Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from huggingface_hub import hf_hub_download | |
| from llama_cpp import Llama | |
| # Define model details | |
| MODEL_REPO = "TotoB12/totob-1.5B" # You can swap this for Mistral-7B or another GGUF model | |
| MODEL_FILE = "totob-1.5B.gguf" # 4-bit quantized model file | |
| # Download the quantized model from Hugging Face | |
| model_path = hf_hub_download(repo_id=MODEL_REPO, filename=MODEL_FILE) | |
| # Load the model with llama.cpp for CPU-only inference | |
| llm = Llama( | |
| model_path=model_path, | |
| n_gpu_layers=0, # Set to 0 for CPU-only | |
| n_threads=4, # Adjust based on CPU cores (e.g., 4 for quad-core) | |
| n_batch=512, # Batch size for inference | |
| n_ctx=2048, # Context length (adjust based on RAM; 2048 fits ~16 GB) | |
| verbose=False # Reduce logging for cleaner output | |
| ) | |
| # Define the inference function | |
| def generate_text(prompt, max_tokens=256, temperature=0.8, top_p=0.95): | |
| try: | |
| output = llm( | |
| prompt, | |
| max_tokens=max_tokens, | |
| temperature=temperature, | |
| top_p=top_p, | |
| repeat_penalty=1.1 | |
| ) | |
| return output["choices"][0]["text"].strip() | |
| except Exception as e: | |
| return f"Error: {str(e)}" | |
| # Create Gradio interface | |
| interface = gr.Interface( | |
| fn=generate_text, | |
| inputs=[ | |
| gr.Textbox(label="Prompt", placeholder="Enter your prompt here..."), | |
| gr.Slider(label="Max Tokens", minimum=50, maximum=512, value=256, step=10), | |
| gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, value=0.8, step=0.1), | |
| gr.Slider(label="Top P", minimum=0.1, maximum=1.0, value=0.95, step=0.05) | |
| ], | |
| outputs=gr.Textbox(label="Generated Text"), | |
| title="totob-1.5B LLM on Hugging Face Spaces", | |
| description="Run the no-loss quantized totob-1.5B model on CPU using llama.cpp", | |
| theme="default" | |
| ) | |
| # Launch the app | |
| if __name__ == "__main__": | |
| interface.launch(server_name="0.0.0.0", server_port=7860) |