File size: 14,906 Bytes
44189a1
 
 
 
 
 
 
 
 
 
f05dca2
44189a1
 
 
 
dc78df8
ea0a1d3
c05bf77
789b504
dc78df8
ea0a1d3
dc78df8
 
a6a82ee
 
 
54c84c8
f05dca2
 
 
789b504
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
828e073
789b504
 
 
828e073
789b504
 
 
 
 
 
 
 
 
af67173
dc78df8
af67173
789b504
f05dca2
 
789b504
 
 
 
 
 
 
 
 
 
 
86b7cbf
 
 
 
 
789b504
 
 
 
3bc7f68
789b504
 
 
 
 
 
dc78df8
 
 
789b504
 
dc78df8
789b504
 
828e073
dc78df8
af67173
 
f05dca2
 
 
 
 
 
 
 
 
 
 
 
 
 
dc78df8
 
 
 
f05dca2
af67173
dc78df8
 
6fcc783
a47128f
dc78df8
 
 
 
789b504
dc78df8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a47128f
 
 
 
 
 
 
 
 
 
 
 
 
af67173
 
dc78df8
 
 
 
 
828e073
 
789b504
 
828e073
 
789b504
a47128f
 
 
 
af67173
a47128f
 
af67173
789b504
a47128f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af67173
 
a47128f
 
 
 
 
dc78df8
a47128f
 
 
af67173
a47128f
 
af67173
 
a47128f
 
dc78df8
 
 
25fc9d6
af67173
789b504
dc78df8
 
 
789b504
dc78df8
789b504
dc78df8
 
44189a1
a47128f
 
 
af67173
 
a47128f
 
 
af67173
a47128f
af67173
a47128f
 
dc78df8
 
 
 
 
f8a8adc
44189a1
 
dc78df8
 
64d39dd
 
dc78df8
44189a1
dc78df8
af67173
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
from gradio_imageslider import ImageSlider
import functools
import os
import tempfile
import diffusers
import gradio as gr
import imageio as imageio
import numpy as np
import spaces
import torch as torch
from PIL import Image, ImageFilter
from tqdm import tqdm
from pathlib import Path
import gradio
from gradio.utils import get_cache_folder
from infer import lotus, lotus_video
import transformers
from huggingface_hub import login
import cv2

transformers.utils.move_cache()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

if "HF_TOKEN_LOGIN" in os.environ:
    login(token=os.environ["HF_TOKEN_LOGIN"])

def apply_gaussian_blur(image, radius=1.0):
    """Apply Gaussian blur to PIL Image with specified radius"""
    return image.filter(ImageFilter.GaussianBlur(radius=radius))

class NormalMapSimple:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "images": ("IMAGE",),
                "scale_XY": ("FLOAT",{"default": 1, "min": 0, "max": 100, "step": 0.001}),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "normal_map"

    CATEGORY = "image/filters"

    def normal_map(self, images, scale_XY):
        t = images.detach().clone().cpu().numpy().astype(np.float32)
        L = np.mean(t[:,:,:,:3], axis=3)
        for i in range(t.shape[0]):
            t[i,:,:,0] = cv2.Scharr(L[i], -1, 1, 0, cv2.BORDER_REFLECT) * -1
            t[i,:,:,1] = cv2.Scharr(L[i], -1, 0, 1, cv2.BORDER_REFLECT)
        t[:,:,:,2] = 1
        t = torch.from_numpy(t)
        t[:,:,:,:2] *= scale_XY
        t[:,:,:,:3] = torch.nn.functional.normalize(t[:,:,:,:3], dim=3) / 2 + 0.5
        return (t,)

class ConvertNormals:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "normals": ("IMAGE",),
                "input_mode": (["BAE", "MiDaS", "Standard", "DirectX"],),
                "output_mode": (["BAE", "MiDaS", "Standard", "DirectX"],),
                "scale_XY": ("FLOAT",{"default": 1, "min": 0, "max": 100, "step": 0.001}),
                "normalize": ("BOOLEAN", {"default": True}),
                "fix_black": ("BOOLEAN", {"default": True}),
            },
            "optional": {
                "optional_fill": ("IMAGE",),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "convert_normals"

    CATEGORY = "image/filters"

    def convert_normals(self, normals, input_mode, output_mode, scale_XY, normalize, fix_black, optional_fill=None):
        try:
            t = normals.detach().clone()

            if input_mode == "BAE":
                t[:,:,:,0] = 1 - t[:,:,:,0] # invert R
            elif input_mode == "MiDaS":
                t[:,:,:,:3] = torch.stack([1 - t[:,:,:,2], t[:,:,:,1], t[:,:,:,0]], dim=3) # BGR -> RGB and invert R
            elif input_mode == "DirectX":
                t[:,:,:,1] = 1 - t[:,:,:,1] # invert G

            if fix_black:
                key = torch.clamp(1 - t[:,:,:,2] * 2, min=0, max=1)
                if optional_fill is None:
                    t[:,:,:,0] += key * 0.5
                    t[:,:,:,1] += key * 0.5
                    t[:,:,:,2] += key
                else:
                    fill = optional_fill.detach().clone()
                    if fill.shape[1:3] != t.shape[1:3]:
                        fill = torch.nn.functional.interpolate(fill.movedim(-1,1), size=(t.shape[1], t.shape[2]), mode='bilinear').movedim(1,-1)
                    if fill.shape[0] != t.shape[0]:
                        fill = fill[0].unsqueeze(0).expand(t.shape[0], -1, -1, -1)
                    t[:,:,:,:3] += fill[:,:,:,:3] * key.unsqueeze(3).expand(-1, -1, -1, 3)

            t[:,:,:,:2] = (t[:,:,:,:2] - 0.5) * scale_XY + 0.5

            if normalize:
                # Transform to [-1, 1] range
                t_norm = t[:,:,:,:3] * 2 - 1

                # Calculate the length of each vector
                lengths = torch.sqrt(torch.sum(t_norm**2, dim=3, keepdim=True))

                # Avoid division by zero
                lengths = torch.clamp(lengths, min=1e-6)

                # Normalize each vector to unit length
                t_norm = t_norm / lengths

                # Transform back to [0, 1] range
                t[:,:,:,:3] = (t_norm + 1) / 2

            if output_mode == "BAE":
                t[:,:,:,0] = 1 - t[:,:,:,0] # invert R
            elif output_mode == "MiDaS":
                t[:,:,:,:3] = torch.stack([t[:,:,:,2], t[:,:,:,1], 1 - t[:,:,:,0]], dim=3) # invert R and BGR -> RGB
            elif output_mode == "DirectX":
                t[:,:,:,1] = 1 - t[:,:,:,1] # invert G

            return (t,)
        except Exception as e:
            print(f"Error in convert_normals: {str(e)}")
            return (normals,)

def get_image_intensity(img, gamma_correction=1.0):
    """
    Extract intensity map from an image using HSV color space
    """
    # Convert to HSV color space
    result = cv2.cvtColor(img, cv2.COLOR_RGB2HSV)
    # Extract Value channel (intensity)
    result = result[:, :, 2].astype(np.float32) / 255.0
    # Apply gamma correction
    result = result ** gamma_correction
    # Convert back to 0-255 range
    result = (result * 255.0).clip(0, 255).astype(np.uint8)
    # Convert to RGB (still grayscale but in RGB format)
    result = cv2.cvtColor(result, cv2.COLOR_GRAY2RGB)
    return result

def blend_numpy_images(image1, image2, blend_factor=0.25, mode="normal"):
    """
    Blend two numpy images using normal mode
    """
    # Convert to float32 and normalize to 0-1
    img1 = image1.astype(np.float32) / 255.0
    img2 = image2.astype(np.float32) / 255.0

    # Normal blend mode
    blended = img1 * (1 - blend_factor) + img2 * blend_factor

    # Convert back to uint8
    blended = (blended * 255.0).clip(0, 255).astype(np.uint8)
    return blended

def process_normal_map(image):
    """
    Process image through NormalMapSimple and ConvertNormals
    """
    # Convert numpy image to torch tensor with batch dimension
    image_tensor = torch.from_numpy(image).unsqueeze(0).float() / 255.0

    # Create instances of the classes
    normal_map_generator = NormalMapSimple()
    normal_converter = ConvertNormals()

    # Generate initial normal map
    normal_map = normal_map_generator.normal_map(image_tensor, scale_XY=1.0)[0]

    # Convert normal map from Standard to Standard (OpenGL)
    converted_normal = normal_converter.convert_normals(
        normal_map,
        input_mode="Standard",
        output_mode="Standard",
        scale_XY=1.0,
        normalize=True,
        fix_black=True
    )[0]

    # Convert back to numpy array
    result = (converted_normal.squeeze(0).numpy() * 255).astype(np.uint8)
    return result

def infer(path_input, seed=None):
    name_base, name_ext = os.path.splitext(os.path.basename(path_input))
    _, output_d = lotus(path_input, 'depth', seed, device)

    # Apply Gaussian blur with 0.75 radius
    output_d = apply_gaussian_blur(output_d, radius=0.75)

    # Convert depth to numpy for normal map processing
    depth_array = np.array(output_d)

    # Load original image for intensity blending
    input_image = Image.open(path_input)
    input_array = np.array(input_image)

    # Get intensity map from original image
    intensity_map = get_image_intensity(input_array, gamma_correction=1.0)

    # Resize intensity_map to match depth_array dimensions
    depth_height, depth_width = depth_array.shape[:2]
    if intensity_map.shape[:2] != (depth_height, depth_width):
        intensity_map = cv2.resize(intensity_map, (depth_width, depth_height), interpolation=cv2.INTER_LINEAR)

    # Blend depth with intensity map
    blended_result = blend_numpy_images(
        cv2.cvtColor(depth_array, cv2.COLOR_RGB2BGR if len(depth_array.shape) == 3 else cv2.COLOR_GRAY2BGR),
        intensity_map,
        blend_factor=0.15,
        mode="normal"
    )

    # Generate normal map from blended result
    normal_map = process_normal_map(blended_result)

    if not os.path.exists("files/output"):
        os.makedirs("files/output")
    d_save_path = os.path.join("files/output", f"{name_base}_d{name_ext}")
    n_save_path = os.path.join("files/output", f"{name_base}_n{name_ext}")

    output_d.save(d_save_path)
    Image.fromarray(normal_map).save(n_save_path)

    return [path_input, d_save_path], [path_input, n_save_path]

def infer_video(path_input, seed=None):
    _, frames_d, fps = lotus_video(path_input, 'depth', seed, device)
    
    # Apply Gaussian blur to each frame
    blurred_frames = []
    for frame in frames_d:
        # Convert numpy array to PIL Image if needed
        if isinstance(frame, np.ndarray):
            frame_pil = Image.fromarray(frame)
        else:
            frame_pil = frame
        
        # Apply blur and convert back to numpy array
        blurred_frame = apply_gaussian_blur(frame_pil, radius=0.75)
        blurred_frames.append(np.array(blurred_frame))
    
    if not os.path.exists("files/output"):
        os.makedirs("files/output")
    name_base, _ = os.path.splitext(os.path.basename(path_input))
    d_save_path = os.path.join("files/output", f"{name_base}_d.mp4")
    imageio.mimsave(d_save_path, blurred_frames, fps=fps)
    return d_save_path

def run_demo_server():
    infer_gpu = spaces.GPU(functools.partial(infer))
    infer_video_gpu = spaces.GPU(functools.partial(infer_video))
    gradio_theme = gr.themes.Default()

    with gr.Blocks(
        theme=gradio_theme,
        title="LOTUS (Depth & Normal Maps - Discriminative)",
        css="""
            #download {
                height: 118px;
            }
            .slider .inner {
                width: 5px;
                background: #FFF;
            }
            .viewport {
                aspect-ratio: 4/3;
            }
            .tabs button.selected {
                font-size: 20px !important;
                color: crimson !important;
            }
            h1 {
                text-align: center;
                display: block;
            }
            h2 {
                text-align: center;
                display: block;
            }
            h3 {
                text-align: center;
                display: block;
            }
            .md_feedback li {
                margin-bottom: 0px !important;
            }
        """,
        head="""
            <script async src="https://www.googletagmanager.com/gtag/js?id=G-1FWSVCGZTG"></script>
            <script>
                window.dataLayer = window.dataLayer || [];
                function gtag() {dataLayer.push(arguments);}
                gtag('js', new Date());
                gtag('config', 'G-1FWSVCGZTG');
            </script>
        """,
    ) as demo:
        with gr.Tabs(elem_classes=["tabs"]):
            with gr.Tab("IMAGE"):
                with gr.Row():
                    with gr.Column():
                        image_input = gr.Image(
                            label="Input Image",
                            type="filepath",
                        )
                        with gr.Row():
                            image_submit_btn = gr.Button(
                                value="Predict Depth!", variant="primary"
                            )
                            image_reset_btn = gr.Button(value="Reset")
                    with gr.Column():
                        image_output_d = ImageSlider(
                            label="Depth Output (Discriminative)",
                            type="filepath",
                            interactive=False,
                            elem_classes="slider",
                            position=0.25,
                        )
                        image_output_n = ImageSlider(
                            label="OpenGL Normal Map Output",
                            type="filepath",
                            interactive=False,
                            elem_classes="slider",
                            position=0.25,
                        )

                gr.Examples(
                    fn=infer_gpu,
                    examples=sorted([
                        [os.path.join("files", "images", name)]
                        for name in os.listdir(os.path.join("files", "images"))
                    ]),
                    inputs=[image_input],
                    outputs=[image_output_d, image_output_n],
                    cache_examples=False,
                )

            with gr.Tab("VIDEO"):
                with gr.Row():
                    with gr.Column():
                        input_video = gr.Video(
                            label="Input Video",
                            autoplay=True,
                            loop=True,
                        )
                        with gr.Row():
                            video_submit_btn = gr.Button(
                                value="Predict Depth!", variant="primary"
                            )
                            video_reset_btn = gr.Button(value="Reset")
                    with gr.Column():
                        video_output_d = gr.Video(
                            label="Depth Output (Discriminative)",
                            interactive=False,
                            autoplay=True,
                            loop=True,
                            show_share_button=True,
                        )

                gr.Examples(
                    fn=infer_video_gpu,
                    examples=sorted([
                        [os.path.join("files", "videos", name)]
                        for name in os.listdir(os.path.join("files", "videos"))
                    ]),
                    inputs=[input_video],
                    outputs=[video_output_d],
                    cache_examples=False,
                )

        ### Image
        image_submit_btn.click(
            fn=infer_gpu,
            inputs=[image_input],
            outputs=[image_output_d, image_output_n],
            concurrency_limit=1,
        )
        image_reset_btn.click(
            fn=lambda: [None, None],
            inputs=[],
            outputs=[image_output_d, image_output_n],
            queue=False,
        )

        ### Video
        video_submit_btn.click(
            fn=infer_video_gpu,
            inputs=[input_video],
            outputs=[video_output_d],
            queue=True,
        )
        video_reset_btn.click(
            fn=lambda: None,
            inputs=[],
            outputs=[video_output_d],
        )

        ### Server launch
        demo.queue(
            api_open=False,
        ).launch(
            server_name="0.0.0.0",
            server_port=7860,
        )

def main():
    os.system("pip freeze")
    if os.path.exists("files/output"):
        os.system("rm -rf files/output")
    run_demo_server()

if __name__ == "__main__":
    main()