Spaces:
Runtime error
Runtime error
first commit
Browse files- app.py +93 -0
- item_data.json +0 -0
- requirements.txt +1 -0
app.py
ADDED
|
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import srsly
|
| 3 |
+
import streamlit as st
|
| 4 |
+
from pandas.api.types import (
|
| 5 |
+
is_categorical_dtype,
|
| 6 |
+
is_datetime64_any_dtype,
|
| 7 |
+
is_numeric_dtype,
|
| 8 |
+
is_object_dtype,
|
| 9 |
+
)
|
| 10 |
+
|
| 11 |
+
st.title("DEEP Data Explorer")
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def filter_dataframe(df: pd.DataFrame) -> pd.DataFrame:
|
| 15 |
+
"""
|
| 16 |
+
Adds a UI on top of a dataframe to let viewers filter columns
|
| 17 |
+
|
| 18 |
+
Args:
|
| 19 |
+
df (pd.DataFrame): Original dataframe
|
| 20 |
+
|
| 21 |
+
Returns:
|
| 22 |
+
pd.DataFrame: Filtered dataframe
|
| 23 |
+
"""
|
| 24 |
+
modify = st.checkbox("Add filters")
|
| 25 |
+
|
| 26 |
+
if not modify:
|
| 27 |
+
return df
|
| 28 |
+
|
| 29 |
+
df = df.copy()
|
| 30 |
+
|
| 31 |
+
# Try to convert datetimes into a standard format (datetime, no timezone)
|
| 32 |
+
for col in df.columns:
|
| 33 |
+
if is_object_dtype(df[col]):
|
| 34 |
+
try:
|
| 35 |
+
df[col] = pd.to_datetime(df[col])
|
| 36 |
+
except Exception:
|
| 37 |
+
pass
|
| 38 |
+
|
| 39 |
+
if is_datetime64_any_dtype(df[col]):
|
| 40 |
+
df[col] = df[col].dt.tz_localize(None)
|
| 41 |
+
|
| 42 |
+
modification_container = st.container()
|
| 43 |
+
|
| 44 |
+
with modification_container:
|
| 45 |
+
to_filter_columns = st.multiselect("Filter dataframe on", df.columns)
|
| 46 |
+
for column in to_filter_columns:
|
| 47 |
+
left, right = st.columns((1, 20))
|
| 48 |
+
left.write("↳")
|
| 49 |
+
# Treat columns with < 10 unique values as categorical
|
| 50 |
+
if is_categorical_dtype(df[column]) or df[column].nunique() < 10:
|
| 51 |
+
user_cat_input = right.multiselect(
|
| 52 |
+
f"Values for {column}",
|
| 53 |
+
df[column].unique(),
|
| 54 |
+
default=list(df[column].unique()),
|
| 55 |
+
)
|
| 56 |
+
df = df[df[column].isin(user_cat_input)]
|
| 57 |
+
elif is_numeric_dtype(df[column]):
|
| 58 |
+
_min = float(df[column].min())
|
| 59 |
+
_max = float(df[column].max())
|
| 60 |
+
step = (_max - _min) / 100
|
| 61 |
+
user_num_input = right.slider(
|
| 62 |
+
f"Values for {column}",
|
| 63 |
+
_min,
|
| 64 |
+
_max,
|
| 65 |
+
(_min, _max),
|
| 66 |
+
step=step,
|
| 67 |
+
)
|
| 68 |
+
df = df[df[column].between(*user_num_input)]
|
| 69 |
+
elif is_datetime64_any_dtype(df[column]):
|
| 70 |
+
user_date_input = right.date_input(
|
| 71 |
+
f"Values for {column}",
|
| 72 |
+
value=(
|
| 73 |
+
df[column].min(),
|
| 74 |
+
df[column].max(),
|
| 75 |
+
),
|
| 76 |
+
)
|
| 77 |
+
if len(user_date_input) == 2:
|
| 78 |
+
user_date_input = tuple(map(pd.to_datetime, user_date_input))
|
| 79 |
+
start_date, end_date = user_date_input
|
| 80 |
+
df = df.loc[df[column].between(start_date, end_date)]
|
| 81 |
+
else:
|
| 82 |
+
user_text_input = right.text_input(
|
| 83 |
+
f"Substring or regex in {column}",
|
| 84 |
+
)
|
| 85 |
+
if user_text_input:
|
| 86 |
+
df = df[df[column].str.contains(user_text_input)]
|
| 87 |
+
|
| 88 |
+
return df
|
| 89 |
+
|
| 90 |
+
data = srsly.read_json('item_data.json')
|
| 91 |
+
data = [data[key] for key in data.keys()]
|
| 92 |
+
df = pd.DataFrame(data)
|
| 93 |
+
st.dataframe(filter_dataframe(df))
|
item_data.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
requirements.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
srsly
|