Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import cv2
|
| 3 |
+
import mediapipe as mp
|
| 4 |
+
import numpy as np
|
| 5 |
+
import tempfile
|
| 6 |
+
import warnings
|
| 7 |
+
import gradio as gr
|
| 8 |
+
|
| 9 |
+
# --- Silence unnecessary logs and warnings ---
|
| 10 |
+
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
| 11 |
+
os.environ['GLOG_minloglevel'] = '2'
|
| 12 |
+
warnings.filterwarnings("ignore", category=UserWarning)
|
| 13 |
+
warnings.filterwarnings("ignore", message="SymbolDatabase.GetPrototype")
|
| 14 |
+
|
| 15 |
+
# --- Main processing function ---
|
| 16 |
+
def process_pose(video_path, mode, min_det_conf, min_track_conf, progress=gr.Progress()):
|
| 17 |
+
try:
|
| 18 |
+
progress(0, desc="Initializing pose model...")
|
| 19 |
+
mp_drawing = mp.solutions.drawing_utils
|
| 20 |
+
mp_pose = mp.solutions.pose
|
| 21 |
+
|
| 22 |
+
# Temporary output file
|
| 23 |
+
temp_dir = tempfile.mkdtemp()
|
| 24 |
+
output_path = os.path.join(temp_dir, "output.mp4")
|
| 25 |
+
|
| 26 |
+
cap = cv2.VideoCapture(video_path)
|
| 27 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 28 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 29 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 30 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 31 |
+
|
| 32 |
+
if fps == 0 or total_frames == 0:
|
| 33 |
+
raise ValueError("Could not read the video or it is empty.")
|
| 34 |
+
|
| 35 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
| 36 |
+
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
| 37 |
+
|
| 38 |
+
with mp_pose.Pose(
|
| 39 |
+
min_detection_confidence=min_det_conf,
|
| 40 |
+
min_tracking_confidence=min_track_conf
|
| 41 |
+
) as pose:
|
| 42 |
+
|
| 43 |
+
frame_idx = 0
|
| 44 |
+
while cap.isOpened():
|
| 45 |
+
ret, frame = cap.read()
|
| 46 |
+
if not ret:
|
| 47 |
+
break
|
| 48 |
+
|
| 49 |
+
frame_idx += 1
|
| 50 |
+
progress(frame_idx / total_frames, desc=f"Processing frame {frame_idx}/{total_frames}")
|
| 51 |
+
|
| 52 |
+
image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 53 |
+
results = pose.process(image)
|
| 54 |
+
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
| 55 |
+
|
| 56 |
+
if mode == "Pose on original video":
|
| 57 |
+
output_frame = image.copy()
|
| 58 |
+
mp_drawing.draw_landmarks(
|
| 59 |
+
output_frame,
|
| 60 |
+
results.pose_landmarks,
|
| 61 |
+
mp_pose.POSE_CONNECTIONS,
|
| 62 |
+
mp_drawing.DrawingSpec(color=(245,117,66), thickness=2, circle_radius=2),
|
| 63 |
+
mp_drawing.DrawingSpec(color=(245,66,230), thickness=2, circle_radius=2)
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
else: # Pose only (black background)
|
| 67 |
+
mask = np.zeros_like(image)
|
| 68 |
+
mp_drawing.draw_landmarks(
|
| 69 |
+
mask,
|
| 70 |
+
results.pose_landmarks,
|
| 71 |
+
mp_pose.POSE_CONNECTIONS,
|
| 72 |
+
mp_drawing.DrawingSpec(color=(245,117,66), thickness=2, circle_radius=2),
|
| 73 |
+
mp_drawing.DrawingSpec(color=(245,66,230), thickness=2, circle_radius=2)
|
| 74 |
+
)
|
| 75 |
+
output_frame = cv2.addWeighted(np.zeros_like(image), 1, mask, 0.8, 0)
|
| 76 |
+
|
| 77 |
+
out.write(output_frame)
|
| 78 |
+
|
| 79 |
+
cap.release()
|
| 80 |
+
out.release()
|
| 81 |
+
progress(1, desc="Completed ✅")
|
| 82 |
+
return output_path
|
| 83 |
+
|
| 84 |
+
except Exception as e:
|
| 85 |
+
return f"❌ Error during processing: {e}"
|
| 86 |
+
|
| 87 |
+
# --- Custom HTML for warnings and explanations ---
|
| 88 |
+
warning_html = """
|
| 89 |
+
<div style="text-align:center; color:red; font-weight:bold;">
|
| 90 |
+
⚠️ Reminder: Video must be under 5 MB due to CPU processing time.<br>
|
| 91 |
+
⚠️ Processing long videos may take a considerable amount of time.
|
| 92 |
+
</div>
|
| 93 |
+
"""
|
| 94 |
+
|
| 95 |
+
param_info_html = """
|
| 96 |
+
<div style="border: 2px solid #4CAF50; padding: 10px; border-radius: 8px; margin:10px; background-color:#f9f9f9;">
|
| 97 |
+
<b>Parameters:</b><br>
|
| 98 |
+
- <b>min_detection_confidence:</b> Minimum confidence for the model to detect a pose.<br>
|
| 99 |
+
- <b>min_tracking_confidence:</b> Minimum confidence for the model to track the pose across frames.
|
| 100 |
+
</div>
|
| 101 |
+
"""
|
| 102 |
+
|
| 103 |
+
# --- Gradio Interface ---
|
| 104 |
+
iface = gr.Interface(
|
| 105 |
+
fn=process_pose,
|
| 106 |
+
inputs=[
|
| 107 |
+
gr.Video(label="🎥 Upload your video", sources=["upload"], elem_id="video_upload"),
|
| 108 |
+
gr.Radio(
|
| 109 |
+
["Pose on original video", "Pose only (black background)"],
|
| 110 |
+
label="Output mode",
|
| 111 |
+
value="Pose on original video"
|
| 112 |
+
),
|
| 113 |
+
gr.Slider(0.0, 1.0, value=0.5, label="min_detection_confidence"),
|
| 114 |
+
gr.Slider(0.0, 1.0, value=0.5, label="min_tracking_confidence"),
|
| 115 |
+
],
|
| 116 |
+
outputs=gr.Video(label="📦 Processed Video"),
|
| 117 |
+
title="<center>Pose Estimation - MediaPipe (CPU Optimized)</center>",
|
| 118 |
+
description=warning_html + param_info_html,
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
if __name__ == "__main__":
|
| 122 |
+
iface.launch()
|