import streamlit as st from transformers import ViTFeatureExtractor, ViTForImageClassification from PIL import Image import torch # Load model and feature extractor MODEL_NAME = "google/vit-base-patch16-224" feature_extractor = ViTFeatureExtractor.from_pretrained(MODEL_NAME) model = ViTForImageClassification.from_pretrained(MODEL_NAME) # Streamlit UI st.title("Animal Recognition App") st.write("Upload an image, and the model will identify the animal.") uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"]) if uploaded_file is not None: image = Image.open(uploaded_file) st.image(image, caption="Uploaded Image", use_column_width=True) # Preprocess image inputs = feature_extractor(images=image, return_tensors="pt") # Predict with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits predicted_class_idx = logits.argmax(-1).item() # Get label label = model.config.id2label[predicted_class_idx] st.success(f"Predicted Animal: **{label}**")