Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import torchaudio
|
| 4 |
+
import gradio as gr
|
| 5 |
+
import nemo.collections.asr as nemo_asr
|
| 6 |
+
|
| 7 |
+
# Select device
|
| 8 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 9 |
+
|
| 10 |
+
# Load CTC and RNNT models from AI4Bharat
|
| 11 |
+
asr_ctc = nemo_asr.models.EncDecCTCModelBPE.from_pretrained("ai4bharat/indicwhisper-ctc-indic").to(device)
|
| 12 |
+
asr_rnnt = nemo_asr.models.EncDecRNNTBPEModel.from_pretrained("ai4bharat/indicwhisper-rnnt-indic").to(device)
|
| 13 |
+
|
| 14 |
+
# All 22 scheduled Indian languages
|
| 15 |
+
language_options = [
|
| 16 |
+
"Assamese", "Bengali", "Bodo", "Dogri", "Gujarati", "Hindi",
|
| 17 |
+
"Kannada", "Kashmiri", "Konkani", "Maithili", "Malayalam",
|
| 18 |
+
"Manipuri", "Marathi", "Nepali", "Odia", "Punjabi", "Sanskrit",
|
| 19 |
+
"Santali", "Sindhi", "Tamil", "Telugu", "Urdu"
|
| 20 |
+
]
|
| 21 |
+
|
| 22 |
+
# CTC ASR function
|
| 23 |
+
def run_asr_ctc(audio_path, source_lang):
|
| 24 |
+
asr_ctc.change_vocabulary(language=source_lang)
|
| 25 |
+
return asr_ctc.transcribe(paths2audio_files=[audio_path])[0]
|
| 26 |
+
|
| 27 |
+
# RNNT ASR function
|
| 28 |
+
def run_asr_rnnt(audio_path, source_lang):
|
| 29 |
+
asr_rnnt.change_vocabulary(language=source_lang)
|
| 30 |
+
return asr_rnnt.transcribe(paths2audio_files=[audio_path])[0]
|
| 31 |
+
|
| 32 |
+
# Gradio UI
|
| 33 |
+
with gr.Blocks() as demo:
|
| 34 |
+
gr.Markdown("## AI4Bharat Indic ASR (CTC & RNNT)")
|
| 35 |
+
|
| 36 |
+
with gr.Tab("CTC Transcription"):
|
| 37 |
+
with gr.Row():
|
| 38 |
+
input_audio = gr.Audio(type="filepath", label="Upload Audio")
|
| 39 |
+
source_lang = gr.Dropdown(choices=language_options, label="Language", value="Hindi")
|
| 40 |
+
output_text_ctc = gr.Textbox(label="CTC Transcription Output")
|
| 41 |
+
ctc_button = gr.Button("Transcribe (CTC)")
|
| 42 |
+
ctc_button.click(run_asr_ctc, inputs=[input_audio, source_lang], outputs=output_text_ctc)
|
| 43 |
+
|
| 44 |
+
with gr.Tab("RNNT Transcription"):
|
| 45 |
+
with gr.Row():
|
| 46 |
+
input_audio_rnnt = gr.Audio(type="filepath", label="Upload Audio")
|
| 47 |
+
source_lang_rnnt = gr.Dropdown(choices=language_options, label="Language", value="Hindi")
|
| 48 |
+
output_text_rnnt = gr.Textbox(label="RNNT Transcription Output")
|
| 49 |
+
rnnt_button = gr.Button("Transcribe (RNNT)")
|
| 50 |
+
rnnt_button.click(run_asr_rnnt, inputs=[input_audio_rnnt, source_lang_rnnt], outputs=output_text_rnnt)
|
| 51 |
+
|
| 52 |
+
demo.launch()
|