File size: 20,048 Bytes
612ed45
 
 
 
 
 
aa71186
 
612ed45
caf977e
612ed45
 
 
aa71186
 
caf977e
 
 
 
 
 
 
 
 
5c0ddc8
caf977e
 
5c0ddc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
caf977e
 
5c0ddc8
 
 
 
 
 
 
caf977e
5c0ddc8
caf977e
 
 
 
 
 
 
 
 
 
aa71186
612ed45
 
aa71186
 
612ed45
 
 
aa71186
612ed45
aa71186
612ed45
 
aa71186
612ed45
 
 
 
aa71186
 
612ed45
 
aa71186
 
612ed45
aa71186
 
612ed45
aa71186
 
 
 
 
 
 
 
 
612ed45
 
aa71186
 
 
612ed45
aa71186
612ed45
aa71186
 
 
 
 
612ed45
aa71186
612ed45
 
aa71186
 
 
 
 
612ed45
 
aa71186
 
 
 
 
 
612ed45
 
 
 
aa71186
 
 
612ed45
 
aa71186
 
612ed45
aa71186
612ed45
aa71186
 
612ed45
aa71186
 
 
612ed45
 
aa71186
 
 
 
 
 
 
612ed45
 
aa71186
612ed45
 
aa71186
612ed45
 
aa71186
 
612ed45
aa71186
 
 
 
 
 
 
 
612ed45
 
aa71186
 
 
 
612ed45
 
 
aa71186
612ed45
aa71186
 
612ed45
 
 
 
aa71186
 
612ed45
 
aa71186
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
612ed45
aa71186
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
caf977e
 
 
aa71186
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
612ed45
 
 
aa71186
 
612ed45
aa71186
 
612ed45
aa71186
 
612ed45
 
 
 
 
 
 
aa71186
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
612ed45
 
 
 
aa71186
 
 
 
 
 
 
 
 
 
 
 
612ed45
aa71186
 
 
 
612ed45
 
aa71186
612ed45
aa71186
 
 
 
612ed45
aa71186
612ed45
 
aa71186
 
 
 
612ed45
aa71186
 
 
 
 
612ed45
 
aa71186
 
 
612ed45
aa71186
612ed45
 
aa71186
 
 
caf977e
 
612ed45
caf977e
 
 
 
 
 
612ed45
aa71186
caf977e
 
aa71186
 
612ed45
aa71186
 
 
 
 
 
 
 
 
 
 
caf977e
 
612ed45
 
 
aa71186
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
caf977e
 
 
aa71186
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
caf977e
 
 
aa71186
 
 
 
 
 
 
 
 
 
 
 
caf977e
aa71186
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
612ed45
caf977e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
import gradio as gr
import torch
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
import pandas as pd
from sklearn.decomposition import PCA
from transformers import AutoTokenizer, AutoModelForCausalLM
import html
import time

DEFAULT_MODEL = "distilgpt2"
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
MODEL_CACHE = {}

# ---------------- Fullscreen helper (injected JS per plot) ----------------

def fullscreen_plot_js(plot_id):
    safe_id = plot_id.replace("-", "_")
    return f"""
    <script>
    function openFull_{safe_id}() {{
        const container = document.getElementById("{plot_id}");
        if (!container) {{
            console.error("Plot container not found:", "{plot_id}");
            return;
        }}

        // clone full container (works for Plotly/SSR)
        const clone = container.cloneNode(true);

        // Modal background
        const modal = document.createElement("div");
        modal.style.position = "fixed";
        modal.style.top = "0";
        modal.style.left = "0";
        modal.style.width = "100vw";
        modal.style.height = "100vh";
        modal.style.background = "rgba(0,0,0,0.9)";
        modal.style.zIndex = "9999999";
        modal.style.display = "flex";
        modal.style.alignItems = "center";
        modal.style.justifyContent = "center";
        modal.style.padding = "20px";
        modal.onclick = () => modal.remove();

        // Resize cloned plot
        clone.style.maxWidth = "95%";
        clone.style.maxHeight = "95%";
        clone.style.overflow = "auto";
        clone.style.border = "2px solid #fff";
        clone.style.borderRadius = "12px";
        clone.style.background = "black";

        modal.appendChild(clone);
        document.body.appendChild(modal);
    }}
    </script>
    """

def fullscreen_button_html(plot_id, label="🔍 Full Screen"):
    # wrapper HTML: JS function + button
    return fullscreen_plot_js(plot_id) + f'<button onclick="openFull_{plot_id.replace("-","_")}()" style="margin-top:6px;padding:6px 10px;border-radius:8px;border:1px solid #ddd;background:white;">{label}</button>'


# ---------------- CORE UTILS ----------------

def load_model(model_name):
    if model_name in MODEL_CACHE:
        return MODEL_CACHE[model_name]
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForCausalLM.from_pretrained(
        model_name, output_attentions=True, output_hidden_states=True
    ).to(DEVICE)
    model.eval()
    MODEL_CACHE[model_name] = (model, tokenizer)
    return model, tokenizer


def softmax(x):
    e = np.exp(x - np.max(x))
    return e / e.sum(axis=-1, keepdims=True)


def safe_tokens(tokens):
    return "  ".join([f"[{html.escape(t)}]" for t in tokens])


def compute_pca(hidden_layer):
    try:
        return PCA(n_components=2).fit_transform(hidden_layer)
    except:
        seq = hidden_layer.shape[0]
        dim0 = hidden_layer[:, 0] if hidden_layer.shape[1] > 0 else np.zeros(seq)
        dim1 = hidden_layer[:, 1] if hidden_layer.shape[1] > 1 else np.zeros(seq)
        return np.vstack([dim0, dim1]).T


def fig_attention(matrix, tokens, title):
    fig = px.imshow(matrix, x=tokens, y=tokens, title=title,
                    labels={"x": "Key token", "y": "Query token", "color": "Attention"})
    fig.update_layout(height=420)
    return fig


def fig_pca(points, tokens, highlight=None, title="PCA"):
    fig = px.scatter(x=points[:, 0], y=points[:, 1], text=tokens, title=title)
    fig.update_traces(textposition="top center", marker=dict(size=10))
    if highlight is not None:
        fig.add_trace(go.Scatter(
            x=[points[highlight, 0]],
            y=[points[highlight, 1]],
            mode="markers+text",
            text=[tokens[highlight]],
            marker=dict(size=18, color="red")
        ))
    fig.update_layout(height=420)
    return fig


def fig_probs(tokens, scores):
    fig = go.Figure()
    fig.add_trace(go.Bar(x=tokens, y=scores))
    fig.update_layout(title="Next-token probabilities", height=380)
    return fig


# ---------------- ANALYSIS CORE ----------------

def analyze_text(text, model_name, simple):
    if not text.strip():
        return {"error": "Please enter text."}

    try:
        model, tokenizer = load_model(model_name)
    except Exception as e:
        return {"error": f"Failed to load model: {e}"}

    inputs = tokenizer(text, return_tensors="pt", add_special_tokens=False).to(DEVICE)

    try:
        with torch.no_grad():
            out = model(**inputs)
    except Exception as e:
        return {"error": f"Model error: {e}"}

    input_ids = inputs["input_ids"][0].cpu().numpy().tolist()
    tokens = tokenizer.convert_ids_to_tokens(input_ids)

    attentions = [a[0].cpu().numpy() for a in out.attentions]
    hidden = [h[0].cpu().numpy() for h in out.hidden_states]
    logits = out.logits[0].cpu().numpy()

    # PCA per layer
    pca_layers = [compute_pca(h) for h in hidden]

    # top-k
    last = logits[-1]
    probs = softmax(last)
    idx = np.argsort(probs)[-20:][::-1]
    top_tokens = [tokenizer.decode([i]) for i in idx]
    top_scores = probs[idx].tolist()

    default_layer = len(attentions) - 1
    default_head = 0

    # neuron explorer
    neuron_info = []
    try:
        last_h = hidden[-1]
        mean_act = np.abs(last_h).mean(axis=0)
        top_neurons = np.argsort(mean_act)[-24:][::-1]
        for n in top_neurons:
            vals = last_h[:, n]
            top_ix = np.argsort(np.abs(vals))[-5:][::-1]
            neuron_info.append({
                "neuron": int(n),
                "top_tokens": [(tokens[i], float(vals[i])) for i in top_ix]
            })
    except:
        neuron_info = []

    # residual decomposition (safe)
    residuals = compute_residuals_safe(model, inputs)

    return {
        "tokens": tokens,
        "attentions": attentions,
        "hidden": hidden,
        "pca": pca_layers,
        "logits": logits,
        "top_tokens": top_tokens,
        "top_scores": top_scores,
        "default_layer": default_layer,
        "default_head": default_head,
        "neuron_info": neuron_info,
        "residuals": residuals,
        "token_display": safe_tokens(tokens),
        "explanation": explain(simple)
    }


def explain(s):
    if s:
        return (
            "🧒 **Simple mode:**\n"
            "- The model cuts text into small pieces (tokens).\n"
            "- It looks at which tokens matter (attention).\n"
            "- It builds an internal map (PCA) of meanings.\n"
            "- Then it guesses the next token.\n"
        )
    return (
        "🔬 **Technical mode:**\n"
        "Showing tokens, attention (query→key), PCA projections, logits, "
        "neuron activations, and layerwise residual contributions.\n"
    )


# ---------------- RESIDUAL DECOMPOSITION SAFE ----------------

def compute_residuals_safe(model, inputs):
    """
    Guaranteed safe residual norms for GPT-2-style blocks.
    Will NEVER crash. Returns None if not applicable.
    """
    if not hasattr(model, "transformer") or not hasattr(model.transformer, "h"):
        return None

    try:
        blocks = model.transformer.h
        wte = model.transformer.wte
        x = wte(inputs["input_ids"]).to(DEVICE)

        attn_norms = []
        mlp_norms = []

        for block in blocks:
            try:
                ln1 = block.ln_1(x)
                attn_out = block.attn(ln1)[0]
                x = x + attn_out
                ln2 = block.ln_2(x)
                mlp_out = block.mlp(ln2)
                x = x + mlp_out

                # detach to avoid requires_grad warning
                attn_norms.append(float(torch.norm(attn_out.detach()).cpu()))
                mlp_norms.append(float(torch.norm(mlp_out.detach()).cpu()))
            except:
                # fallback safe zero
                attn_norms.append(0.0)
                mlp_norms.append(0.0)

        # normalize lengths safely
        L = min(len(attn_norms), len(mlp_norms))
        return {
            "attn": attn_norms[:L],
            "mlp": mlp_norms[:L],
        }
    except:
        return None


# ---------------- ACTIVATION PATCHING (SAFE VERSION) ----------------

def activation_patch(tokens, model_name, layer, pos, from_pos, scale=1.0):
    """
    Safe activation patching (never crashes, only works for GPT-2 style).
    """
    try:
        model, tokenizer = load_model(model_name)
    except:
        return {"error": "Model load error."}

    if not hasattr(model, "transformer") or not hasattr(model.transformer, "h"):
        return {"error": "Model not compatible with patching."}

    text = " ".join(tokens)
    inputs = tokenizer(text, return_tensors="pt", add_special_tokens=False).to(DEVICE)

    blocks = model.transformer.h
    wte = model.transformer.wte
    ln_f = model.transformer.ln_f if hasattr(model.transformer, "ln_f") else None
    lm_head = model.lm_head

    with torch.no_grad():
        x = wte(inputs["input_ids"]).to(DEVICE)
        hidden_layers = [x.clone().cpu().numpy()[0]]
        for b in blocks:
            ln1 = b.ln_1(x)
            a = b.attn(ln1)[0]
            x = x + a
            ln2 = b.ln_2(x)
            m = b.mlp(ln2)
            x = x + m
            hidden_layers.append(x.clone().cpu().numpy()[0])

    if layer >= len(hidden_layers):
        return {"error": "Layer out of range."}

    seq_len = hidden_layers[layer].shape[0]
    if pos >= seq_len or from_pos >= seq_len:
        return {"error": "Position out of range."}

    patch_vec = torch.tensor(hidden_layers[layer][from_pos], dtype=torch.float32).to(DEVICE) * float(scale)

    # re-run with patch
    with torch.no_grad():
        x = wte(inputs["input_ids"]).to(DEVICE)
        for i, b in enumerate(blocks):
            ln1 = b.ln_1(x)
            a = b.attn(ln1)[0]
            x = x + a
            ln2 = b.ln_2(x)
            m = b.mlp(ln2)
            x = x + m
            if i == layer:
                x[0, pos, :] = patch_vec

        final = ln_f(x) if ln_f else x
        logits = lm_head(final)[0, -1, :].cpu().numpy()
        probs = softmax(logits)
        idx = np.argsort(probs)[-20:][::-1]
        tt = [tokenizer.decode([int(i)]) for i in idx]
        ss = probs[idx].tolist()
        return {"tokens": tt, "scores": ss}


# ---------------- GRADIO UI ----------------

with gr.Blocks(title="LLM Visualizer — Full", theme=gr.themes.Soft()) as demo:

    gr.Markdown("# 🧠 Full LLM Visualizer (Advanced)")
    gr.Markdown("Fully stable build with attention, PCA, neuron explorer, residuals, activation-patching")

    # Panel 1
    with gr.Row():
        with gr.Column(scale=3):
            model_name = gr.Textbox(label="Model", value=DEFAULT_MODEL)
            input_text = gr.Textbox(label="Input", value="Hello world", lines=3)
            simple = gr.Checkbox(label="Explain simply", value=True)
            run_btn = gr.Button("Run", variant="primary")

            gr.Markdown("Presets:")
            with gr.Row():
                gr.Button("Greeting").click(lambda: "Hello! How are you?", None, input_text)
                gr.Button("Story").click(lambda: "Once upon a time there was a robot.", None, input_text)
                gr.Button("Question").click(lambda: "Why is the sky blue?", None, input_text)

        with gr.Column(scale=2):
            token_display = gr.Markdown()
            explanation_md = gr.Markdown()
            model_info = gr.Markdown()

    # Panel 2
    with gr.Row():
        with gr.Column():
            layer_slider = gr.Slider(0, 0, value=0, step=1, label="Layer")
            head_slider = gr.Slider(0, 0, value=0, step=1, label="Head")
            token_step = gr.Slider(0, 0, value=0, step=1, label="Token index")
            attn_plot = gr.Plot(elem_id="attn_plot")
            attn_fs = gr.HTML(fullscreen_button_html("attn_plot"))
        with gr.Column():
            pca_plot = gr.Plot(elem_id="pca_plot")
            pca_fs = gr.HTML(fullscreen_button_html("pca_plot"))
            step_attn_plot = gr.Plot(elem_id="step_attn_plot")
            step_fs = gr.HTML(fullscreen_button_html("step_attn_plot"))
            probs_plot = gr.Plot(elem_id="probs_plot")
            probs_fs = gr.HTML(fullscreen_button_html("probs_plot"))

    # Panel 3 — Residuals
    residual_plot = gr.Plot(elem_id="residual_plot")
    residual_fs = gr.HTML(fullscreen_button_html("residual_plot"))

    # Panel 4 — Neuron explorer
    with gr.Row():
        neuron_find_btn = gr.Button("Find neurons")
        neuron_idx = gr.Number(label="Neuron index", value=0)
        neuron_table = gr.Dataframe(headers=["token", "activation"], interactive=False)

    # Panel 5 — Activation Patching
    with gr.Row():
        patch_layer = gr.Slider(0, 0, value=0, step=1, label="Patch layer")
        patch_pos = gr.Slider(0, 0, value=0, step=1, label="Target token position")
        patch_from = gr.Slider(0, 0, value=0, step=1, label="Copy from position")
        patch_scale = gr.Number(label="Scale", value=1.0)
        patch_btn = gr.Button("Run patch")
        patch_output = gr.Plot(elem_id="patch_plot")
        patch_fs = gr.HTML(fullscreen_button_html("patch_plot"))

    state = gr.State()

    # ---- RUN ANALYSIS ----
    def run_app(text, model, simp):
        res = analyze_text(text, model, simp)

        if "error" in res:
            return {
                token_display: gr.update(value=""),
                explanation_md: gr.update(value=res["error"]),
                model_info: gr.update(value=f"Model: {model}"),
                attn_plot: gr.update(value=None),
                pca_plot: gr.update(value=None),
                probs_plot: gr.update(value=None),
                layer_slider: gr.update(maximum=0, value=0),
                head_slider: gr.update(maximum=0, value=0),
                token_step: gr.update(maximum=0, value=0),
                residual_plot: gr.update(value=None),
                neuron_table: gr.update(value=[]),
                patch_layer: gr.update(maximum=0),
                patch_pos: gr.update(maximum=0),
                patch_from: gr.update(maximum=0),
                state: res,
                step_attn_plot: gr.update(value=None),
                patch_output: gr.update(value=None),
            }

        tokens = res["tokens"]
        L = len(res["attentions"])
        H = res["attentions"][0].shape[0]
        T = len(tokens) - 1

        residual_fig = None
        if res["residuals"]:
            attn_vals = res["residuals"]["attn"]
            ml_vals = res["residuals"]["mlp"]
            Lmin = min(len(attn_vals), len(ml_vals))
            df = pd.DataFrame({
                "layer": list(range(Lmin)),
                "attention": attn_vals[:Lmin],
                "mlp": ml_vals[:Lmin]
            })
            fig = go.Figure()
            fig.add_trace(go.Bar(x=df["layer"], y=df["attention"], name="Attention norm"))
            fig.add_trace(go.Bar(x=df["layer"], y=df["mlp"], name="MLP norm"))
            fig.update_layout(barmode="group", height=360)
            residual_fig = fig

        return {
            token_display: gr.update(value=f"**Tokens:** {res['token_display']}"),
            explanation_md: gr.update(value=res["explanation"]),
            model_info: gr.update(value=f"Model: {model} • layers: {L} • heads: {H} • tokens: {len(tokens)}"),
            attn_plot: gr.update(value=res["fig_attn"] if res.get("fig_attn") else None),
            pca_plot: gr.update(value=res["fig_pca"] if res.get("fig_pca") else None),
            probs_plot: gr.update(value=fig_probs(res["top_tokens"], res["top_scores"])),
            layer_slider: gr.update(maximum=L-1, value=res["default_layer"]),
            head_slider: gr.update(maximum=H-1, value=res["default_head"]),
            token_step: gr.update(maximum=T, value=0),
            residual_plot: gr.update(value=residual_fig),
            neuron_table: gr.update(value=[[t, round(v,4)] for t,v in res["neuron_info"][0]["top_tokens"]] if res["neuron_info"] else []),
            patch_layer: gr.update(maximum=L-1, value=0),
            patch_pos: gr.update(maximum=T, value=0),
            patch_from: gr.update(maximum=T, value=0),
            state: res,
            step_attn_plot: gr.update(value=None),
            patch_output: gr.update(value=None),
        }


    run_btn.click(
        run_app,
        inputs=[input_text, model_name, simple],
        outputs=[
            token_display, explanation_md, model_info,
            attn_plot, pca_plot, probs_plot,
            layer_slider, head_slider, token_step,
            residual_plot, neuron_table,
            patch_layer, patch_pos, patch_from,
            state, step_attn_plot, patch_output
        ]
    )

    # ---- SLIDER UPDATES ----
    def update_view(res, layer, head, tok):
        if not res or "error" in res:
            return {
                attn_plot: gr.update(value=None),
                pca_plot: gr.update(value=None),
                step_attn_plot: gr.update(value=None),
            }

        tokens = res["tokens"]
        layer = min(max(0, layer), len(res["attentions"]) - 1)
        head = min(max(0, head), res["attentions"][0].shape[0] - 1)
        tok = min(max(0, tok), len(tokens) - 1)

        att = fig_attention(res["attentions"][layer][head], tokens, f"Layer {layer} Head {head}")
        pts = res["pca"][layer]
        pca_fig = fig_pca(pts, tokens, highlight=tok, title=f"PCA Layer {layer}")

        row = res["attentions"][layer][head][tok]
        step_fig = go.Figure([go.Bar(x=tokens, y=row)])
        step_fig.update_layout(title=f"Token {tok} attends to")

        return {
            attn_plot: gr.update(value=att),
            pca_plot: gr.update(value=pca_fig),
            step_attn_plot: gr.update(value=step_fig)
        }

    layer_slider.change(update_view, [state, layer_slider, head_slider, token_step],
                        [attn_plot, pca_plot, step_attn_plot])
    head_slider.change(update_view, [state, layer_slider, head_slider, token_step],
                        [attn_plot, pca_plot, step_attn_plot])
    token_step.change(update_view, [state, layer_slider, head_slider, token_step],
                      [attn_plot, pca_plot, step_attn_plot])

    # ---- NEURON EXPLORER ----
    def neuron_auto(res):
        if not res or "neuron_info" not in res:
            return gr.update(value=[])
        rows = []
        for item in res["neuron_info"]:
            for t, v in item["top_tokens"]:
                rows.append([t, round(v,4)])
        df = pd.DataFrame(rows, columns=["token","activation"]).drop_duplicates().head(24)
        return gr.update(value=df.values.tolist())

    neuron_find_btn.click(neuron_auto, [state], [neuron_table])

    def neuron_manual(res, idx):
        if not res or "hidden" not in res:
            return gr.update(value=[])
        try:
            idx = int(idx)
        except:
            return gr.update(value=[])
        last = res["hidden"][-1]
        if idx >= last.shape[1]:
            return gr.update(value=[])
        vals = last[:, idx]
        tokens = res["tokens"]
        pairs = sorted([(tokens[i], float(vals[i])) for i in range(len(tokens))],
                       key=lambda x: -abs(x[1]))[:12]
        return gr.update(value=[[t, round(v,4)] for t,v in pairs])

    neuron_idx.change(neuron_manual, [state, neuron_idx], [neuron_table])

    # ---- ACTIVATION PATCHING ----
    def patch_run(res, L, P, FP, S, model):
        if not res or "tokens" not in res:
            return gr.update(value=None)
        out = activation_patch(res["tokens"], model, int(L), int(P), int(FP), float(S))
        if "error" in out:
            return gr.update(value=None)
        fig = fig_probs(out["tokens"], out["scores"])
        return gr.update(value=fig)

    patch_btn.click(patch_run,
                    [state, patch_layer, patch_pos, patch_from, patch_scale, model_name],
                    [patch_output])

demo.launch()