| import whisper | |
| from .compute_fluency import compute_fluency_score | |
| def main(file_path: str, model_size: str = "base", filler_count = None) -> dict: | |
| try: | |
| whisper_model = whisper.load_model(model_size) | |
| results = compute_fluency_score(file_path, whisper_model, filler_count) | |
| # Structure response | |
| response = { | |
| "fluency_score": round(results['fluency_score'], 2) | |
| # "insight": results["insight"], | |
| # "SRS": round(results["SRS"], 2), | |
| # "PAS": round(results["PAS"], 2), | |
| # "transcript": results["transcript"] | |
| } | |
| return response | |
| except Exception as e: | |
| raise RuntimeError(f"Error during analysis: {str(e)}") | |