Spaces:
Sleeping
Sleeping
| from transformers import DPTImageProcessor, DPTForDepthEstimation | |
| from segment_anything import SamAutomaticMaskGenerator, sam_model_registry, SamPredictor | |
| import gradio as gr | |
| import supervision as sv | |
| import torch | |
| import numpy as np | |
| from PIL import Image | |
| import requests | |
| import open3d as o3d | |
| import pandas as pd | |
| import plotly.express as px | |
| import matplotlib.pyplot as plt | |
| def remove_outliers(point_cloud, threshold=3.0): | |
| # Calculate mean and standard deviation along each dimension | |
| mean = np.mean(point_cloud, axis=0) | |
| std = np.std(point_cloud, axis=0) | |
| # Define lower and upper bounds for each dimension | |
| lower_bounds = mean - threshold * std | |
| upper_bounds = mean + threshold * std | |
| # Create a boolean mask for points within the bounds | |
| mask = np.all((point_cloud >= lower_bounds) & (point_cloud <= upper_bounds), axis=1) | |
| # Filter out outlier points | |
| filtered_point_cloud = point_cloud[mask] | |
| return filtered_point_cloud | |
| def map_image_range(depth, min_value, max_value): | |
| """ | |
| Maps the values of a numpy image array to a specified range. | |
| Args: | |
| image (numpy.ndarray): Input image array with values ranging from 0 to 1. | |
| min_value (float): Minimum value of the new range. | |
| max_value (float): Maximum value of the new range. | |
| Returns: | |
| numpy.ndarray: Image array with values mapped to the specified range. | |
| """ | |
| # Ensure the input image is a numpy array | |
| print(np.min(depth)) | |
| print(np.max(depth)) | |
| depth = np.array(depth) | |
| # map the depth values are between 0 and 1 | |
| depth = (depth - depth.min()) / (depth.max() - depth.min()) | |
| # invert | |
| depth = 1 - depth | |
| print(np.min(depth)) | |
| print(np.max(depth)) | |
| # Map the values to the specified range | |
| mapped_image = (depth - 0) * (max_value - min_value) / (1 - 0) + min_value | |
| print(np.min(mapped_image)) | |
| print(np.max(mapped_image)) | |
| return mapped_image | |
| def PCL(mask, depth): | |
| assert mask.shape == depth.shape | |
| assert type(mask) == np.ndarray | |
| assert type(depth) == np.ndarray | |
| rgb_mask = np.zeros((mask.shape[0], mask.shape[1], 3)).astype("uint8") | |
| rgb_mask[mask] = (255, 0, 0) | |
| print(np.unique(rgb_mask)) | |
| depth_o3d = o3d.geometry.Image(depth) | |
| image_o3d = o3d.geometry.Image(rgb_mask) | |
| # print(len(depth_o3d)) | |
| # print(len(image_o3d)) | |
| rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth( | |
| image_o3d, depth_o3d, convert_rgb_to_intensity=False | |
| ) | |
| # Step 3: Create a PointCloud from the RGBD image | |
| pcd = o3d.geometry.PointCloud.create_from_rgbd_image( | |
| rgbd_image, | |
| o3d.camera.PinholeCameraIntrinsic( | |
| o3d.camera.PinholeCameraIntrinsicParameters.PrimeSenseDefault | |
| ), | |
| ) | |
| # Step 4: Convert PointCloud data to a NumPy array | |
| # print(len(pcd)) | |
| points = np.asarray(pcd.points) | |
| colors = np.asarray(pcd.colors) | |
| print(np.unique(colors, axis=0)) | |
| print(np.unique(colors, axis=1)) | |
| print(np.unique(colors)) | |
| mask = colors[:, 0] == 1.0 | |
| print(mask.sum()) | |
| print(colors.shape) | |
| points = points[mask] | |
| colors = colors[mask] | |
| return points, colors | |
| def PCL_rgb(rgb, depth): | |
| # assert rgb.shape == depth.shape | |
| assert type(rgb) == np.ndarray | |
| assert type(depth) == np.ndarray | |
| depth_o3d = o3d.geometry.Image(depth) | |
| image_o3d = o3d.geometry.Image(rgb) | |
| rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth( | |
| image_o3d, depth_o3d, convert_rgb_to_intensity=False | |
| ) | |
| # Step 3: Create a PointCloud from the RGBD image | |
| pcd = o3d.geometry.PointCloud.create_from_rgbd_image( | |
| rgbd_image, | |
| o3d.camera.PinholeCameraIntrinsic( | |
| o3d.camera.PinholeCameraIntrinsicParameters.PrimeSenseDefault | |
| ), | |
| ) | |
| # Step 4: Convert PointCloud data to a NumPy array | |
| points = np.asarray(pcd.points) | |
| colors = np.asarray(pcd.colors) | |
| return points, colors | |
| class DepthPredictor: | |
| def __init__(self): | |
| self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| self.feature_extractor = DPTImageProcessor.from_pretrained("Intel/dpt-large") | |
| self.model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large") | |
| self.model.eval() | |
| def predict(self, image): | |
| # prepare image for the model | |
| encoding = self.feature_extractor(image, return_tensors="pt") | |
| # forward pass | |
| with torch.no_grad(): | |
| outputs = self.model(**encoding) | |
| predicted_depth = outputs.predicted_depth | |
| # interpolate to original size | |
| prediction = torch.nn.functional.interpolate( | |
| predicted_depth.unsqueeze(1), | |
| size=image.size[::-1], | |
| mode="bicubic", | |
| align_corners=False, | |
| ).squeeze() | |
| output = prediction.cpu().numpy() | |
| # output = 1 - (output/np.max(output)) | |
| return output | |
| def generate_pcl(self, image): | |
| print(np.array(image).shape) | |
| depth = self.predict(image) | |
| print(depth.shape) | |
| # Step 2: Create an RGBD image from the RGB and depth image | |
| depth_o3d = o3d.geometry.Image(depth) | |
| image_o3d = o3d.geometry.Image(np.array(image)) | |
| rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth( | |
| image_o3d, depth_o3d, convert_rgb_to_intensity=False | |
| ) | |
| # Step 3: Create a PointCloud from the RGBD image | |
| pcd = o3d.geometry.PointCloud.create_from_rgbd_image( | |
| rgbd_image, | |
| o3d.camera.PinholeCameraIntrinsic( | |
| o3d.camera.PinholeCameraIntrinsicParameters.PrimeSenseDefault | |
| ), | |
| ) | |
| # Step 4: Convert PointCloud data to a NumPy array | |
| points = np.asarray(pcd.points) | |
| colors = np.asarray(pcd.colors) | |
| print(points.shape, colors.shape) | |
| return points, colors | |
| def generate_fig(self, image): | |
| points, colors = self.generate_pcl(image) | |
| data = { | |
| "x": points[:, 0], | |
| "y": points[:, 1], | |
| "z": points[:, 2], | |
| "red": colors[:, 0], | |
| "green": colors[:, 1], | |
| "blue": colors[:, 2], | |
| } | |
| df = pd.DataFrame(data) | |
| size = np.zeros(len(df)) | |
| size[:] = 0.01 | |
| # Step 6: Create a 3D scatter plot using Plotly Express | |
| fig = px.scatter_3d(df, x="x", y="y", z="z", color="red", size=size) | |
| return fig | |
| def generate_fig2(self, image): | |
| points, colors = self.generate_pcl(image) | |
| # Step 6: Create a 3D scatter plot using Plotly Express | |
| fig = plt.figure() | |
| ax = fig.add_subplot(111, projection="3d") | |
| ax.scatter(points, size=0.01, c=colors, marker="o") | |
| return fig | |
| def generate_obj_rgb(self, image, n_samples, cube_size, max_depth, min_depth): | |
| # Step 1: Create a point cloud | |
| depth = self.predict(image) | |
| image = np.array(image) | |
| depth = map_image_range(depth, min_depth, max_depth) | |
| point_cloud, color_array = PCL_rgb(image, depth) | |
| idxs = np.random.choice(len(point_cloud), int(n_samples)) | |
| point_cloud = point_cloud[idxs] | |
| color_array = color_array[idxs] | |
| # Create a mesh to hold the colored cubes | |
| mesh = o3d.geometry.TriangleMesh() | |
| # Create cubes and add them to the mesh | |
| for point, color in zip(point_cloud, color_array): | |
| cube = o3d.geometry.TriangleMesh.create_box( | |
| width=cube_size, height=cube_size, depth=cube_size | |
| ) | |
| cube.translate(-point) | |
| cube.paint_uniform_color(color) | |
| mesh += cube | |
| # Save the mesh to an .obj file | |
| output_file = "./cloud.obj" | |
| o3d.io.write_triangle_mesh(output_file, mesh) | |
| return output_file | |
| def generate_obj_masks(self, image, n_samples, masks, cube_size): | |
| # Generate a point cloud | |
| point_cloud, color_array = self.generate_pcl(image) | |
| print(point_cloud.shape) | |
| mesh = o3d.geometry.TriangleMesh() | |
| # Create cubes and add them to the mesh | |
| cs = [(255, 0, 0), (0, 255, 0), (0, 0, 255)] | |
| for c, (mask, _) in zip(cs, masks): | |
| mask = mask.ravel() | |
| point_cloud_subset, color_array_subset = ( | |
| point_cloud[mask], | |
| color_array[mask], | |
| ) | |
| idxs = np.random.choice(len(point_cloud_subset), int(n_samples)) | |
| point_cloud_subset = point_cloud_subset[idxs] | |
| for point in point_cloud_subset: | |
| cube = o3d.geometry.TriangleMesh.create_box( | |
| width=cube_size, height=cube_size, depth=cube_size | |
| ) | |
| cube.translate(-point) | |
| cube.paint_uniform_color(c) | |
| mesh += cube | |
| # Save the mesh to an .obj file | |
| output_file = "./cloud.obj" | |
| o3d.io.write_triangle_mesh(output_file, mesh) | |
| return output_file | |
| def generate_obj_masks2( | |
| self, image, masks, cube_size, n_samples, min_depth, max_depth | |
| ): | |
| # Generate a point cloud | |
| depth = self.predict(image) | |
| depth = map_image_range(depth, min_depth, max_depth) | |
| image = np.array(image) | |
| mesh = o3d.geometry.TriangleMesh() | |
| # Create cubes and add them to the mesh | |
| print(len(masks)) | |
| cs = [(1, 0, 0), (0, 1, 0), (0, 0, 1)] | |
| for c, (mask, _) in zip(cs, masks): | |
| points, _ = PCL(mask, depth) | |
| idxs = np.random.choice(len(points), int(n_samples)) | |
| points = points[idxs] | |
| points = remove_outliers(points) | |
| for point in points: | |
| cube = o3d.geometry.TriangleMesh.create_box( | |
| width=cube_size, height=cube_size, depth=cube_size | |
| ) | |
| cube.translate(-point) | |
| cube.paint_uniform_color(c) | |
| mesh += cube | |
| # Save the mesh to an .obj file | |
| output_file = "./cloud.obj" | |
| o3d.io.write_triangle_mesh(output_file, mesh) | |
| return output_file | |
| import numpy as np | |
| from typing import Optional, Tuple | |
| class CustomSamPredictor(SamPredictor): | |
| def __init__( | |
| self, | |
| sam_model, | |
| ) -> None: | |
| super().__init__(sam_model) | |
| def encode_image( | |
| self, | |
| image: np.ndarray, | |
| image_format: str = "RGB", | |
| ) -> None: | |
| """ | |
| Calculates the image embeddings for the provided image, allowing | |
| masks to be predicted with the 'predict' method. | |
| Arguments: | |
| image (np.ndarray): The image for calculating masks. Expects an | |
| image in HWC uint8 format, with pixel values in [0, 255]. | |
| image_format (str): The color format of the image, in ['RGB', 'BGR']. | |
| """ | |
| assert image_format in [ | |
| "RGB", | |
| "BGR", | |
| ], f"image_format must be in ['RGB', 'BGR'], is {image_format}." | |
| if image_format != self.model.image_format: | |
| image = image[..., ::-1] | |
| # Transform the image to the form expected by the model | |
| input_image = self.transform.apply_image(image) | |
| input_image_torch = torch.as_tensor(input_image, device=self.device) | |
| input_image_torch = input_image_torch.permute(2, 0, 1).contiguous()[ | |
| None, :, :, : | |
| ] | |
| self.set_torch_image(input_image_torch, image.shape[:2]) | |
| return self.get_image_embedding() | |
| def decode_and_predict( | |
| self, | |
| embedding: torch.Tensor, | |
| point_coords: Optional[np.ndarray] = None, | |
| point_labels: Optional[np.ndarray] = None, | |
| box: Optional[np.ndarray] = None, | |
| mask_input: Optional[np.ndarray] = None, | |
| multimask_output: bool = True, | |
| return_logits: bool = False, | |
| ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: | |
| """ | |
| Decodes the provided image embedding and makes mask predictions based on prompts. | |
| Arguments: | |
| embedding (torch.Tensor): The image embedding to decode. | |
| ... (other arguments from the predict function) | |
| Returns: | |
| (np.ndarray): The output masks in CxHxW format. | |
| (np.ndarray): An array of quality predictions for each mask. | |
| (np.ndarray): Low resolution mask logits for subsequent iterations. | |
| """ | |
| self.features = embedding | |
| self.is_image_set = True | |
| return self.predict( | |
| point_coords=point_coords, | |
| point_labels=point_labels, | |
| box=box, | |
| mask_input=mask_input, | |
| multimask_output=multimask_output, | |
| return_logits=return_logits, | |
| ) | |
| def dummy_set_torch_image( | |
| self, | |
| transformed_image: torch.Tensor, | |
| original_image_size: Tuple[int, ...], | |
| ) -> None: | |
| """ | |
| Calculates the image embeddings for the provided image, allowing | |
| masks to be predicted with the 'predict' method. Expects the input | |
| image to be already transformed to the format expected by the model. | |
| Arguments: | |
| transformed_image (torch.Tensor): The input image, with shape | |
| 1x3xHxW, which has been transformed with ResizeLongestSide. | |
| original_image_size (tuple(int, int)): The size of the image | |
| before transformation, in (H, W) format. | |
| """ | |
| assert ( | |
| len(transformed_image.shape) == 4 | |
| and transformed_image.shape[1] == 3 | |
| and max(*transformed_image.shape[2:]) == self.model.image_encoder.img_size | |
| ), f"set_torch_image input must be BCHW with long side {self.model.image_encoder.img_size}." | |
| self.reset_image() | |
| self.original_size = original_image_size | |
| self.input_size = tuple(transformed_image.shape[-2:]) | |
| input_image = self.model.preprocess(transformed_image) | |
| # The following line is commented out to avoid encoding on cpu | |
| # self.features = self.model.image_encoder(input_image) | |
| self.is_image_set = True | |
| def dummy_set_image( | |
| self, | |
| image: np.ndarray, | |
| image_format: str = "RGB", | |
| ) -> None: | |
| """ | |
| Calculates the image embeddings for the provided image, allowing | |
| masks to be predicted with the 'predict' method. | |
| Arguments: | |
| image (np.ndarray): The image for calculating masks. Expects an | |
| image in HWC uint8 format, with pixel values in [0, 255]. | |
| image_format (str): The color format of the image, in ['RGB', 'BGR']. | |
| """ | |
| assert image_format in [ | |
| "RGB", | |
| "BGR", | |
| ], f"image_format must be in ['RGB', 'BGR'], is {image_format}." | |
| if image_format != self.model.image_format: | |
| image = image[..., ::-1] | |
| # Transform the image to the form expected by the model | |
| input_image = self.transform.apply_image(image) | |
| input_image_torch = torch.as_tensor(input_image, device=self.device) | |
| input_image_torch = input_image_torch.permute(2, 0, 1).contiguous()[ | |
| None, :, :, : | |
| ] | |
| self.dummy_set_torch_image(input_image_torch, image.shape[:2]) | |
| class SegmentPredictor: | |
| def __init__(self, device=None): | |
| MODEL_TYPE = "vit_h" | |
| checkpoint = "sam_vit_h_4b8939.pth" | |
| sam = sam_model_registry[MODEL_TYPE](checkpoint=checkpoint) | |
| # Select device | |
| if device is None: | |
| self.device = "cuda" if torch.cuda.is_available() else "cpu" | |
| else: | |
| self.device = device | |
| sam.to(device=self.device) | |
| self.mask_generator = SamAutomaticMaskGenerator(sam) | |
| self.conditioned_pred = CustomSamPredictor(sam) | |
| def encode(self, image): | |
| image = np.array(image) | |
| return self.conditioned_pred.encode_image(image) | |
| def dummy_encode(self, image): | |
| image = np.array(image) | |
| self.conditioned_pred.dummy_set_image(image) | |
| def cond_pred(self, embedding, pts, lbls): | |
| lbls = np.array(lbls) | |
| pts = np.array(pts) | |
| masks, _, _ = self.conditioned_pred.decode_and_predict( | |
| embedding, point_coords=pts, point_labels=lbls, multimask_output=True | |
| ) | |
| idxs = np.argsort(-masks.sum(axis=(1, 2))) | |
| sam_masks = [] | |
| for n, i in enumerate(idxs): | |
| sam_masks.append((masks[i], str(n))) | |
| return sam_masks | |
| def segment_everything(self, image): | |
| image = np.array(image) | |
| sam_result = self.mask_generator.generate(image) | |
| sam_masks = [] | |
| for i, mask in enumerate(sam_result): | |
| sam_masks.append((mask["segmentation"], str(i))) | |
| return sam_masks | |