 1).squeeze()
|
| 50 |
+
image = image.cpu().numpy() * 255.0
|
| 51 |
+
pred = self.net(image, sub_pixel=self.conf["sub_pixel"])
|
| 52 |
+
|
| 53 |
+
keypoints = pred["keypoints"]
|
| 54 |
+
descriptors = pred["descriptors"]
|
| 55 |
+
scores = pred["scores"]
|
| 56 |
+
|
| 57 |
+
return {
|
| 58 |
+
"keypoints": torch.from_numpy(keypoints)[None],
|
| 59 |
+
"scores": torch.from_numpy(scores)[None],
|
| 60 |
+
"descriptors": torch.from_numpy(descriptors.T)[None],
|
| 61 |
+
}
|
imcui/hloc/extractors/aliked.py
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
|
| 4 |
+
from ..utils.base_model import BaseModel
|
| 5 |
+
|
| 6 |
+
lightglue_path = Path(__file__).parent / "../../third_party/LightGlue"
|
| 7 |
+
sys.path.append(str(lightglue_path))
|
| 8 |
+
|
| 9 |
+
from lightglue import ALIKED as ALIKED_
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class ALIKED(BaseModel):
|
| 13 |
+
default_conf = {
|
| 14 |
+
"model_name": "aliked-n16",
|
| 15 |
+
"max_num_keypoints": -1,
|
| 16 |
+
"detection_threshold": 0.2,
|
| 17 |
+
"nms_radius": 2,
|
| 18 |
+
}
|
| 19 |
+
required_inputs = ["image"]
|
| 20 |
+
|
| 21 |
+
def _init(self, conf):
|
| 22 |
+
conf.pop("name")
|
| 23 |
+
self.model = ALIKED_(**conf)
|
| 24 |
+
|
| 25 |
+
def _forward(self, data):
|
| 26 |
+
features = self.model(data)
|
| 27 |
+
|
| 28 |
+
return {
|
| 29 |
+
"keypoints": [f for f in features["keypoints"]],
|
| 30 |
+
"scores": [f for f in features["keypoint_scores"]],
|
| 31 |
+
"descriptors": [f.t() for f in features["descriptors"]],
|
| 32 |
+
}
|
imcui/hloc/extractors/cosplace.py
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Code for loading models trained with CosPlace as a global features extractor
|
| 3 |
+
for geolocalization through image retrieval.
|
| 4 |
+
Multiple models are available with different backbones. Below is a summary of
|
| 5 |
+
models available (backbone : list of available output descriptors
|
| 6 |
+
dimensionality). For example you can use a model based on a ResNet50 with
|
| 7 |
+
descriptors dimensionality 1024.
|
| 8 |
+
ResNet18: [32, 64, 128, 256, 512]
|
| 9 |
+
ResNet50: [32, 64, 128, 256, 512, 1024, 2048]
|
| 10 |
+
ResNet101: [32, 64, 128, 256, 512, 1024, 2048]
|
| 11 |
+
ResNet152: [32, 64, 128, 256, 512, 1024, 2048]
|
| 12 |
+
VGG16: [ 64, 128, 256, 512]
|
| 13 |
+
|
| 14 |
+
CosPlace paper: https://arxiv.org/abs/2204.02287
|
| 15 |
+
"""
|
| 16 |
+
|
| 17 |
+
import torch
|
| 18 |
+
import torchvision.transforms as tvf
|
| 19 |
+
|
| 20 |
+
from ..utils.base_model import BaseModel
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class CosPlace(BaseModel):
|
| 24 |
+
default_conf = {"backbone": "ResNet50", "fc_output_dim": 2048}
|
| 25 |
+
required_inputs = ["image"]
|
| 26 |
+
|
| 27 |
+
def _init(self, conf):
|
| 28 |
+
self.net = torch.hub.load(
|
| 29 |
+
"gmberton/CosPlace",
|
| 30 |
+
"get_trained_model",
|
| 31 |
+
backbone=conf["backbone"],
|
| 32 |
+
fc_output_dim=conf["fc_output_dim"],
|
| 33 |
+
).eval()
|
| 34 |
+
|
| 35 |
+
mean = [0.485, 0.456, 0.406]
|
| 36 |
+
std = [0.229, 0.224, 0.225]
|
| 37 |
+
self.norm_rgb = tvf.Normalize(mean=mean, std=std)
|
| 38 |
+
|
| 39 |
+
def _forward(self, data):
|
| 40 |
+
image = self.norm_rgb(data["image"])
|
| 41 |
+
desc = self.net(image)
|
| 42 |
+
return {
|
| 43 |
+
"global_descriptor": desc,
|
| 44 |
+
}
|
imcui/hloc/extractors/d2net.py
ADDED
|
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
from .. import MODEL_REPO_ID, logger
|
| 7 |
+
from ..utils.base_model import BaseModel
|
| 8 |
+
|
| 9 |
+
d2net_path = Path(__file__).parent / "../../third_party/d2net"
|
| 10 |
+
sys.path.append(str(d2net_path))
|
| 11 |
+
from lib.model_test import D2Net as _D2Net
|
| 12 |
+
from lib.pyramid import process_multiscale
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class D2Net(BaseModel):
|
| 16 |
+
default_conf = {
|
| 17 |
+
"model_name": "d2_tf.pth",
|
| 18 |
+
"checkpoint_dir": d2net_path / "models",
|
| 19 |
+
"use_relu": True,
|
| 20 |
+
"multiscale": False,
|
| 21 |
+
"max_keypoints": 1024,
|
| 22 |
+
}
|
| 23 |
+
required_inputs = ["image"]
|
| 24 |
+
|
| 25 |
+
def _init(self, conf):
|
| 26 |
+
logger.info("Loading D2Net model...")
|
| 27 |
+
model_path = self._download_model(
|
| 28 |
+
repo_id=MODEL_REPO_ID,
|
| 29 |
+
filename="{}/{}".format(Path(__file__).stem, self.conf["model_name"]),
|
| 30 |
+
)
|
| 31 |
+
logger.info(f"Loading model from {model_path}...")
|
| 32 |
+
self.net = _D2Net(
|
| 33 |
+
model_file=model_path, use_relu=conf["use_relu"], use_cuda=False
|
| 34 |
+
)
|
| 35 |
+
logger.info("Load D2Net model done.")
|
| 36 |
+
|
| 37 |
+
def _forward(self, data):
|
| 38 |
+
image = data["image"]
|
| 39 |
+
image = image.flip(1) # RGB -> BGR
|
| 40 |
+
norm = image.new_tensor([103.939, 116.779, 123.68])
|
| 41 |
+
image = image * 255 - norm.view(1, 3, 1, 1) # caffe normalization
|
| 42 |
+
|
| 43 |
+
if self.conf["multiscale"]:
|
| 44 |
+
keypoints, scores, descriptors = process_multiscale(image, self.net)
|
| 45 |
+
else:
|
| 46 |
+
keypoints, scores, descriptors = process_multiscale(
|
| 47 |
+
image, self.net, scales=[1]
|
| 48 |
+
)
|
| 49 |
+
keypoints = keypoints[:, [1, 0]] # (x, y) and remove the scale
|
| 50 |
+
|
| 51 |
+
idxs = scores.argsort()[-self.conf["max_keypoints"] or None :]
|
| 52 |
+
keypoints = keypoints[idxs, :2]
|
| 53 |
+
descriptors = descriptors[idxs]
|
| 54 |
+
scores = scores[idxs]
|
| 55 |
+
|
| 56 |
+
return {
|
| 57 |
+
"keypoints": torch.from_numpy(keypoints)[None],
|
| 58 |
+
"scores": torch.from_numpy(scores)[None],
|
| 59 |
+
"descriptors": torch.from_numpy(descriptors.T)[None],
|
| 60 |
+
}
|
imcui/hloc/extractors/darkfeat.py
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
|
| 4 |
+
from .. import MODEL_REPO_ID, logger
|
| 5 |
+
|
| 6 |
+
from ..utils.base_model import BaseModel
|
| 7 |
+
|
| 8 |
+
darkfeat_path = Path(__file__).parent / "../../third_party/DarkFeat"
|
| 9 |
+
sys.path.append(str(darkfeat_path))
|
| 10 |
+
from darkfeat import DarkFeat as DarkFeat_
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class DarkFeat(BaseModel):
|
| 14 |
+
default_conf = {
|
| 15 |
+
"model_name": "DarkFeat.pth",
|
| 16 |
+
"max_keypoints": 1000,
|
| 17 |
+
"detection_threshold": 0.5,
|
| 18 |
+
"sub_pixel": False,
|
| 19 |
+
}
|
| 20 |
+
required_inputs = ["image"]
|
| 21 |
+
|
| 22 |
+
def _init(self, conf):
|
| 23 |
+
model_path = self._download_model(
|
| 24 |
+
repo_id=MODEL_REPO_ID,
|
| 25 |
+
filename="{}/{}".format(Path(__file__).stem, self.conf["model_name"]),
|
| 26 |
+
)
|
| 27 |
+
logger.info("Loaded DarkFeat model: {}".format(model_path))
|
| 28 |
+
self.net = DarkFeat_(model_path)
|
| 29 |
+
logger.info("Load DarkFeat model done.")
|
| 30 |
+
|
| 31 |
+
def _forward(self, data):
|
| 32 |
+
pred = self.net({"image": data["image"]})
|
| 33 |
+
keypoints = pred["keypoints"]
|
| 34 |
+
descriptors = pred["descriptors"]
|
| 35 |
+
scores = pred["scores"]
|
| 36 |
+
idxs = scores.argsort()[-self.conf["max_keypoints"] or None :]
|
| 37 |
+
keypoints = keypoints[idxs, :2]
|
| 38 |
+
descriptors = descriptors[:, idxs]
|
| 39 |
+
scores = scores[idxs]
|
| 40 |
+
return {
|
| 41 |
+
"keypoints": keypoints[None], # 1 x N x 2
|
| 42 |
+
"scores": scores[None], # 1 x N
|
| 43 |
+
"descriptors": descriptors[None], # 1 x 128 x N
|
| 44 |
+
}
|
imcui/hloc/extractors/dedode.py
ADDED
|
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import torchvision.transforms as transforms
|
| 6 |
+
|
| 7 |
+
from .. import MODEL_REPO_ID, logger
|
| 8 |
+
|
| 9 |
+
from ..utils.base_model import BaseModel
|
| 10 |
+
|
| 11 |
+
dedode_path = Path(__file__).parent / "../../third_party/DeDoDe"
|
| 12 |
+
sys.path.append(str(dedode_path))
|
| 13 |
+
|
| 14 |
+
from DeDoDe import dedode_descriptor_B, dedode_detector_L
|
| 15 |
+
from DeDoDe.utils import to_pixel_coords
|
| 16 |
+
|
| 17 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
class DeDoDe(BaseModel):
|
| 21 |
+
default_conf = {
|
| 22 |
+
"name": "dedode",
|
| 23 |
+
"model_detector_name": "dedode_detector_L.pth",
|
| 24 |
+
"model_descriptor_name": "dedode_descriptor_B.pth",
|
| 25 |
+
"max_keypoints": 2000,
|
| 26 |
+
"match_threshold": 0.2,
|
| 27 |
+
"dense": False, # Now fixed to be false
|
| 28 |
+
}
|
| 29 |
+
required_inputs = [
|
| 30 |
+
"image",
|
| 31 |
+
]
|
| 32 |
+
|
| 33 |
+
# Initialize the line matcher
|
| 34 |
+
def _init(self, conf):
|
| 35 |
+
model_detector_path = self._download_model(
|
| 36 |
+
repo_id=MODEL_REPO_ID,
|
| 37 |
+
filename="{}/{}".format(Path(__file__).stem, conf["model_detector_name"]),
|
| 38 |
+
)
|
| 39 |
+
model_descriptor_path = self._download_model(
|
| 40 |
+
repo_id=MODEL_REPO_ID,
|
| 41 |
+
filename="{}/{}".format(Path(__file__).stem, conf["model_descriptor_name"]),
|
| 42 |
+
)
|
| 43 |
+
logger.info("Loaded DarkFeat model: {}".format(model_detector_path))
|
| 44 |
+
self.normalizer = transforms.Normalize(
|
| 45 |
+
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
# load the model
|
| 49 |
+
weights_detector = torch.load(model_detector_path, map_location="cpu")
|
| 50 |
+
weights_descriptor = torch.load(model_descriptor_path, map_location="cpu")
|
| 51 |
+
self.detector = dedode_detector_L(weights=weights_detector, device=device)
|
| 52 |
+
self.descriptor = dedode_descriptor_B(weights=weights_descriptor, device=device)
|
| 53 |
+
logger.info("Load DeDoDe model done.")
|
| 54 |
+
|
| 55 |
+
def _forward(self, data):
|
| 56 |
+
"""
|
| 57 |
+
data: dict, keys: {'image0','image1'}
|
| 58 |
+
image shape: N x C x H x W
|
| 59 |
+
color mode: RGB
|
| 60 |
+
"""
|
| 61 |
+
img0 = self.normalizer(data["image"].squeeze()).float()[None]
|
| 62 |
+
H_A, W_A = img0.shape[2:]
|
| 63 |
+
|
| 64 |
+
# step 1: detect keypoints
|
| 65 |
+
detections_A = None
|
| 66 |
+
batch_A = {"image": img0}
|
| 67 |
+
if self.conf["dense"]:
|
| 68 |
+
detections_A = self.detector.detect_dense(batch_A)
|
| 69 |
+
else:
|
| 70 |
+
detections_A = self.detector.detect(
|
| 71 |
+
batch_A, num_keypoints=self.conf["max_keypoints"]
|
| 72 |
+
)
|
| 73 |
+
keypoints_A, P_A = detections_A["keypoints"], detections_A["confidence"]
|
| 74 |
+
|
| 75 |
+
# step 2: describe keypoints
|
| 76 |
+
# dim: 1 x N x 256
|
| 77 |
+
description_A = self.descriptor.describe_keypoints(batch_A, keypoints_A)[
|
| 78 |
+
"descriptions"
|
| 79 |
+
]
|
| 80 |
+
keypoints_A = to_pixel_coords(keypoints_A, H_A, W_A)
|
| 81 |
+
|
| 82 |
+
return {
|
| 83 |
+
"keypoints": keypoints_A, # 1 x N x 2
|
| 84 |
+
"descriptors": description_A.permute(0, 2, 1), # 1 x 256 x N
|
| 85 |
+
"scores": P_A, # 1 x N
|
| 86 |
+
}
|
imcui/hloc/extractors/dir.py
ADDED
|
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import sys
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
from zipfile import ZipFile
|
| 5 |
+
|
| 6 |
+
import gdown
|
| 7 |
+
import sklearn
|
| 8 |
+
import torch
|
| 9 |
+
|
| 10 |
+
from ..utils.base_model import BaseModel
|
| 11 |
+
|
| 12 |
+
sys.path.append(str(Path(__file__).parent / "../../third_party/deep-image-retrieval"))
|
| 13 |
+
os.environ["DB_ROOT"] = "" # required by dirtorch
|
| 14 |
+
|
| 15 |
+
from dirtorch.extract_features import load_model # noqa: E402
|
| 16 |
+
from dirtorch.utils import common # noqa: E402
|
| 17 |
+
|
| 18 |
+
# The DIR model checkpoints (pickle files) include sklearn.decomposition.pca,
|
| 19 |
+
# which has been deprecated in sklearn v0.24
|
| 20 |
+
# and must be explicitly imported with `from sklearn.decomposition import PCA`.
|
| 21 |
+
# This is a hacky workaround to maintain forward compatibility.
|
| 22 |
+
sys.modules["sklearn.decomposition.pca"] = sklearn.decomposition._pca
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class DIR(BaseModel):
|
| 26 |
+
default_conf = {
|
| 27 |
+
"model_name": "Resnet-101-AP-GeM",
|
| 28 |
+
"whiten_name": "Landmarks_clean",
|
| 29 |
+
"whiten_params": {
|
| 30 |
+
"whitenp": 0.25,
|
| 31 |
+
"whitenv": None,
|
| 32 |
+
"whitenm": 1.0,
|
| 33 |
+
},
|
| 34 |
+
"pooling": "gem",
|
| 35 |
+
"gemp": 3,
|
| 36 |
+
}
|
| 37 |
+
required_inputs = ["image"]
|
| 38 |
+
|
| 39 |
+
dir_models = {
|
| 40 |
+
"Resnet-101-AP-GeM": "https://docs.google.com/uc?export=download&id=1UWJGDuHtzaQdFhSMojoYVQjmCXhIwVvy",
|
| 41 |
+
}
|
| 42 |
+
|
| 43 |
+
def _init(self, conf):
|
| 44 |
+
# todo: download from google drive -> huggingface models
|
| 45 |
+
checkpoint = Path(torch.hub.get_dir(), "dirtorch", conf["model_name"] + ".pt")
|
| 46 |
+
if not checkpoint.exists():
|
| 47 |
+
checkpoint.parent.mkdir(exist_ok=True, parents=True)
|
| 48 |
+
link = self.dir_models[conf["model_name"]]
|
| 49 |
+
gdown.download(str(link), str(checkpoint) + ".zip", quiet=False)
|
| 50 |
+
zf = ZipFile(str(checkpoint) + ".zip", "r")
|
| 51 |
+
zf.extractall(checkpoint.parent)
|
| 52 |
+
zf.close()
|
| 53 |
+
os.remove(str(checkpoint) + ".zip")
|
| 54 |
+
|
| 55 |
+
self.net = load_model(checkpoint, False) # first load on CPU
|
| 56 |
+
if conf["whiten_name"]:
|
| 57 |
+
assert conf["whiten_name"] in self.net.pca
|
| 58 |
+
|
| 59 |
+
def _forward(self, data):
|
| 60 |
+
image = data["image"]
|
| 61 |
+
assert image.shape[1] == 3
|
| 62 |
+
mean = self.net.preprocess["mean"]
|
| 63 |
+
std = self.net.preprocess["std"]
|
| 64 |
+
image = image - image.new_tensor(mean)[:, None, None]
|
| 65 |
+
image = image / image.new_tensor(std)[:, None, None]
|
| 66 |
+
|
| 67 |
+
desc = self.net(image)
|
| 68 |
+
desc = desc.unsqueeze(0) # batch dimension
|
| 69 |
+
if self.conf["whiten_name"]:
|
| 70 |
+
pca = self.net.pca[self.conf["whiten_name"]]
|
| 71 |
+
desc = common.whiten_features(
|
| 72 |
+
desc.cpu().numpy(), pca, **self.conf["whiten_params"]
|
| 73 |
+
)
|
| 74 |
+
desc = torch.from_numpy(desc)
|
| 75 |
+
|
| 76 |
+
return {
|
| 77 |
+
"global_descriptor": desc,
|
| 78 |
+
}
|
imcui/hloc/extractors/disk.py
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import kornia
|
| 2 |
+
|
| 3 |
+
from .. import logger
|
| 4 |
+
|
| 5 |
+
from ..utils.base_model import BaseModel
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class DISK(BaseModel):
|
| 9 |
+
default_conf = {
|
| 10 |
+
"weights": "depth",
|
| 11 |
+
"max_keypoints": None,
|
| 12 |
+
"nms_window_size": 5,
|
| 13 |
+
"detection_threshold": 0.0,
|
| 14 |
+
"pad_if_not_divisible": True,
|
| 15 |
+
}
|
| 16 |
+
required_inputs = ["image"]
|
| 17 |
+
|
| 18 |
+
def _init(self, conf):
|
| 19 |
+
self.model = kornia.feature.DISK.from_pretrained(conf["weights"])
|
| 20 |
+
logger.info("Load DISK model done.")
|
| 21 |
+
|
| 22 |
+
def _forward(self, data):
|
| 23 |
+
image = data["image"]
|
| 24 |
+
features = self.model(
|
| 25 |
+
image,
|
| 26 |
+
n=self.conf["max_keypoints"],
|
| 27 |
+
window_size=self.conf["nms_window_size"],
|
| 28 |
+
score_threshold=self.conf["detection_threshold"],
|
| 29 |
+
pad_if_not_divisible=self.conf["pad_if_not_divisible"],
|
| 30 |
+
)
|
| 31 |
+
return {
|
| 32 |
+
"keypoints": [f.keypoints for f in features][0][None],
|
| 33 |
+
"scores": [f.detection_scores for f in features][0][None],
|
| 34 |
+
"descriptors": [f.descriptors.t() for f in features][0][None],
|
| 35 |
+
}
|
imcui/hloc/extractors/dog.py
ADDED
|
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import kornia
|
| 2 |
+
import numpy as np
|
| 3 |
+
import pycolmap
|
| 4 |
+
import torch
|
| 5 |
+
from kornia.feature.laf import (
|
| 6 |
+
extract_patches_from_pyramid,
|
| 7 |
+
laf_from_center_scale_ori,
|
| 8 |
+
)
|
| 9 |
+
|
| 10 |
+
from ..utils.base_model import BaseModel
|
| 11 |
+
|
| 12 |
+
EPS = 1e-6
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def sift_to_rootsift(x):
|
| 16 |
+
x = x / (np.linalg.norm(x, ord=1, axis=-1, keepdims=True) + EPS)
|
| 17 |
+
x = np.sqrt(x.clip(min=EPS))
|
| 18 |
+
x = x / (np.linalg.norm(x, axis=-1, keepdims=True) + EPS)
|
| 19 |
+
return x
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class DoG(BaseModel):
|
| 23 |
+
default_conf = {
|
| 24 |
+
"options": {
|
| 25 |
+
"first_octave": 0,
|
| 26 |
+
"peak_threshold": 0.01,
|
| 27 |
+
},
|
| 28 |
+
"descriptor": "rootsift",
|
| 29 |
+
"max_keypoints": -1,
|
| 30 |
+
"patch_size": 32,
|
| 31 |
+
"mr_size": 12,
|
| 32 |
+
}
|
| 33 |
+
required_inputs = ["image"]
|
| 34 |
+
detection_noise = 1.0
|
| 35 |
+
max_batch_size = 1024
|
| 36 |
+
|
| 37 |
+
def _init(self, conf):
|
| 38 |
+
if conf["descriptor"] == "sosnet":
|
| 39 |
+
self.describe = kornia.feature.SOSNet(pretrained=True)
|
| 40 |
+
elif conf["descriptor"] == "hardnet":
|
| 41 |
+
self.describe = kornia.feature.HardNet(pretrained=True)
|
| 42 |
+
elif conf["descriptor"] not in ["sift", "rootsift"]:
|
| 43 |
+
raise ValueError(f'Unknown descriptor: {conf["descriptor"]}')
|
| 44 |
+
|
| 45 |
+
self.sift = None # lazily instantiated on the first image
|
| 46 |
+
self.dummy_param = torch.nn.Parameter(torch.empty(0))
|
| 47 |
+
self.device = torch.device("cpu")
|
| 48 |
+
|
| 49 |
+
def to(self, *args, **kwargs):
|
| 50 |
+
device = kwargs.get("device")
|
| 51 |
+
if device is None:
|
| 52 |
+
match = [a for a in args if isinstance(a, (torch.device, str))]
|
| 53 |
+
if len(match) > 0:
|
| 54 |
+
device = match[0]
|
| 55 |
+
if device is not None:
|
| 56 |
+
self.device = torch.device(device)
|
| 57 |
+
return super().to(*args, **kwargs)
|
| 58 |
+
|
| 59 |
+
def _forward(self, data):
|
| 60 |
+
image = data["image"]
|
| 61 |
+
image_np = image.cpu().numpy()[0, 0]
|
| 62 |
+
assert image.shape[1] == 1
|
| 63 |
+
assert image_np.min() >= -EPS and image_np.max() <= 1 + EPS
|
| 64 |
+
|
| 65 |
+
if self.sift is None:
|
| 66 |
+
device = self.dummy_param.device
|
| 67 |
+
use_gpu = pycolmap.has_cuda and device.type == "cuda"
|
| 68 |
+
options = {**self.conf["options"]}
|
| 69 |
+
if self.conf["descriptor"] == "rootsift":
|
| 70 |
+
options["normalization"] = pycolmap.Normalization.L1_ROOT
|
| 71 |
+
else:
|
| 72 |
+
options["normalization"] = pycolmap.Normalization.L2
|
| 73 |
+
self.sift = pycolmap.Sift(
|
| 74 |
+
options=pycolmap.SiftExtractionOptions(options),
|
| 75 |
+
device=getattr(pycolmap.Device, "cuda" if use_gpu else "cpu"),
|
| 76 |
+
)
|
| 77 |
+
keypoints, descriptors = self.sift.extract(image_np)
|
| 78 |
+
scales = keypoints[:, 2]
|
| 79 |
+
oris = np.rad2deg(keypoints[:, 3])
|
| 80 |
+
|
| 81 |
+
if self.conf["descriptor"] in ["sift", "rootsift"]:
|
| 82 |
+
# We still renormalize because COLMAP does not normalize well,
|
| 83 |
+
# maybe due to numerical errors
|
| 84 |
+
if self.conf["descriptor"] == "rootsift":
|
| 85 |
+
descriptors = sift_to_rootsift(descriptors)
|
| 86 |
+
descriptors = torch.from_numpy(descriptors)
|
| 87 |
+
elif self.conf["descriptor"] in ("sosnet", "hardnet"):
|
| 88 |
+
center = keypoints[:, :2] + 0.5
|
| 89 |
+
laf_scale = scales * self.conf["mr_size"] / 2
|
| 90 |
+
laf_ori = -oris
|
| 91 |
+
lafs = laf_from_center_scale_ori(
|
| 92 |
+
torch.from_numpy(center)[None],
|
| 93 |
+
torch.from_numpy(laf_scale)[None, :, None, None],
|
| 94 |
+
torch.from_numpy(laf_ori)[None, :, None],
|
| 95 |
+
).to(image.device)
|
| 96 |
+
patches = extract_patches_from_pyramid(
|
| 97 |
+
image, lafs, PS=self.conf["patch_size"]
|
| 98 |
+
)[0]
|
| 99 |
+
descriptors = patches.new_zeros((len(patches), 128))
|
| 100 |
+
if len(patches) > 0:
|
| 101 |
+
for start_idx in range(0, len(patches), self.max_batch_size):
|
| 102 |
+
end_idx = min(len(patches), start_idx + self.max_batch_size)
|
| 103 |
+
descriptors[start_idx:end_idx] = self.describe(
|
| 104 |
+
patches[start_idx:end_idx]
|
| 105 |
+
)
|
| 106 |
+
else:
|
| 107 |
+
raise ValueError(f'Unknown descriptor: {self.conf["descriptor"]}')
|
| 108 |
+
|
| 109 |
+
keypoints = torch.from_numpy(keypoints[:, :2]) # keep only x, y
|
| 110 |
+
scales = torch.from_numpy(scales)
|
| 111 |
+
oris = torch.from_numpy(oris)
|
| 112 |
+
scores = keypoints.new_zeros(len(keypoints)) # no scores for SIFT yet
|
| 113 |
+
|
| 114 |
+
if self.conf["max_keypoints"] != -1:
|
| 115 |
+
# TODO: check that the scores from PyCOLMAP are 100% correct,
|
| 116 |
+
# follow https://github.com/mihaidusmanu/pycolmap/issues/8
|
| 117 |
+
max_number = (
|
| 118 |
+
scores.shape[0]
|
| 119 |
+
if scores.shape[0] < self.conf["max_keypoints"]
|
| 120 |
+
else self.conf["max_keypoints"]
|
| 121 |
+
)
|
| 122 |
+
values, indices = torch.topk(scores, max_number)
|
| 123 |
+
keypoints = keypoints[indices]
|
| 124 |
+
scales = scales[indices]
|
| 125 |
+
oris = oris[indices]
|
| 126 |
+
scores = scores[indices]
|
| 127 |
+
descriptors = descriptors[indices]
|
| 128 |
+
|
| 129 |
+
return {
|
| 130 |
+
"keypoints": keypoints[None],
|
| 131 |
+
"scales": scales[None],
|
| 132 |
+
"oris": oris[None],
|
| 133 |
+
"scores": scores[None],
|
| 134 |
+
"descriptors": descriptors.T[None],
|
| 135 |
+
}
|
imcui/hloc/extractors/eigenplaces.py
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Code for loading models trained with EigenPlaces (or CosPlace) as a global
|
| 3 |
+
features extractor for geolocalization through image retrieval.
|
| 4 |
+
Multiple models are available with different backbones. Below is a summary of
|
| 5 |
+
models available (backbone : list of available output descriptors
|
| 6 |
+
dimensionality). For example you can use a model based on a ResNet50 with
|
| 7 |
+
descriptors dimensionality 1024.
|
| 8 |
+
|
| 9 |
+
EigenPlaces trained models:
|
| 10 |
+
ResNet18: [ 256, 512]
|
| 11 |
+
ResNet50: [128, 256, 512, 2048]
|
| 12 |
+
ResNet101: [128, 256, 512, 2048]
|
| 13 |
+
VGG16: [ 512]
|
| 14 |
+
|
| 15 |
+
CosPlace trained models:
|
| 16 |
+
ResNet18: [32, 64, 128, 256, 512]
|
| 17 |
+
ResNet50: [32, 64, 128, 256, 512, 1024, 2048]
|
| 18 |
+
ResNet101: [32, 64, 128, 256, 512, 1024, 2048]
|
| 19 |
+
ResNet152: [32, 64, 128, 256, 512, 1024, 2048]
|
| 20 |
+
VGG16: [ 64, 128, 256, 512]
|
| 21 |
+
|
| 22 |
+
EigenPlaces paper (ICCV 2023): https://arxiv.org/abs/2308.10832
|
| 23 |
+
CosPlace paper (CVPR 2022): https://arxiv.org/abs/2204.02287
|
| 24 |
+
"""
|
| 25 |
+
|
| 26 |
+
import torch
|
| 27 |
+
import torchvision.transforms as tvf
|
| 28 |
+
|
| 29 |
+
from ..utils.base_model import BaseModel
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
class EigenPlaces(BaseModel):
|
| 33 |
+
default_conf = {
|
| 34 |
+
"variant": "EigenPlaces",
|
| 35 |
+
"backbone": "ResNet101",
|
| 36 |
+
"fc_output_dim": 2048,
|
| 37 |
+
}
|
| 38 |
+
required_inputs = ["image"]
|
| 39 |
+
|
| 40 |
+
def _init(self, conf):
|
| 41 |
+
self.net = torch.hub.load(
|
| 42 |
+
"gmberton/" + conf["variant"],
|
| 43 |
+
"get_trained_model",
|
| 44 |
+
backbone=conf["backbone"],
|
| 45 |
+
fc_output_dim=conf["fc_output_dim"],
|
| 46 |
+
).eval()
|
| 47 |
+
|
| 48 |
+
mean = [0.485, 0.456, 0.406]
|
| 49 |
+
std = [0.229, 0.224, 0.225]
|
| 50 |
+
self.norm_rgb = tvf.Normalize(mean=mean, std=std)
|
| 51 |
+
|
| 52 |
+
def _forward(self, data):
|
| 53 |
+
image = self.norm_rgb(data["image"])
|
| 54 |
+
desc = self.net(image)
|
| 55 |
+
return {
|
| 56 |
+
"global_descriptor": desc,
|
| 57 |
+
}
|
imcui/hloc/extractors/example.py
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
from .. import logger
|
| 7 |
+
from ..utils.base_model import BaseModel
|
| 8 |
+
|
| 9 |
+
example_path = Path(__file__).parent / "../../third_party/example"
|
| 10 |
+
sys.path.append(str(example_path))
|
| 11 |
+
|
| 12 |
+
# import some modules here
|
| 13 |
+
|
| 14 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class Example(BaseModel):
|
| 18 |
+
# change to your default configs
|
| 19 |
+
default_conf = {
|
| 20 |
+
"name": "example",
|
| 21 |
+
"keypoint_threshold": 0.1,
|
| 22 |
+
"max_keypoints": 2000,
|
| 23 |
+
"model_name": "model.pth",
|
| 24 |
+
}
|
| 25 |
+
required_inputs = ["image"]
|
| 26 |
+
|
| 27 |
+
def _init(self, conf):
|
| 28 |
+
# set checkpoints paths if needed
|
| 29 |
+
model_path = example_path / "checkpoints" / f'{conf["model_name"]}'
|
| 30 |
+
if not model_path.exists():
|
| 31 |
+
logger.info(f"No model found at {model_path}")
|
| 32 |
+
|
| 33 |
+
# init model
|
| 34 |
+
self.net = callable
|
| 35 |
+
# self.net = ExampleNet(is_test=True)
|
| 36 |
+
state_dict = torch.load(model_path, map_location="cpu")
|
| 37 |
+
self.net.load_state_dict(state_dict["model_state"])
|
| 38 |
+
logger.info("Load example model done.")
|
| 39 |
+
|
| 40 |
+
def _forward(self, data):
|
| 41 |
+
# data: dict, keys: 'image'
|
| 42 |
+
# image color mode: RGB
|
| 43 |
+
# image value range in [0, 1]
|
| 44 |
+
image = data["image"]
|
| 45 |
+
|
| 46 |
+
# B: batch size, N: number of keypoints
|
| 47 |
+
# keypoints shape: B x N x 2, type: torch tensor
|
| 48 |
+
# scores shape: B x N, type: torch tensor
|
| 49 |
+
# descriptors shape: B x 128 x N, type: torch tensor
|
| 50 |
+
keypoints, scores, descriptors = self.net(image)
|
| 51 |
+
|
| 52 |
+
return {
|
| 53 |
+
"keypoints": keypoints,
|
| 54 |
+
"scores": scores,
|
| 55 |
+
"descriptors": descriptors,
|
| 56 |
+
}
|
imcui/hloc/extractors/fire.py
ADDED
|
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
import subprocess
|
| 3 |
+
import sys
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import torchvision.transforms as tvf
|
| 8 |
+
|
| 9 |
+
from ..utils.base_model import BaseModel
|
| 10 |
+
|
| 11 |
+
logger = logging.getLogger(__name__)
|
| 12 |
+
fire_path = Path(__file__).parent / "../../third_party/fire"
|
| 13 |
+
sys.path.append(str(fire_path))
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
import fire_network
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class FIRe(BaseModel):
|
| 20 |
+
default_conf = {
|
| 21 |
+
"global": True,
|
| 22 |
+
"asmk": False,
|
| 23 |
+
"model_name": "fire_SfM_120k.pth",
|
| 24 |
+
"scales": [2.0, 1.414, 1.0, 0.707, 0.5, 0.353, 0.25], # default params
|
| 25 |
+
"features_num": 1000, # TODO:not supported now
|
| 26 |
+
"asmk_name": "asmk_codebook.bin", # TODO:not supported now
|
| 27 |
+
"config_name": "eval_fire.yml",
|
| 28 |
+
}
|
| 29 |
+
required_inputs = ["image"]
|
| 30 |
+
|
| 31 |
+
# Models exported using
|
| 32 |
+
fire_models = {
|
| 33 |
+
"fire_SfM_120k.pth": "http://download.europe.naverlabs.com/ComputerVision/FIRe/official/fire.pth",
|
| 34 |
+
"fire_imagenet.pth": "http://download.europe.naverlabs.com/ComputerVision/FIRe/pretraining/fire_imagenet.pth",
|
| 35 |
+
}
|
| 36 |
+
|
| 37 |
+
def _init(self, conf):
|
| 38 |
+
assert conf["model_name"] in self.fire_models.keys()
|
| 39 |
+
# Config paths
|
| 40 |
+
model_path = fire_path / "model" / conf["model_name"]
|
| 41 |
+
|
| 42 |
+
# Download the model.
|
| 43 |
+
if not model_path.exists():
|
| 44 |
+
model_path.parent.mkdir(exist_ok=True)
|
| 45 |
+
link = self.fire_models[conf["model_name"]]
|
| 46 |
+
cmd = ["wget", "--quiet", link, "-O", str(model_path)]
|
| 47 |
+
logger.info(f"Downloading the FIRe model with `{cmd}`.")
|
| 48 |
+
subprocess.run(cmd, check=True)
|
| 49 |
+
|
| 50 |
+
logger.info("Loading fire model...")
|
| 51 |
+
|
| 52 |
+
# Load net
|
| 53 |
+
state = torch.load(model_path)
|
| 54 |
+
state["net_params"]["pretrained"] = None
|
| 55 |
+
net = fire_network.init_network(**state["net_params"])
|
| 56 |
+
net.load_state_dict(state["state_dict"])
|
| 57 |
+
self.net = net
|
| 58 |
+
|
| 59 |
+
self.norm_rgb = tvf.Normalize(
|
| 60 |
+
**dict(zip(["mean", "std"], net.runtime["mean_std"]))
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
# params
|
| 64 |
+
self.scales = conf["scales"]
|
| 65 |
+
|
| 66 |
+
def _forward(self, data):
|
| 67 |
+
image = self.norm_rgb(data["image"])
|
| 68 |
+
|
| 69 |
+
# Feature extraction.
|
| 70 |
+
desc = self.net.forward_global(image, scales=self.scales)
|
| 71 |
+
|
| 72 |
+
return {"global_descriptor": desc}
|
imcui/hloc/extractors/fire_local.py
ADDED
|
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import subprocess
|
| 2 |
+
import sys
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
import torchvision.transforms as tvf
|
| 7 |
+
|
| 8 |
+
from .. import logger
|
| 9 |
+
from ..utils.base_model import BaseModel
|
| 10 |
+
|
| 11 |
+
fire_path = Path(__file__).parent / "../../third_party/fire"
|
| 12 |
+
|
| 13 |
+
sys.path.append(str(fire_path))
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
import fire_network
|
| 17 |
+
|
| 18 |
+
EPS = 1e-6
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class FIRe(BaseModel):
|
| 22 |
+
default_conf = {
|
| 23 |
+
"global": True,
|
| 24 |
+
"asmk": False,
|
| 25 |
+
"model_name": "fire_SfM_120k.pth",
|
| 26 |
+
"scales": [2.0, 1.414, 1.0, 0.707, 0.5, 0.353, 0.25], # default params
|
| 27 |
+
"features_num": 1000,
|
| 28 |
+
"asmk_name": "asmk_codebook.bin",
|
| 29 |
+
"config_name": "eval_fire.yml",
|
| 30 |
+
}
|
| 31 |
+
required_inputs = ["image"]
|
| 32 |
+
|
| 33 |
+
# Models exported using
|
| 34 |
+
fire_models = {
|
| 35 |
+
"fire_SfM_120k.pth": "http://download.europe.naverlabs.com/ComputerVision/FIRe/official/fire.pth",
|
| 36 |
+
"fire_imagenet.pth": "http://download.europe.naverlabs.com/ComputerVision/FIRe/pretraining/fire_imagenet.pth",
|
| 37 |
+
}
|
| 38 |
+
|
| 39 |
+
def _init(self, conf):
|
| 40 |
+
assert conf["model_name"] in self.fire_models.keys()
|
| 41 |
+
|
| 42 |
+
# Config paths
|
| 43 |
+
model_path = fire_path / "model" / conf["model_name"]
|
| 44 |
+
config_path = fire_path / conf["config_name"] # noqa: F841
|
| 45 |
+
asmk_bin_path = fire_path / "model" / conf["asmk_name"] # noqa: F841
|
| 46 |
+
|
| 47 |
+
# Download the model.
|
| 48 |
+
if not model_path.exists():
|
| 49 |
+
model_path.parent.mkdir(exist_ok=True)
|
| 50 |
+
link = self.fire_models[conf["model_name"]]
|
| 51 |
+
cmd = ["wget", "--quiet", link, "-O", str(model_path)]
|
| 52 |
+
logger.info(f"Downloading the FIRe model with `{cmd}`.")
|
| 53 |
+
subprocess.run(cmd, check=True)
|
| 54 |
+
|
| 55 |
+
logger.info("Loading fire model...")
|
| 56 |
+
|
| 57 |
+
# Load net
|
| 58 |
+
state = torch.load(model_path)
|
| 59 |
+
state["net_params"]["pretrained"] = None
|
| 60 |
+
net = fire_network.init_network(**state["net_params"])
|
| 61 |
+
net.load_state_dict(state["state_dict"])
|
| 62 |
+
self.net = net
|
| 63 |
+
|
| 64 |
+
self.norm_rgb = tvf.Normalize(
|
| 65 |
+
**dict(zip(["mean", "std"], net.runtime["mean_std"]))
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
# params
|
| 69 |
+
self.scales = conf["scales"]
|
| 70 |
+
self.features_num = conf["features_num"]
|
| 71 |
+
|
| 72 |
+
def _forward(self, data):
|
| 73 |
+
image = self.norm_rgb(data["image"])
|
| 74 |
+
|
| 75 |
+
local_desc = self.net.forward_local(
|
| 76 |
+
image, features_num=self.features_num, scales=self.scales
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
logger.info(f"output[0].shape = {local_desc[0].shape}\n")
|
| 80 |
+
|
| 81 |
+
return {
|
| 82 |
+
# 'global_descriptor': desc
|
| 83 |
+
"local_descriptor": local_desc
|
| 84 |
+
}
|
imcui/hloc/extractors/lanet.py
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
from .. import MODEL_REPO_ID, logger
|
| 7 |
+
|
| 8 |
+
from ..utils.base_model import BaseModel
|
| 9 |
+
|
| 10 |
+
lib_path = Path(__file__).parent / "../../third_party"
|
| 11 |
+
sys.path.append(str(lib_path))
|
| 12 |
+
from lanet.network_v0.model import PointModel
|
| 13 |
+
|
| 14 |
+
lanet_path = Path(__file__).parent / "../../third_party/lanet"
|
| 15 |
+
|
| 16 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class LANet(BaseModel):
|
| 20 |
+
default_conf = {
|
| 21 |
+
"model_name": "PointModel_v0.pth",
|
| 22 |
+
"keypoint_threshold": 0.1,
|
| 23 |
+
"max_keypoints": 1024,
|
| 24 |
+
}
|
| 25 |
+
required_inputs = ["image"]
|
| 26 |
+
|
| 27 |
+
def _init(self, conf):
|
| 28 |
+
logger.info("Loading LANet model...")
|
| 29 |
+
|
| 30 |
+
model_path = self._download_model(
|
| 31 |
+
repo_id=MODEL_REPO_ID,
|
| 32 |
+
filename="{}/{}".format(Path(__file__).stem, self.conf["model_name"]),
|
| 33 |
+
)
|
| 34 |
+
self.net = PointModel(is_test=True)
|
| 35 |
+
state_dict = torch.load(model_path, map_location="cpu")
|
| 36 |
+
self.net.load_state_dict(state_dict["model_state"])
|
| 37 |
+
logger.info("Load LANet model done.")
|
| 38 |
+
|
| 39 |
+
def _forward(self, data):
|
| 40 |
+
image = data["image"]
|
| 41 |
+
keypoints, scores, descriptors = self.net(image)
|
| 42 |
+
_, _, Hc, Wc = descriptors.shape
|
| 43 |
+
|
| 44 |
+
# Scores & Descriptors
|
| 45 |
+
kpts_score = torch.cat([keypoints, scores], dim=1).view(3, -1).t()
|
| 46 |
+
descriptors = descriptors.view(256, Hc, Wc).view(256, -1).t()
|
| 47 |
+
|
| 48 |
+
# Filter based on confidence threshold
|
| 49 |
+
descriptors = descriptors[kpts_score[:, 0] > self.conf["keypoint_threshold"], :]
|
| 50 |
+
kpts_score = kpts_score[kpts_score[:, 0] > self.conf["keypoint_threshold"], :]
|
| 51 |
+
keypoints = kpts_score[:, 1:]
|
| 52 |
+
scores = kpts_score[:, 0]
|
| 53 |
+
|
| 54 |
+
idxs = scores.argsort()[-self.conf["max_keypoints"] or None :]
|
| 55 |
+
keypoints = keypoints[idxs, :2]
|
| 56 |
+
descriptors = descriptors[idxs]
|
| 57 |
+
scores = scores[idxs]
|
| 58 |
+
|
| 59 |
+
return {
|
| 60 |
+
"keypoints": keypoints[None],
|
| 61 |
+
"scores": scores[None],
|
| 62 |
+
"descriptors": descriptors.T[None],
|
| 63 |
+
}
|
imcui/hloc/extractors/netvlad.py
ADDED
|
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import subprocess
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
|
| 4 |
+
import numpy as np
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
+
import torchvision.models as models
|
| 9 |
+
from scipy.io import loadmat
|
| 10 |
+
|
| 11 |
+
from .. import logger
|
| 12 |
+
from ..utils.base_model import BaseModel
|
| 13 |
+
|
| 14 |
+
EPS = 1e-6
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class NetVLADLayer(nn.Module):
|
| 18 |
+
def __init__(self, input_dim=512, K=64, score_bias=False, intranorm=True):
|
| 19 |
+
super().__init__()
|
| 20 |
+
self.score_proj = nn.Conv1d(input_dim, K, kernel_size=1, bias=score_bias)
|
| 21 |
+
centers = nn.parameter.Parameter(torch.empty([input_dim, K]))
|
| 22 |
+
nn.init.xavier_uniform_(centers)
|
| 23 |
+
self.register_parameter("centers", centers)
|
| 24 |
+
self.intranorm = intranorm
|
| 25 |
+
self.output_dim = input_dim * K
|
| 26 |
+
|
| 27 |
+
def forward(self, x):
|
| 28 |
+
b = x.size(0)
|
| 29 |
+
scores = self.score_proj(x)
|
| 30 |
+
scores = F.softmax(scores, dim=1)
|
| 31 |
+
diff = x.unsqueeze(2) - self.centers.unsqueeze(0).unsqueeze(-1)
|
| 32 |
+
desc = (scores.unsqueeze(1) * diff).sum(dim=-1)
|
| 33 |
+
if self.intranorm:
|
| 34 |
+
# From the official MATLAB implementation.
|
| 35 |
+
desc = F.normalize(desc, dim=1)
|
| 36 |
+
desc = desc.view(b, -1)
|
| 37 |
+
desc = F.normalize(desc, dim=1)
|
| 38 |
+
return desc
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
class NetVLAD(BaseModel):
|
| 42 |
+
default_conf = {"model_name": "VGG16-NetVLAD-Pitts30K", "whiten": True}
|
| 43 |
+
required_inputs = ["image"]
|
| 44 |
+
|
| 45 |
+
# Models exported using
|
| 46 |
+
# https://github.com/uzh-rpg/netvlad_tf_open/blob/master/matlab/net_class2struct.m.
|
| 47 |
+
dir_models = {
|
| 48 |
+
"VGG16-NetVLAD-Pitts30K": "https://cvg-data.inf.ethz.ch/hloc/netvlad/Pitts30K_struct.mat",
|
| 49 |
+
"VGG16-NetVLAD-TokyoTM": "https://cvg-data.inf.ethz.ch/hloc/netvlad/TokyoTM_struct.mat",
|
| 50 |
+
}
|
| 51 |
+
|
| 52 |
+
def _init(self, conf):
|
| 53 |
+
assert conf["model_name"] in self.dir_models.keys()
|
| 54 |
+
|
| 55 |
+
# Download the checkpoint.
|
| 56 |
+
checkpoint = Path(torch.hub.get_dir(), "netvlad", conf["model_name"] + ".mat")
|
| 57 |
+
if not checkpoint.exists():
|
| 58 |
+
checkpoint.parent.mkdir(exist_ok=True, parents=True)
|
| 59 |
+
link = self.dir_models[conf["model_name"]]
|
| 60 |
+
cmd = ["wget", "--quiet", link, "-O", str(checkpoint)]
|
| 61 |
+
logger.info(f"Downloading the NetVLAD model with `{cmd}`.")
|
| 62 |
+
subprocess.run(cmd, check=True)
|
| 63 |
+
|
| 64 |
+
# Create the network.
|
| 65 |
+
# Remove classification head.
|
| 66 |
+
backbone = list(models.vgg16().children())[0]
|
| 67 |
+
# Remove last ReLU + MaxPool2d.
|
| 68 |
+
self.backbone = nn.Sequential(*list(backbone.children())[:-2])
|
| 69 |
+
|
| 70 |
+
self.netvlad = NetVLADLayer()
|
| 71 |
+
|
| 72 |
+
if conf["whiten"]:
|
| 73 |
+
self.whiten = nn.Linear(self.netvlad.output_dim, 4096)
|
| 74 |
+
|
| 75 |
+
# Parse MATLAB weights using https://github.com/uzh-rpg/netvlad_tf_open
|
| 76 |
+
mat = loadmat(checkpoint, struct_as_record=False, squeeze_me=True)
|
| 77 |
+
|
| 78 |
+
# CNN weights.
|
| 79 |
+
for layer, mat_layer in zip(self.backbone.children(), mat["net"].layers):
|
| 80 |
+
if isinstance(layer, nn.Conv2d):
|
| 81 |
+
w = mat_layer.weights[0] # Shape: S x S x IN x OUT
|
| 82 |
+
b = mat_layer.weights[1] # Shape: OUT
|
| 83 |
+
# Prepare for PyTorch - enforce float32 and right shape.
|
| 84 |
+
# w should have shape: OUT x IN x S x S
|
| 85 |
+
# b should have shape: OUT
|
| 86 |
+
w = torch.tensor(w).float().permute([3, 2, 0, 1])
|
| 87 |
+
b = torch.tensor(b).float()
|
| 88 |
+
# Update layer weights.
|
| 89 |
+
layer.weight = nn.Parameter(w)
|
| 90 |
+
layer.bias = nn.Parameter(b)
|
| 91 |
+
|
| 92 |
+
# NetVLAD weights.
|
| 93 |
+
score_w = mat["net"].layers[30].weights[0] # D x K
|
| 94 |
+
# centers are stored as opposite in official MATLAB code
|
| 95 |
+
center_w = -mat["net"].layers[30].weights[1] # D x K
|
| 96 |
+
# Prepare for PyTorch - make sure it is float32 and has right shape.
|
| 97 |
+
# score_w should have shape K x D x 1
|
| 98 |
+
# center_w should have shape D x K
|
| 99 |
+
score_w = torch.tensor(score_w).float().permute([1, 0]).unsqueeze(-1)
|
| 100 |
+
center_w = torch.tensor(center_w).float()
|
| 101 |
+
# Update layer weights.
|
| 102 |
+
self.netvlad.score_proj.weight = nn.Parameter(score_w)
|
| 103 |
+
self.netvlad.centers = nn.Parameter(center_w)
|
| 104 |
+
|
| 105 |
+
# Whitening weights.
|
| 106 |
+
if conf["whiten"]:
|
| 107 |
+
w = mat["net"].layers[33].weights[0] # Shape: 1 x 1 x IN x OUT
|
| 108 |
+
b = mat["net"].layers[33].weights[1] # Shape: OUT
|
| 109 |
+
# Prepare for PyTorch - make sure it is float32 and has right shape
|
| 110 |
+
w = torch.tensor(w).float().squeeze().permute([1, 0]) # OUT x IN
|
| 111 |
+
b = torch.tensor(b.squeeze()).float() # Shape: OUT
|
| 112 |
+
# Update layer weights.
|
| 113 |
+
self.whiten.weight = nn.Parameter(w)
|
| 114 |
+
self.whiten.bias = nn.Parameter(b)
|
| 115 |
+
|
| 116 |
+
# Preprocessing parameters.
|
| 117 |
+
self.preprocess = {
|
| 118 |
+
"mean": mat["net"].meta.normalization.averageImage[0, 0],
|
| 119 |
+
"std": np.array([1, 1, 1], dtype=np.float32),
|
| 120 |
+
}
|
| 121 |
+
|
| 122 |
+
def _forward(self, data):
|
| 123 |
+
image = data["image"]
|
| 124 |
+
assert image.shape[1] == 3
|
| 125 |
+
assert image.min() >= -EPS and image.max() <= 1 + EPS
|
| 126 |
+
image = torch.clamp(image * 255, 0.0, 255.0) # Input should be 0-255.
|
| 127 |
+
mean = self.preprocess["mean"]
|
| 128 |
+
std = self.preprocess["std"]
|
| 129 |
+
image = image - image.new_tensor(mean).view(1, -1, 1, 1)
|
| 130 |
+
image = image / image.new_tensor(std).view(1, -1, 1, 1)
|
| 131 |
+
|
| 132 |
+
# Feature extraction.
|
| 133 |
+
descriptors = self.backbone(image)
|
| 134 |
+
b, c, _, _ = descriptors.size()
|
| 135 |
+
descriptors = descriptors.view(b, c, -1)
|
| 136 |
+
|
| 137 |
+
# NetVLAD layer.
|
| 138 |
+
descriptors = F.normalize(descriptors, dim=1) # Pre-normalization.
|
| 139 |
+
desc = self.netvlad(descriptors)
|
| 140 |
+
|
| 141 |
+
# Whiten if needed.
|
| 142 |
+
if hasattr(self, "whiten"):
|
| 143 |
+
desc = self.whiten(desc)
|
| 144 |
+
desc = F.normalize(desc, dim=1) # Final L2 normalization.
|
| 145 |
+
|
| 146 |
+
return {"global_descriptor": desc}
|
imcui/hloc/extractors/openibl.py
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torchvision.transforms as tvf
|
| 3 |
+
|
| 4 |
+
from ..utils.base_model import BaseModel
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class OpenIBL(BaseModel):
|
| 8 |
+
default_conf = {
|
| 9 |
+
"model_name": "vgg16_netvlad",
|
| 10 |
+
}
|
| 11 |
+
required_inputs = ["image"]
|
| 12 |
+
|
| 13 |
+
def _init(self, conf):
|
| 14 |
+
self.net = torch.hub.load(
|
| 15 |
+
"yxgeee/OpenIBL", conf["model_name"], pretrained=True
|
| 16 |
+
).eval()
|
| 17 |
+
mean = [0.48501960784313836, 0.4579568627450961, 0.4076039215686255]
|
| 18 |
+
std = [0.00392156862745098, 0.00392156862745098, 0.00392156862745098]
|
| 19 |
+
self.norm_rgb = tvf.Normalize(mean=mean, std=std)
|
| 20 |
+
|
| 21 |
+
def _forward(self, data):
|
| 22 |
+
image = self.norm_rgb(data["image"])
|
| 23 |
+
desc = self.net(image)
|
| 24 |
+
return {
|
| 25 |
+
"global_descriptor": desc,
|
| 26 |
+
}
|
imcui/hloc/extractors/r2d2.py
ADDED
|
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
|
| 4 |
+
import torchvision.transforms as tvf
|
| 5 |
+
|
| 6 |
+
from .. import MODEL_REPO_ID, logger
|
| 7 |
+
|
| 8 |
+
from ..utils.base_model import BaseModel
|
| 9 |
+
|
| 10 |
+
r2d2_path = Path(__file__).parents[2] / "third_party/r2d2"
|
| 11 |
+
sys.path.append(str(r2d2_path))
|
| 12 |
+
|
| 13 |
+
gim_path = Path(__file__).parents[2] / "third_party/gim"
|
| 14 |
+
if str(gim_path) in sys.path:
|
| 15 |
+
sys.path.remove(str(gim_path))
|
| 16 |
+
|
| 17 |
+
from extract import NonMaxSuppression, extract_multiscale, load_network
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
class R2D2(BaseModel):
|
| 21 |
+
default_conf = {
|
| 22 |
+
"model_name": "r2d2_WASF_N16.pt",
|
| 23 |
+
"max_keypoints": 5000,
|
| 24 |
+
"scale_factor": 2**0.25,
|
| 25 |
+
"min_size": 256,
|
| 26 |
+
"max_size": 1024,
|
| 27 |
+
"min_scale": 0,
|
| 28 |
+
"max_scale": 1,
|
| 29 |
+
"reliability_threshold": 0.7,
|
| 30 |
+
"repetability_threshold": 0.7,
|
| 31 |
+
}
|
| 32 |
+
required_inputs = ["image"]
|
| 33 |
+
|
| 34 |
+
def _init(self, conf):
|
| 35 |
+
model_path = self._download_model(
|
| 36 |
+
repo_id=MODEL_REPO_ID,
|
| 37 |
+
filename="{}/{}".format(Path(__file__).stem, self.conf["model_name"]),
|
| 38 |
+
)
|
| 39 |
+
self.norm_rgb = tvf.Normalize(
|
| 40 |
+
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
| 41 |
+
)
|
| 42 |
+
self.net = load_network(model_path)
|
| 43 |
+
self.detector = NonMaxSuppression(
|
| 44 |
+
rel_thr=conf["reliability_threshold"],
|
| 45 |
+
rep_thr=conf["repetability_threshold"],
|
| 46 |
+
)
|
| 47 |
+
logger.info("Load R2D2 model done.")
|
| 48 |
+
|
| 49 |
+
def _forward(self, data):
|
| 50 |
+
img = data["image"]
|
| 51 |
+
img = self.norm_rgb(img)
|
| 52 |
+
|
| 53 |
+
xys, desc, scores = extract_multiscale(
|
| 54 |
+
self.net,
|
| 55 |
+
img,
|
| 56 |
+
self.detector,
|
| 57 |
+
scale_f=self.conf["scale_factor"],
|
| 58 |
+
min_size=self.conf["min_size"],
|
| 59 |
+
max_size=self.conf["max_size"],
|
| 60 |
+
min_scale=self.conf["min_scale"],
|
| 61 |
+
max_scale=self.conf["max_scale"],
|
| 62 |
+
)
|
| 63 |
+
idxs = scores.argsort()[-self.conf["max_keypoints"] or None :]
|
| 64 |
+
xy = xys[idxs, :2]
|
| 65 |
+
desc = desc[idxs].t()
|
| 66 |
+
scores = scores[idxs]
|
| 67 |
+
|
| 68 |
+
pred = {
|
| 69 |
+
"keypoints": xy[None],
|
| 70 |
+
"descriptors": desc[None],
|
| 71 |
+
"scores": scores[None],
|
| 72 |
+
}
|
| 73 |
+
return pred
|
imcui/hloc/extractors/rekd.py
ADDED
|
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
from .. import MODEL_REPO_ID, logger
|
| 7 |
+
|
| 8 |
+
from ..utils.base_model import BaseModel
|
| 9 |
+
|
| 10 |
+
rekd_path = Path(__file__).parent / "../../third_party"
|
| 11 |
+
sys.path.append(str(rekd_path))
|
| 12 |
+
from REKD.training.model.REKD import REKD as REKD_
|
| 13 |
+
|
| 14 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class REKD(BaseModel):
|
| 18 |
+
default_conf = {
|
| 19 |
+
"model_name": "v0",
|
| 20 |
+
"keypoint_threshold": 0.1,
|
| 21 |
+
}
|
| 22 |
+
required_inputs = ["image"]
|
| 23 |
+
|
| 24 |
+
def _init(self, conf):
|
| 25 |
+
# TODO: download model
|
| 26 |
+
model_path = self._download_model(
|
| 27 |
+
repo_id=MODEL_REPO_ID,
|
| 28 |
+
filename="{}/{}".format(Path(__file__).stem, self.conf["model_name"]),
|
| 29 |
+
)
|
| 30 |
+
if not model_path.exists():
|
| 31 |
+
print(f"No model found at {model_path}")
|
| 32 |
+
self.net = REKD_(is_test=True)
|
| 33 |
+
state_dict = torch.load(model_path, map_location="cpu")
|
| 34 |
+
self.net.load_state_dict(state_dict["model_state"])
|
| 35 |
+
logger.info("Load REKD model done.")
|
| 36 |
+
|
| 37 |
+
def _forward(self, data):
|
| 38 |
+
image = data["image"]
|
| 39 |
+
keypoints, scores, descriptors = self.net(image)
|
| 40 |
+
_, _, Hc, Wc = descriptors.shape
|
| 41 |
+
|
| 42 |
+
# Scores & Descriptors
|
| 43 |
+
kpts_score = (
|
| 44 |
+
torch.cat([keypoints, scores], dim=1).view(3, -1).t().cpu().detach().numpy()
|
| 45 |
+
)
|
| 46 |
+
descriptors = (
|
| 47 |
+
descriptors.view(256, Hc, Wc).view(256, -1).t().cpu().detach().numpy()
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
# Filter based on confidence threshold
|
| 51 |
+
descriptors = descriptors[kpts_score[:, 0] > self.conf["keypoint_threshold"], :]
|
| 52 |
+
kpts_score = kpts_score[kpts_score[:, 0] > self.conf["keypoint_threshold"], :]
|
| 53 |
+
keypoints = kpts_score[:, 1:]
|
| 54 |
+
scores = kpts_score[:, 0]
|
| 55 |
+
|
| 56 |
+
return {
|
| 57 |
+
"keypoints": torch.from_numpy(keypoints)[None],
|
| 58 |
+
"scores": torch.from_numpy(scores)[None],
|
| 59 |
+
"descriptors": torch.from_numpy(descriptors.T)[None],
|
| 60 |
+
}
|