Animal_Detector / app.py
amasood's picture
Update app.py
b64ef6b verified
import streamlit as st
from transformers import ViTFeatureExtractor, ViTForImageClassification
from PIL import Image
import torch
# Load model and feature extractor
@st.cache_resource
def load_model():
model_name = "google/vit-base-patch16-224"
model = ViTForImageClassification.from_pretrained(model_name)
feature_extractor = ViTFeatureExtractor.from_pretrained(model_name)
return model, feature_extractor
model, feature_extractor = load_model()
st.title("Animal Recognition App 🐾")
st.write("Upload an image to detect the animal.")
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Image.", use_column_width=True)
st.write("Classifying...")
# Preprocess Image
inputs = feature_extractor(images=image, return_tensors="pt")
# Predict
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
predicted_class_idx = logits.argmax(-1).item()
labels = model.config.id2label
predicted_label = labels[predicted_class_idx]
st.success(f"Prediction: {predicted_label}")