File size: 32,757 Bytes
7bfc1d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 |
"""
ATAR Prediction System with ML Ensemble
All-in-one Gradio app with training, inference, and HF Model Repo integration
Optimized for ZeroGPU (no persistent storage needed)
Author: Victor Academy
"""
import gradio as gr
import numpy as np
import pandas as pd
import json
import os
from typing import List, Dict, Any, Tuple
import warnings
warnings.filterwarnings('ignore')
# ZeroGPU support for Hugging Face Spaces
try:
import spaces
ZEROGPU_AVAILABLE = True
print("โ
ZeroGPU support enabled")
except ImportError:
ZEROGPU_AVAILABLE = False
print("โน๏ธ Running without ZeroGPU (local mode)")
# ML Libraries
try:
from sklearn.ensemble import GradientBoostingRegressor, RandomForestRegressor
from sklearn.linear_model import Ridge
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
import joblib
except ImportError:
print("โ ๏ธ Installing scikit-learn...")
os.system("pip install scikit-learn joblib")
from sklearn.ensemble import GradientBoostingRegressor, RandomForestRegressor
from sklearn.linear_model import Ridge
from sklearn.preprocessing import StandardScaler
from sklearn.model_test_split import train_test_split
import joblib
# Hugging Face Hub for model storage
try:
from huggingface_hub import HfApi, login, hf_hub_download
except ImportError:
print("โ ๏ธ Installing huggingface_hub...")
os.system("pip install huggingface_hub")
from huggingface_hub import HfApi, login, hf_hub_download
# ============================================
# CONFIGURATION
# ============================================
HF_MODEL_REPO = "Spestly/VAML-ATAR" # Your HF model repo
FEATURE_COUNT = 18
MODEL_VERSION = "v1.0.0" # Semantic versioning: major.minor.patch
# HF Token - REQUIRED for training (set as environment variable in HF Space settings)
# Get from: https://huggingface.co/settings/tokens (write access needed)
# In HF Space: Settings โ Variables and secrets โ Add: HF_TOKEN = hf_xxxxx
HF_TOKEN = os.environ.get('HF_TOKEN', None)
if not HF_TOKEN:
print("โ ๏ธ Warning: HF_TOKEN not set! Training will fail.")
print(" Set HF_TOKEN environment variable in Space settings.")
else:
print("โ
HF_TOKEN found")
# Subject scaling data (2024 HSC data)
SUBJECT_SCALING_DATA = {
'Mathematics Extension 2': {'scaling_factor': 1.1943, 'mean': 71.2, 'std': 12.5, 'difficulty': 'very_hard'},
'Mathematics Extension 1': {'scaling_factor': 1.1547, 'mean': 69.8, 'std': 13.1, 'difficulty': 'hard'},
'Mathematics Advanced': {'scaling_factor': 1.0821, 'mean': 72.5, 'std': 11.8, 'difficulty': 'medium'},
'Physics': {'scaling_factor': 1.1037, 'mean': 70.3, 'std': 12.2, 'difficulty': 'hard'},
'Chemistry': {'scaling_factor': 1.0956, 'mean': 71.1, 'std': 11.9, 'difficulty': 'hard'},
'Biology': {'scaling_factor': 1.0234, 'mean': 73.8, 'std': 10.5, 'difficulty': 'medium'},
'English Advanced': {'scaling_factor': 1.0000, 'mean': 75.2, 'std': 9.8, 'difficulty': 'medium'},
'English Standard': {'scaling_factor': 0.9234, 'mean': 68.5, 'std': 11.2, 'difficulty': 'easy'},
'Economics': {'scaling_factor': 1.0645, 'mean': 72.8, 'std': 11.3, 'difficulty': 'medium'},
'Business Studies': {'scaling_factor': 0.9856, 'mean': 71.2, 'std': 10.8, 'difficulty': 'medium'},
'Legal Studies': {'scaling_factor': 0.9923, 'mean': 72.5, 'std': 10.2, 'difficulty': 'medium'},
'Modern History': {'scaling_factor': 1.0112, 'mean': 73.1, 'std': 10.6, 'difficulty': 'medium'},
'Ancient History': {'scaling_factor': 1.0089, 'mean': 72.9, 'std': 10.4, 'difficulty': 'medium'},
'PDHPE': {'scaling_factor': 0.9639, 'mean': 70.8, 'std': 11.5, 'difficulty': 'easy'},
'Software Design & Development': {'scaling_factor': 1.0423, 'mean': 71.6, 'std': 12.1, 'difficulty': 'medium'},
'Visual Arts': {'scaling_factor': 0.9734, 'mean': 76.2, 'std': 8.9, 'difficulty': 'easy'},
'Music 2': {'scaling_factor': 1.0567, 'mean': 77.5, 'std': 9.2, 'difficulty': 'medium'},
'Geography': {'scaling_factor': 0.9912, 'mean': 72.3, 'std': 10.7, 'difficulty': 'medium'},
'Industrial Technology': {'scaling_factor': 0.9523, 'mean': 69.7, 'std': 11.8, 'difficulty': 'easy'},
}
# ============================================
# FEATURE ENGINEERING
# ============================================
def extract_features(subjects: List[Dict]) -> np.ndarray:
"""
Extract 18 features from subject data
Features:
- 10 subject marks (padded with 0 if fewer subjects)
- Average mark
- Standard deviation
- High-scaling subject count
- Overall trend score
- Assessment count score
- Top mark quality
- Bottom mark quality
- Has good English flag
"""
# Get top 10 subjects by mark
sorted_subjects = sorted(subjects, key=lambda x: x.get('raw_mark', 0), reverse=True)[:10]
# Extract marks
marks = [s.get('raw_mark', 0) for s in sorted_subjects]
while len(marks) < 10:
marks.append(0)
# Normalize to 0-1
marks_normalized = [m / 100.0 for m in marks[:10]]
# Calculate derived features
valid_marks = [m for m in marks if m > 0]
avg_mark = np.mean(valid_marks) if valid_marks else 0
std_dev = np.std(valid_marks) if len(valid_marks) > 1 else 0
# Count high-scaling subjects (factor > 1.05)
high_scaling_count = sum(1 for s in sorted_subjects
if SUBJECT_SCALING_DATA.get(s.get('subject_name', ''), {}).get('scaling_factor', 1.0) > 1.05)
# Trend score (0-1)
trend_map = {'improving': 1.0, 'stable': 0.5, 'declining': 0.0}
trends = [trend_map.get(s.get('trend', 'stable'), 0.5) for s in sorted_subjects]
trend_score = np.mean(trends) if trends else 0.5
# Assessment count score (normalized)
assessment_counts = [s.get('assessment_count', 1) for s in sorted_subjects]
assessment_score = min(np.mean(assessment_counts) / 10.0, 1.0)
# Quality metrics
top_mark_quality = marks[0] / 90.0 if marks[0] > 0 else 0
bottom_mark_quality = marks[-1] / 90.0 if marks[-1] > 0 else 0
# English quality flag
english_subjects = [s for s in sorted_subjects if 'English' in s.get('subject_name', '')]
has_good_english = 1.0 if english_subjects and english_subjects[0].get('raw_mark', 0) >= 80 else 0.0
# Combine features
features = marks_normalized + [
avg_mark / 100.0,
min(std_dev / 20.0, 1.0),
high_scaling_count / 10.0,
trend_score,
assessment_score,
top_mark_quality,
bottom_mark_quality,
has_good_english
]
return np.array(features, dtype=np.float32)
# ============================================
# DATA GENERATION (for training)
# ============================================
def generate_synthetic_data(n_samples: int = 10000) -> Tuple[np.ndarray, np.ndarray]:
"""
Generate synthetic ATAR training data using UAC formula
"""
np.random.seed(42)
X = []
y = []
for _ in range(n_samples):
# Generate 10 subject marks
subject_marks = np.random.normal(73, 10, 10)
subject_marks = np.clip(subject_marks, 40, 100)
subject_marks = np.sort(subject_marks)[::-1] # Sort descending
# Derived features
avg_mark = np.mean(subject_marks)
std_dev = np.std(subject_marks)
high_scaling_count = np.random.randint(0, 6)
trend_score = np.random.uniform(0, 1)
assessment_count = np.random.uniform(0, 1)
top_mark_quality = min(subject_marks[0] / 90, 1)
bottom_mark_quality = min(subject_marks[-1] / 90, 1)
has_good_english = 1 if subject_marks[0] >= 80 else 0
# Calculate ATAR using UAC formula
# Aggregate scaled marks (simplified)
aggregate = sum([m * 2 / 50.0 for m in subject_marks])
# Base ATAR calculation
base_atar = 99.95 * (aggregate / 500) ** 0.85
# Adjustments
atar = base_atar + (high_scaling_count - 2.5) * 0.5
atar += (trend_score - 0.5) * 2
atar += np.random.normal(0, 0.5) # Add noise
atar = np.clip(atar, 30, 99.95)
# Features (normalized)
features = list(subject_marks / 100) + [
avg_mark / 100,
min(std_dev / 20, 1),
high_scaling_count / 10,
trend_score,
assessment_count,
top_mark_quality,
bottom_mark_quality,
has_good_english
]
X.append(features)
y.append(atar)
return np.array(X), np.array(y)
# ============================================
# MODEL TRAINING
# ============================================
class ATARMLEnsemble:
"""
ML Ensemble for ATAR prediction
Uses Gradient Boosting + Random Forest + Ridge Regression
"""
def __init__(self):
self.scaler = StandardScaler()
self.models = {
'gb': GradientBoostingRegressor(n_estimators=200, max_depth=5, learning_rate=0.1, random_state=42),
'rf': RandomForestRegressor(n_estimators=200, max_depth=10, random_state=42),
'ridge': Ridge(alpha=1.0, random_state=42)
}
self.weights = {'gb': 0.5, 'rf': 0.3, 'ridge': 0.2} # Ensemble weights
self.is_trained = False
def train(self, X, y, X_test=None, y_test=None):
"""Train all models in the ensemble"""
print(f"๐ Training on {len(X)} samples...")
# Scale features
X_scaled = self.scaler.fit_transform(X)
# Train each model
for name, model in self.models.items():
print(f"Training {name}...")
model.fit(X_scaled, y)
self.is_trained = True
self.training_samples = len(X)
# Store metrics for versioning
train_pred = self.predict(X)
self.train_mae = np.mean(np.abs(train_pred - y))
if X_test is not None and y_test is not None:
test_pred = self.predict(X_test)
self.test_mae = np.mean(np.abs(test_pred - y_test))
else:
self.test_mae = None
print("โ
Ensemble training complete!")
def predict(self, X):
"""Predict using weighted ensemble"""
if not self.is_trained:
raise ValueError("Model not trained! Train first or load from HF.")
X_scaled = self.scaler.transform(X)
# Get predictions from each model
predictions = {}
for name, model in self.models.items():
predictions[name] = model.predict(X_scaled)
# Weighted average
final_pred = sum(predictions[name] * self.weights[name] for name in self.models.keys())
return final_pred
def save_local(self, path='models'):
"""Save models locally"""
os.makedirs(path, exist_ok=True)
joblib.dump(self.scaler, f'{path}/scaler.pkl')
for name, model in self.models.items():
joblib.dump(model, f'{path}/{name}.pkl')
joblib.dump(self.weights, f'{path}/weights.pkl')
print(f"โ
Models saved to {path}/")
def load_local(self, path='models'):
"""Load models from local path"""
self.scaler = joblib.load(f'{path}/scaler.pkl')
for name in self.models.keys():
self.models[name] = joblib.load(f'{path}/{name}.pkl')
self.weights = joblib.load(f'{path}/weights.pkl')
self.is_trained = True
print(f"โ
Models loaded from {path}/")
# Global model instance
ensemble = ATARMLEnsemble()
# ============================================
# HUGGING FACE INTEGRATION
# ============================================
def upload_to_hf(version: str = None, repo_name: str = HF_MODEL_REPO):
"""
Upload trained models to HF Model Repo with versioning
Versioning strategy:
- models/{version}/ โ Specific version (e.g., models/v1.0.0/)
- models/latest/ โ Always points to newest version
- metadata.json โ Tracks all versions and metrics
"""
try:
# Check if HF_TOKEN is set
if not HF_TOKEN:
return "โ HF_TOKEN not set! Please set it as environment variable in Space settings."
# Login to HF
login(token=HF_TOKEN)
api = HfApi()
# Use provided version or generate from timestamp
if version is None:
from datetime import datetime
version = datetime.now().strftime("v%Y%m%d_%H%M%S")
# Create repo if doesn't exist
try:
api.create_repo(repo_id=repo_name, repo_type="model", private=False)
print(f"โ
Created repo: {repo_name}")
except:
print(f"โน๏ธ Repo {repo_name} already exists")
# Upload model files to versioned folder
files = ['scaler.pkl', 'gb.pkl', 'rf.pkl', 'ridge.pkl', 'weights.pkl']
print(f"๐ค Uploading version: {version}")
# Upload to specific version folder
for file in files:
api.upload_file(
path_or_fileobj=f'models/{file}',
path_in_repo=f'models/{version}/{file}',
repo_id=repo_name,
repo_type="model"
)
# Also upload to 'latest' folder (for easy access)
for file in files:
api.upload_file(
path_or_fileobj=f'models/{file}',
path_in_repo=f'models/latest/{file}',
repo_id=repo_name,
repo_type="model"
)
# Download existing metadata if it exists
try:
import tempfile
temp_dir = tempfile.mkdtemp()
metadata_path = hf_hub_download(
repo_id=repo_name,
filename="metadata.json",
repo_type="model",
cache_dir=temp_dir
)
with open(metadata_path, 'r') as f:
metadata = json.load(f)
except:
metadata = {
"versions": [],
"latest_version": None,
"model_type": "ML Ensemble (Gradient Boosting + Random Forest + Ridge)",
"feature_count": FEATURE_COUNT
}
# Add new version to metadata
from datetime import datetime
new_version_info = {
"version": version,
"timestamp": datetime.now().isoformat(),
"training_samples": getattr(ensemble, 'training_samples', "unknown"),
"train_mae": getattr(ensemble, 'train_mae', None),
"test_mae": getattr(ensemble, 'test_mae', None),
"model_files": files
}
metadata["versions"].append(new_version_info)
metadata["latest_version"] = version
metadata["total_versions"] = len(metadata["versions"])
# Save updated metadata locally
with open('models/metadata.json', 'w') as f:
json.dump(metadata, f, indent=2)
# Upload metadata
api.upload_file(
path_or_fileobj='models/metadata.json',
path_in_repo='metadata.json',
repo_id=repo_name,
repo_type="model"
)
return f"""โ
Models uploaded successfully!
๐ฆ Version: {version}
๐ Repo: https://huggingface.co/{repo_name}
๐ Total versions: {len(metadata['versions'])}
Access:
- Latest: models/latest/
- This version: models/{version}/
- All versions: See metadata.json
"""
except Exception as e:
return f"โ Upload failed: {str(e)}"
def download_from_hf(version: str = "latest", repo_name: str = HF_MODEL_REPO, token: str = None):
"""
Download models from HF Model Repo
Args:
version: Version to load ('latest', 'v1.0.0', etc.)
repo_name: HF model repo name
token: HF token (optional - only needed for private repos)
"""
try:
os.makedirs('models', exist_ok=True)
# Use provided token, or environment variable, or None (for public repos)
auth_token = token or HF_TOKEN
# Determine path based on version
path_prefix = f"models/{version}/"
files = ['scaler.pkl', 'gb.pkl', 'rf.pkl', 'ridge.pkl', 'weights.pkl']
print(f"๐ฅ Downloading version: {version}")
if auth_token:
print("๐ Using authentication (private repo)")
else:
print("๐ No token - assuming public repo")
for file in files:
local_path = hf_hub_download(
repo_id=repo_name,
filename=f"{path_prefix}{file}",
repo_type="model",
cache_dir='models',
token=auth_token # โ Added token support
)
# Copy to models/ directory
import shutil
shutil.copy(local_path, f'models/{file}')
# Load into ensemble
ensemble.load_local('models')
# Try to get version info from metadata
try:
metadata_path = hf_hub_download(
repo_id=repo_name,
filename="metadata.json",
repo_type="model",
cache_dir='models',
token=auth_token # โ Added token support
)
with open(metadata_path, 'r') as f:
metadata = json.load(f)
version_info = next((v for v in metadata["versions"] if v["version"] == version), None)
info_str = f"""โ
Models loaded successfully!
๐ฆ Version: {version}
๐
Trained: {version_info.get('timestamp', 'Unknown') if version_info else 'Unknown'}
๐ Train MAE: {version_info.get('train_mae', 'N/A') if version_info else 'N/A'} ATAR points
๐ Test MAE: {version_info.get('test_mae', 'N/A') if version_info else 'N/A'} ATAR points
๐ Repo: https://huggingface.co/{repo_name}
"""
return info_str
except:
return f"โ
Models loaded from https://huggingface.co/{repo_name} ({version})"
except Exception as e:
return f"โ Download failed: {str(e)}\nTrain the model first or check version name!"
# ============================================
# PREDICTION LOGIC
# ============================================
def predict_atar(subjects: List[Dict]) -> Dict[str, Any]:
"""
Predict ATAR using ML ensemble
Auto-loads model from HF if not loaded
"""
# Auto-load model if not trained
if not ensemble.is_trained:
result = download_from_hf()
if "โ" in result:
return {
'error': 'Model not trained or available. Please train first!',
'predicted_atar': 0,
'confidence': 0
}
# Extract features
features = extract_features(subjects)
X = features.reshape(1, -1)
# Predict
predicted_atar = ensemble.predict(X)[0]
predicted_atar = np.clip(predicted_atar, 30, 99.95)
# Calculate confidence (based on data quality)
confidence = calculate_confidence(subjects)
# Generate insights
insights = generate_insights(subjects, predicted_atar)
recommendations = generate_recommendations(subjects, predicted_atar)
return {
'predicted_atar': round(predicted_atar, 2),
'confidence': round(confidence, 2),
'insights': insights,
'recommendations': recommendations
}
def calculate_confidence(subjects: List[Dict]) -> float:
"""Calculate prediction confidence based on data quality"""
if not subjects:
return 0.0
# Factors affecting confidence
assessment_completeness = min(sum(s.get('assessment_count', 0) for s in subjects) / (len(subjects) * 5), 1.0)
subject_count_factor = min(len(subjects) / 10, 1.0)
has_trends = sum(1 for s in subjects if 'trend' in s) / len(subjects)
confidence = 0.4 * assessment_completeness + 0.3 * subject_count_factor + 0.3 * has_trends
return confidence
def generate_insights(subjects: List[Dict], predicted_atar: float) -> List[str]:
"""Generate insights based on subject performance"""
insights = []
# Performance level
if predicted_atar >= 95:
insights.append("๐ฏ Excellent performance! You're on track for elite universities.")
elif predicted_atar >= 85:
insights.append("๐ Strong performance! Many competitive courses within reach.")
elif predicted_atar >= 75:
insights.append("โ
Solid foundation! Focus on improvement areas for better outcomes.")
else:
insights.append("๐ช Room for growth! Strategic improvement can boost your ATAR significantly.")
# Subject mix analysis
high_scaling = [s for s in subjects if SUBJECT_SCALING_DATA.get(s.get('subject_name', ''), {}).get('scaling_factor', 1.0) > 1.05]
if len(high_scaling) >= 3:
insights.append(f"โญ Your {len(high_scaling)} high-scaling subjects will boost your ATAR!")
return insights
def generate_recommendations(subjects: List[Dict], predicted_atar: float) -> List[str]:
"""Generate improvement recommendations"""
recommendations = []
# Find weakest subjects
sorted_subjects = sorted(subjects, key=lambda x: x.get('raw_mark', 0))
if sorted_subjects:
weakest = sorted_subjects[0]
recommendations.append(f"๐ฏ Focus on {weakest.get('subject_name', 'weakest subject')} - raising this by 5 marks could add ~1 ATAR point")
# Suggest high-scaling subjects
low_scaling = [s for s in subjects if SUBJECT_SCALING_DATA.get(s.get('subject_name', ''), {}).get('scaling_factor', 1.0) < 0.98]
if low_scaling:
recommendations.append(f"โ๏ธ Consider if {low_scaling[0].get('subject_name')} is in your best 10 units")
return recommendations
# ============================================
# GRADIO INTERFACE
# ============================================
@spaces.GPU(duration=120) if ZEROGPU_AVAILABLE else lambda x: x
def train_model_interface(n_samples: int, version: str = None):
"""Train model and upload to HF with versioning"""
try:
# Generate data
yield "๐ Generating synthetic training data..."
X, y = generate_synthetic_data(n_samples)
# Split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Train
yield "๐ Training ML ensemble (Gradient Boosting + Random Forest + Ridge)..."
ensemble.train(X_train, y_train, X_test, y_test)
# Evaluate
train_pred = ensemble.predict(X_train)
test_pred = ensemble.predict(X_test)
train_mae = np.mean(np.abs(train_pred - y_train))
test_mae = np.mean(np.abs(test_pred - y_test))
yield f"โ
Training complete!\n\n๐ Results:\n- Train MAE: {train_mae:.2f} ATAR points\n- Test MAE: {test_mae:.2f} ATAR points\n- Training samples: {len(X_train):,}\n\n๐พ Saving models locally..."
# Save locally
ensemble.save_local('models')
# Upload to HF with versioning
yield f"โ
Models saved!\n\nโ๏ธ Uploading to Hugging Face with versioning..."
# Auto-generate version if not provided
if not version or version.strip() == "":
from datetime import datetime
version = datetime.now().strftime("v%Y%m%d_%H%M%S")
result = upload_to_hf(version=version)
yield f"โ
Training complete!\n\n๐ Results:\n- Train MAE: {train_mae:.2f} ATAR points\n- Test MAE: {test_mae:.2f} ATAR points\n- Training samples: {len(X_train):,}\n\n{result}\n\n๐ Model ready for inference!"
except Exception as e:
yield f"โ Training failed: {str(e)}"
@spaces.GPU(duration=5) if ZEROGPU_AVAILABLE else lambda x: x
def predict_interface(subjects_json: str):
"""Predict ATAR from JSON input"""
try:
subjects = json.loads(subjects_json)
result = predict_atar(subjects)
return json.dumps(result, indent=2)
except Exception as e:
return json.dumps({'error': str(e)})
# ============================================
# GRADIO APP
# ============================================
with gr.Blocks(title="ATAR Prediction ML Ensemble", theme=gr.themes.Soft()) as app:
gr.Markdown("""
# ๐ ATAR Prediction System (ML Ensemble)
**Powered by Gradient Boosting + Random Forest + Ridge Regression**
### Features:
- ๐ Train on ZeroGPU with automatic HF Model Repo upload
- ๐ฎ Predict ATAR from subject marks (auto-loads model from HF)
- โ๏ธ No persistent storage needed - models live in HF Model Repo
""")
with gr.Tabs():
# Tab 1: Training
with gr.Tab("๐๏ธ Train Model"):
gr.Markdown("### Train ML Ensemble & Upload to Hugging Face")
with gr.Row():
n_samples_input = gr.Slider(1000, 50000, value=10000, step=1000, label="Training Samples")
version_input = gr.Textbox(
label="Version (optional - auto-generated if empty)",
placeholder="v1.0.0 or leave empty for timestamp",
value=""
)
train_btn = gr.Button("๐ Train & Upload to HF", variant="primary", size="lg")
train_output = gr.Textbox(label="Training Progress", lines=12)
train_btn.click(
fn=train_model_interface,
inputs=[n_samples_input, version_input],
outputs=train_output
)
gr.Markdown("""
**Instructions:**
1. Set `HF_TOKEN` environment variable in Space settings (write access)
- Go to Space Settings โ Variables and secrets
- Add secret: `HF_TOKEN` = your token from https://huggingface.co/settings/tokens
2. (Optional) Specify version like `v1.0.0`, `v1.1.0`, etc. or leave empty for auto timestamp
3. Click "Train & Upload to HF"
4. Model will be uploaded to `victor-academy/atar-predictor-ensemble`
5. Each training creates a new version - no overwrites!
**Versioning:**
- `models/latest/` - Always the newest model
- `models/v1.0.0/` - Specific version you can roll back to
- `metadata.json` - Tracks all versions with metrics
**ZeroGPU:**
- Training uses GPU for 120 seconds (free tier)
- Inference uses GPU for 5 seconds per request
- All model storage handled via HF Model Repo
""")
# Tab 2: JSON API
with gr.Tab("๐ JSON API"):
gr.Markdown("### Predict ATAR (JSON API)")
with gr.Row():
load_version_input = gr.Textbox(
label="Model Version to Load (optional)",
placeholder="latest (default), v1.0.0, v20241007_143022, etc.",
value="latest"
)
load_btn = gr.Button("๐ฅ Load Model", variant="secondary")
load_status = gr.Textbox(label="Load Status", lines=3)
def load_model_interface(version):
return download_from_hf(version=version)
load_btn.click(
fn=load_model_interface,
inputs=load_version_input,
outputs=load_status
)
gr.Markdown("---")
subjects_input = gr.Code(
label="Input: Subjects JSON",
language="json",
value=json.dumps([
{"subject_name": "Mathematics Extension 2", "raw_mark": 88.5, "trend": "improving", "assessment_count": 4},
{"subject_name": "Physics", "raw_mark": 85.0, "trend": "stable", "assessment_count": 5},
{"subject_name": "Chemistry", "raw_mark": 84.0, "trend": "stable", "assessment_count": 5},
{"subject_name": "English Advanced", "raw_mark": 82.0, "trend": "improving", "assessment_count": 4},
{"subject_name": "Software Design & Development", "raw_mark": 86.0, "trend": "improving", "assessment_count": 3}
], indent=2)
)
predict_btn = gr.Button("๐ฎ Predict ATAR", variant="primary")
prediction_output = gr.Code(label="Output: Prediction JSON", language="json")
predict_btn.click(
fn=predict_interface,
inputs=subjects_input,
outputs=prediction_output
)
gr.Markdown("""
**Note:**
- Model auto-loads `latest` version on first API call if not manually loaded
- Manually load a specific version to test different models
- All versions are preserved in HF Model Repo
- **Public repos**: No token needed for downloads
- **Private repos**: Set `HF_TOKEN` environment variable in Space settings
""")
# Tab 3: Simple Calculator
with gr.Tab("๐ Simple Calculator"):
gr.Markdown("### Quick ATAR Estimate")
with gr.Row():
with gr.Column():
subj1 = gr.Dropdown(choices=list(SUBJECT_SCALING_DATA.keys()), label="Subject 1")
mark1 = gr.Slider(0, 100, 85, label="Mark")
with gr.Column():
subj2 = gr.Dropdown(choices=list(SUBJECT_SCALING_DATA.keys()), label="Subject 2")
mark2 = gr.Slider(0, 100, 85, label="Mark")
with gr.Row():
with gr.Column():
subj3 = gr.Dropdown(choices=list(SUBJECT_SCALING_DATA.keys()), label="Subject 3")
mark3 = gr.Slider(0, 100, 85, label="Mark")
with gr.Column():
subj4 = gr.Dropdown(choices=list(SUBJECT_SCALING_DATA.keys()), label="Subject 4")
mark4 = gr.Slider(0, 100, 85, label="Mark")
calc_btn = gr.Button("Calculate ATAR", variant="primary")
calc_output = gr.Textbox(label="Result", lines=8)
def simple_calc(s1, m1, s2, m2, s3, m3, s4, m4):
subjects = []
for s, m in [(s1, m1), (s2, m2), (s3, m3), (s4, m4)]:
if s:
subjects.append({"subject_name": s, "raw_mark": m, "trend": "stable", "assessment_count": 3})
if not subjects:
return "โ ๏ธ Please select at least one subject"
result = predict_atar(subjects)
if 'error' in result:
return f"โ {result['error']}"
output = f"๐ฏ Predicted ATAR: {result['predicted_atar']}\n"
output += f"๐ Confidence: {result['confidence']*100:.0f}%\n\n"
output += "๐ก Insights:\n" + "\n".join(result['insights'])
return output
calc_btn.click(
fn=simple_calc,
inputs=[subj1, mark1, subj2, mark2, subj3, mark3, subj4, mark4],
outputs=calc_output
)
# Tab 4: Scaling Reference
with gr.Tab("๐ Scaling Reference"):
gr.Markdown("### 2024 HSC Subject Scaling Data")
scaling_df = pd.DataFrame([
{
'Subject': name,
'Scaling Factor': f"{data['scaling_factor']:.4f}",
'Mean Mark': data['mean'],
'Difficulty': data['difficulty']
}
for name, data in sorted(SUBJECT_SCALING_DATA.items(),
key=lambda x: x[1]['scaling_factor'],
reverse=True)
])
gr.Dataframe(scaling_df, label="Subject Scaling Factors (sorted by scaling)")
# ============================================
# LAUNCH
# ============================================
if __name__ == "__main__":
app.launch(share=True, server_name="0.0.0.0", server_port=7860)
|