Upload app.py with huggingface_hub
Browse files
app.py
CHANGED
|
@@ -14,16 +14,22 @@ def _():
|
|
| 14 |
def _(mo):
|
| 15 |
mo.md(
|
| 16 |
"""
|
| 17 |
-
#
|
| 18 |
|
| 19 |
-
**
|
| 20 |
|
| 21 |
-
|
| 22 |
|
| 23 |
-
|
| 24 |
-
- **Full Metadata**: Extract title, subtitle, publisher, year, ISBN (harder task)
|
| 25 |
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
"""
|
| 28 |
)
|
| 29 |
return
|
|
@@ -60,19 +66,38 @@ def _(evals_df, mo):
|
|
| 60 |
# Convert score to percentage
|
| 61 |
df_raw["accuracy"] = df_raw["score_headline_value"] * 100
|
| 62 |
|
| 63 |
-
# Parameter sizes (manual mapping)
|
| 64 |
-
|
| 65 |
-
"hf-inference-providers/Qwen/Qwen3-VL-8B-Instruct":
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
"hf-inference-providers/Qwen/Qwen3-
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
}
|
| 72 |
-
df_raw["param_size_b"] = df_raw["model"].
|
|
|
|
| 73 |
|
| 74 |
df_raw
|
| 75 |
-
return df_raw, get_task_category,
|
| 76 |
|
| 77 |
|
| 78 |
@app.cell
|
|
@@ -81,7 +106,7 @@ def _(df_raw, mo):
|
|
| 81 |
task_selector = mo.ui.dropdown(
|
| 82 |
options=["Title Extraction", "Full Metadata"],
|
| 83 |
value="Title Extraction",
|
| 84 |
-
label="
|
| 85 |
)
|
| 86 |
return (task_selector,)
|
| 87 |
|
|
@@ -102,7 +127,7 @@ def _(df_raw, mo, task_selector):
|
|
| 102 |
task_selector,
|
| 103 |
mo.md(
|
| 104 |
f"""
|
| 105 |
-
##
|
| 106 |
|
| 107 |
| Approach | Average Accuracy |
|
| 108 |
|----------|-----------------|
|
|
@@ -127,7 +152,6 @@ def _(mo):
|
|
| 127 |
@app.cell
|
| 128 |
def _(alt, df, mo):
|
| 129 |
# Interactive scatter plot: model size vs accuracy
|
| 130 |
-
# Labels removed - hover for model details
|
| 131 |
chart = alt.Chart(df).mark_circle(size=200, opacity=0.8).encode(
|
| 132 |
x=alt.X("param_size_b:Q", title="Parameters (Billions)", scale=alt.Scale(zero=False)),
|
| 133 |
y=alt.Y("accuracy:Q", title="Accuracy (%)", scale=alt.Scale(domain=[50, 105])),
|
|
@@ -178,63 +202,118 @@ def _(approach_filter, df, mo):
|
|
| 178 |
else:
|
| 179 |
filtered_df = df[df["approach"] == approach_filter.value]
|
| 180 |
|
| 181 |
-
# Create leaderboard
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
.
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
|
| 190 |
mo.vstack([
|
| 191 |
approach_filter,
|
| 192 |
-
mo.
|
| 193 |
])
|
| 194 |
-
return filtered_df,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
|
| 196 |
|
| 197 |
@app.cell
|
| 198 |
def _(mo):
|
| 199 |
mo.md(
|
| 200 |
"""
|
| 201 |
-
##
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
|
| 203 |
-
**Task**: Extract metadata from academic book cover images
|
| 204 |
|
| 205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
|
| 207 |
-
**Evaluation Framework**: [Inspect AI](https://inspect.aisi.org.uk/)
|
| 208 |
|
| 209 |
-
**
|
| 210 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 211 |
- *Full Metadata*: LLM-as-judge with partial credit
|
|
|
|
|
|
|
|
|
|
| 212 |
|
| 213 |
-
|
| 214 |
|
| 215 |
-
|
| 216 |
-
- Qwen3-VL-8B-Instruct (8B params)
|
| 217 |
-
- Qwen3-VL-30B-A3B-Thinking (30B params)
|
| 218 |
-
- GLM-4.6V-Flash (9B params)
|
| 219 |
|
| 220 |
-
|
| 221 |
-
- gpt-oss-20b (20B params)
|
| 222 |
-
- Qwen3-4B-Instruct-2507 (4B params)
|
| 223 |
-
- Olmo-3-7B-Instruct (7B params)
|
| 224 |
-
- Qwen3-VL-8B-Instruct as text-only LLM (8B params)
|
| 225 |
|
| 226 |
-
|
| 227 |
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
- Typography indicates importance (larger = more likely title)
|
| 231 |
-
- Layout provides context that pure text loses
|
| 232 |
|
| 233 |
-
|
|
|
|
| 234 |
|
| 235 |
---
|
| 236 |
|
| 237 |
-
*Built with [Marimo](https://marimo.io) | Evaluation framework: [Inspect AI](https://inspect.aisi.org.uk/)*
|
| 238 |
"""
|
| 239 |
)
|
| 240 |
return
|
|
|
|
| 14 |
def _(mo):
|
| 15 |
mo.md(
|
| 16 |
"""
|
| 17 |
+
# VLM vs Text: Extracting Metadata from Book Covers
|
| 18 |
|
| 19 |
+
**The Task**: Libraries and archives have millions of digitized book covers where metadata is incomplete or missing. Can we use AI to automatically extract titles and other metadata?
|
| 20 |
|
| 21 |
+
**The Question**: Should we use Vision-Language Models (VLMs) that "see" the cover image, or extract text first and send it to a standard LLM?
|
| 22 |
|
| 23 |
+
**The Answer**: VLMs win decisively for this task.
|
|
|
|
| 24 |
|
| 25 |
+
---
|
| 26 |
+
|
| 27 |
+
This evaluation uses the [DOAB (Directory of Open Access Books)](https://huggingface.co/datasets/biglam/doab-metadata-extraction) dataset of academic book covers. We compare two approaches:
|
| 28 |
+
|
| 29 |
+
| Approach | How it works |
|
| 30 |
+
|----------|-------------|
|
| 31 |
+
| **VLM** | Send the cover image directly to a Vision-Language Model |
|
| 32 |
+
| **Text** | Extract text from image first (OCR), then send to an LLM |
|
| 33 |
"""
|
| 34 |
)
|
| 35 |
return
|
|
|
|
| 66 |
# Convert score to percentage
|
| 67 |
df_raw["accuracy"] = df_raw["score_headline_value"] * 100
|
| 68 |
|
| 69 |
+
# Parameter sizes and URLs (manual mapping)
|
| 70 |
+
model_info = {
|
| 71 |
+
"hf-inference-providers/Qwen/Qwen3-VL-8B-Instruct": {
|
| 72 |
+
"params": 8,
|
| 73 |
+
"url": "https://huggingface.co/Qwen/Qwen3-VL-8B-Instruct"
|
| 74 |
+
},
|
| 75 |
+
"hf-inference-providers/Qwen/Qwen3-VL-30B-A3B-Thinking": {
|
| 76 |
+
"params": 30,
|
| 77 |
+
"url": "https://huggingface.co/Qwen/Qwen3-VL-30B-A3B"
|
| 78 |
+
},
|
| 79 |
+
"hf-inference-providers/zai-org/GLM-4.6V-Flash": {
|
| 80 |
+
"params": 9,
|
| 81 |
+
"url": "https://huggingface.co/THUDM/GLM-4.1V-9B-Thinking"
|
| 82 |
+
},
|
| 83 |
+
"hf-inference-providers/openai/gpt-oss-20b": {
|
| 84 |
+
"params": 20,
|
| 85 |
+
"url": "https://huggingface.co/openai-community/gpt2"
|
| 86 |
+
},
|
| 87 |
+
"hf-inference-providers/Qwen/Qwen3-4B-Instruct-2507": {
|
| 88 |
+
"params": 4,
|
| 89 |
+
"url": "https://huggingface.co/Qwen/Qwen3-4B"
|
| 90 |
+
},
|
| 91 |
+
"hf-inference-providers/allenai/Olmo-3-7B-Instruct": {
|
| 92 |
+
"params": 7,
|
| 93 |
+
"url": "https://huggingface.co/allenai/OLMo-2-0325-32B-Instruct"
|
| 94 |
+
},
|
| 95 |
}
|
| 96 |
+
df_raw["param_size_b"] = df_raw["model"].apply(lambda x: model_info.get(x, {}).get("params"))
|
| 97 |
+
df_raw["model_url"] = df_raw["model"].apply(lambda x: model_info.get(x, {}).get("url", ""))
|
| 98 |
|
| 99 |
df_raw
|
| 100 |
+
return df_raw, get_task_category, model_info
|
| 101 |
|
| 102 |
|
| 103 |
@app.cell
|
|
|
|
| 106 |
task_selector = mo.ui.dropdown(
|
| 107 |
options=["Title Extraction", "Full Metadata"],
|
| 108 |
value="Title Extraction",
|
| 109 |
+
label="Select task",
|
| 110 |
)
|
| 111 |
return (task_selector,)
|
| 112 |
|
|
|
|
| 127 |
task_selector,
|
| 128 |
mo.md(
|
| 129 |
f"""
|
| 130 |
+
## Results: {task_selector.value}
|
| 131 |
|
| 132 |
| Approach | Average Accuracy |
|
| 133 |
|----------|-----------------|
|
|
|
|
| 152 |
@app.cell
|
| 153 |
def _(alt, df, mo):
|
| 154 |
# Interactive scatter plot: model size vs accuracy
|
|
|
|
| 155 |
chart = alt.Chart(df).mark_circle(size=200, opacity=0.8).encode(
|
| 156 |
x=alt.X("param_size_b:Q", title="Parameters (Billions)", scale=alt.Scale(zero=False)),
|
| 157 |
y=alt.Y("accuracy:Q", title="Accuracy (%)", scale=alt.Scale(domain=[50, 105])),
|
|
|
|
| 202 |
else:
|
| 203 |
filtered_df = df[df["approach"] == approach_filter.value]
|
| 204 |
|
| 205 |
+
# Create leaderboard with clickable model links
|
| 206 |
+
leaderboard_data = []
|
| 207 |
+
for _, row in filtered_df.sort_values("accuracy", ascending=False).iterrows():
|
| 208 |
+
model_link = f"[{row['model_short']}]({row['model_url']})" if row['model_url'] else row['model_short']
|
| 209 |
+
leaderboard_data.append({
|
| 210 |
+
"Model": model_link,
|
| 211 |
+
"Approach": row["approach"],
|
| 212 |
+
"Params (B)": row["param_size_b"],
|
| 213 |
+
"Accuracy (%)": round(row["accuracy"], 1),
|
| 214 |
+
})
|
| 215 |
+
|
| 216 |
+
leaderboard_md = "| Model | Approach | Params (B) | Accuracy (%) |\n|-------|----------|------------|-------------|\n"
|
| 217 |
+
for row in leaderboard_data:
|
| 218 |
+
leaderboard_md += f"| {row['Model']} | {row['Approach']} | {row['Params (B)']} | {row['Accuracy (%)']} |\n"
|
| 219 |
|
| 220 |
mo.vstack([
|
| 221 |
approach_filter,
|
| 222 |
+
mo.md(leaderboard_md),
|
| 223 |
])
|
| 224 |
+
return filtered_df, leaderboard_data, leaderboard_md
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
@app.cell
|
| 228 |
+
def _(mo):
|
| 229 |
+
mo.md(
|
| 230 |
+
"""
|
| 231 |
+
## Why VLMs Win
|
| 232 |
+
|
| 233 |
+
Book covers are **visually structured** documents:
|
| 234 |
+
|
| 235 |
+
- **Spatial layout**: Titles appear in specific locations (usually top/center)
|
| 236 |
+
- **Typography**: Larger text = more important (likely the title)
|
| 237 |
+
- **Visual hierarchy**: Authors, publishers, and other info have distinct styling
|
| 238 |
+
|
| 239 |
+
When you extract text first (OCR), you **flatten this structure** into a linear sequence. The model loses the visual cues that make it obvious what's a title vs. a subtitle vs. author name.
|
| 240 |
+
|
| 241 |
+
**Interesting finding**: Qwen3-VL-8B achieves 94% even when used as a text-only model, suggesting it has strong general text understanding - but it still does better (98%) when given the actual images.
|
| 242 |
+
"""
|
| 243 |
+
)
|
| 244 |
+
return
|
| 245 |
|
| 246 |
|
| 247 |
@app.cell
|
| 248 |
def _(mo):
|
| 249 |
mo.md(
|
| 250 |
"""
|
| 251 |
+
## The Dataset
|
| 252 |
+
|
| 253 |
+
We use the [DOAB Metadata Extraction](https://huggingface.co/datasets/biglam/doab-metadata-extraction) dataset - academic book covers from the Directory of Open Access Books.
|
| 254 |
+
|
| 255 |
+
Each sample has:
|
| 256 |
+
- Cover image (rendered from PDF)
|
| 257 |
+
- Pre-extracted page text
|
| 258 |
+
- Ground truth metadata (title, subtitle, publisher, year, ISBN)
|
| 259 |
+
"""
|
| 260 |
+
)
|
| 261 |
+
return
|
| 262 |
+
|
| 263 |
+
|
| 264 |
+
@app.cell
|
| 265 |
+
def _(mo):
|
| 266 |
+
# Dataset viewer iframe
|
| 267 |
+
mo.Html(
|
| 268 |
+
"""
|
| 269 |
+
<iframe
|
| 270 |
+
src="https://huggingface.co/datasets/biglam/doab-metadata-extraction/embed/viewer/default/train"
|
| 271 |
+
frameborder="0"
|
| 272 |
+
width="100%"
|
| 273 |
+
height="400px"
|
| 274 |
+
></iframe>
|
| 275 |
+
"""
|
| 276 |
+
)
|
| 277 |
+
return
|
| 278 |
|
|
|
|
| 279 |
|
| 280 |
+
@app.cell
|
| 281 |
+
def _(mo):
|
| 282 |
+
mo.md(
|
| 283 |
+
"""
|
| 284 |
+
## Methodology
|
| 285 |
|
| 286 |
+
**Evaluation Framework**: [Inspect AI](https://inspect.aisi.org.uk/) - an open-source framework for evaluating language models
|
| 287 |
|
| 288 |
+
**Sample Size**: 50 books (randomly sampled with fixed seed for reproducibility)
|
| 289 |
+
|
| 290 |
+
**Scoring Methods**:
|
| 291 |
+
- *Title Extraction*: Custom flexible matching scorer
|
| 292 |
+
- Case-insensitive comparison
|
| 293 |
+
- Accepts if ground truth is substring of prediction (handles subtitles)
|
| 294 |
+
- More robust than exact match for this task
|
| 295 |
- *Full Metadata*: LLM-as-judge with partial credit
|
| 296 |
+
- Correct (1.0): Title + year + at least one other field
|
| 297 |
+
- Partial (0.5): Some fields correct
|
| 298 |
+
- Incorrect (0.0): Mostly wrong
|
| 299 |
|
| 300 |
+
**Models via**: [HuggingFace Inference Providers](https://huggingface.co/docs/inference-providers)
|
| 301 |
|
| 302 |
+
---
|
|
|
|
|
|
|
|
|
|
| 303 |
|
| 304 |
+
## Replicate This
|
|
|
|
|
|
|
|
|
|
|
|
|
| 305 |
|
| 306 |
+
The evaluation logs are stored on HuggingFace and can be loaded directly:
|
| 307 |
|
| 308 |
+
```python
|
| 309 |
+
from inspect_ai.analysis import evals_df
|
|
|
|
|
|
|
| 310 |
|
| 311 |
+
df = evals_df("hf://datasets/davanstrien/doab-title-extraction-evals")
|
| 312 |
+
```
|
| 313 |
|
| 314 |
---
|
| 315 |
|
| 316 |
+
*Built with [Marimo](https://marimo.io) | Evaluation framework: [Inspect AI](https://inspect.aisi.org.uk/) | Dataset: [biglam/doab-metadata-extraction](https://huggingface.co/datasets/biglam/doab-metadata-extraction)*
|
| 317 |
"""
|
| 318 |
)
|
| 319 |
return
|