File size: 20,875 Bytes
b26bb6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85453cc
b26bb6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85453cc
b26bb6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85453cc
 
817463e
b26bb6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85453cc
b26bb6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85453cc
b26bb6b
85453cc
 
b26bb6b
85453cc
 
b26bb6b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
#!/usr/bin/env python
"""Gradio demo for the GAIA prompt and image generation pipeline."""

from __future__ import annotations

import functools
import gc
import json
import logging
import os
import textwrap
import time
from pathlib import Path
from typing import Any, Dict, Optional, Tuple

import gradio as gr
import torch
from PIL import Image

from src.gaia_inference.inference import create_pipeline
from src.gaia_inference.inference import run as run_pipeline
from src.gaia_inference.json_to_prompt import (
    DEFAULT_SAMPLING,
    SUPPORTED_TASKS,
    get_json_prompt,
    load_engine,
)

LOGGER = logging.getLogger(__name__)

TASK_LABEL_TO_KEY = {label: key for key, label in SUPPORTED_TASKS.items()}
DEFAULT_TASK_LABEL = SUPPORTED_TASKS["inspire"]
TASK_CHOICES = list(SUPPORTED_TASKS.values())

DEFAULT_VLM_MODEL = "briaai/vlm-processor"
DEFAULT_PIPELINE_NAME = "briaai/GAIA-Alpha"
DEFAULT_RESOLUTION = "1024 1024"
DEFAULT_GUIDANCE_SCALE = 5.0
DEFAULT_STEPS = 40
DEFAULT_SEED = -1
DEFAULT_NEGATIVE_PROMPT = ""

RESOLUTIONS_WH = [
    "832 1248",
    "896 1152",
    "960 1088",
    "1024 1024",
    "1088 960",
    "1152 896",
    "1216 832",
    "1280 800",
    "1344 768",
]

ROOT_DIR = Path(__file__).resolve().parents[2]
ASSETS_DIR = ROOT_DIR / "assets"
DEFAULT_PROMPT_PATH = ROOT_DIR / "default_json_caption.json"
try:
    REFINED_PROMPT_EXAMPLE = DEFAULT_PROMPT_PATH.read_text()
except FileNotFoundError:
    REFINED_PROMPT_EXAMPLE = ""

USAGE_EXAMPLES = [
    [
        SUPPORTED_TASKS["generate"],
        None,
        "a dog playing in the park",
        "",
        "",
        DEFAULT_SAMPLING.temperature,
        DEFAULT_SAMPLING.top_p,
        DEFAULT_SAMPLING.max_tokens,
        DEFAULT_RESOLUTION,
        DEFAULT_STEPS,
        DEFAULT_GUIDANCE_SCALE,
        1,
        DEFAULT_NEGATIVE_PROMPT,
    ],
    [
        SUPPORTED_TASKS["inspire"],
        str((ASSETS_DIR / "zebra_balloons.jpeg").resolve()),
        "",
        "",
        "",
        DEFAULT_SAMPLING.temperature,
        DEFAULT_SAMPLING.top_p,
        DEFAULT_SAMPLING.max_tokens,
        DEFAULT_RESOLUTION,
        DEFAULT_STEPS,
        DEFAULT_GUIDANCE_SCALE,
        1,
        DEFAULT_NEGATIVE_PROMPT,
    ],
    [
        SUPPORTED_TASKS["refine"],
        None,
        "",
        REFINED_PROMPT_EXAMPLE,
        "change the zebra to an elephant",
        DEFAULT_SAMPLING.temperature,
        DEFAULT_SAMPLING.top_p,
        DEFAULT_SAMPLING.max_tokens,
        DEFAULT_RESOLUTION,
        DEFAULT_STEPS,
        DEFAULT_GUIDANCE_SCALE,
        1,
        DEFAULT_NEGATIVE_PROMPT,
    ],
]


def _current_device() -> str:
    return "cuda" if torch.cuda.is_available() else "cpu"


# def get_engine(model_name: str = DEFAULT_VLM_MODEL):


@functools.lru_cache(maxsize=2)
def _load_pipeline(pipeline_name: str, device: str):
    return create_pipeline(pipeline_name=pipeline_name, device=device)


def get_pipeline(pipeline_name: str = DEFAULT_PIPELINE_NAME):
    if not torch.cuda.is_available():
        raise RuntimeError("CUDA is required for image generation.")
    return _load_pipeline(pipeline_name, "cuda")


def _format_prompt_text(raw_prompt: str) -> Tuple[str, Dict[str, Any]]:
    try:
        prompt_dict = json.loads(raw_prompt)
    except json.JSONDecodeError as exc:
        LOGGER.exception("Model returned invalid JSON prompt.")
        raise gr.Error("The VLM returned invalid JSON. Please try again.") from exc
    formatted = json.dumps(prompt_dict, indent=2)
    return formatted, prompt_dict


def _ensure_task_key(task_value: str) -> str:
    if task_value in SUPPORTED_TASKS:
        return task_value
    task_key = TASK_LABEL_TO_KEY.get(task_value)
    if task_key is None:
        valid = ", ".join(TASK_CHOICES)
        raise gr.Error(f"Unsupported task selection '{task_value}'. Valid options: {valid}.")
    return task_key


@torch.inference_mode()
def _generate_prompt(
    task: str,
    image_value: Optional[Image.Image],
    generate_value: Optional[str],
    refine_prompt: Optional[str],
    refine_instruction: Optional[str],
    temperature_value: float,
    top_p_value: float,
    max_tokens_value: int,
    model_name: str = DEFAULT_VLM_MODEL,
) -> Tuple[str, str, Dict[str, Any]]:
    task_key = _ensure_task_key(task)
    engine = load_engine(model_name=model_name)
    engine.model.to("cuda")
    # engine = get_engine(model_name=model_name)
    # device = _current_device()
    # moved_to_cuda = torch.cuda.is_available() and device == "cuda"
    generation = None
    try:
        # if moved_to_cuda:
            # engine.to(device)
        generation = get_json_prompt(
            task=task_key,
            engine=engine,
            image=image_value,
            prompt=generate_value,
            structured_prompt=refine_prompt,
            editing_instructions=refine_instruction,
            temperature=float(temperature_value),
            top_p=float(top_p_value),
            max_tokens=int(max_tokens_value),
        )
    except ValueError as exc:
        raise gr.Error(str(exc)) from exc
    except Exception as exc:
        LOGGER.exception("Unexpected error while creating JSON prompt.")
        raise gr.Error("Failed to create a JSON prompt. Check the logs for details.") from exc
    finally:
        del engine
        gc.collect()
        # if moved_to_cuda:
        torch.cuda.synchronize()
        torch.cuda.empty_cache()

    if generation is None:
        raise gr.Error("Failed to create a JSON prompt.")

    formatted_prompt, prompt_dict = _format_prompt_text(generation.prompt)
    latency_report = generation.latency_report()
    return formatted_prompt, latency_report, prompt_dict


def _parse_resolution(raw_value: str) -> Tuple[int, int]:
    normalised = raw_value.replace(",", " ").replace("x", " ")
    parts = [part for part in normalised.split() if part]
    if len(parts) != 2:
        raise gr.Error("Resolution must contain exactly two integers, e.g. '1024 1024'.")

    try:
        width, height = (int(parts[0]), int(parts[1]))
    except ValueError as exc:
        raise gr.Error("Resolution values must be integers.") from exc

    if width <= 0 or height <= 0:
        raise gr.Error("Resolution values must be positive.")

    return width, height


def _prepare_negative_prompt(raw_value: Optional[str]):
    text = (raw_value or "").strip()
    if not text:
        return ""
    try:
        return json.loads(text)
    except json.JSONDecodeError:
        return text


def _run_image_generation(
    prompt_data: Dict[str, Any],
    resolution_value: str,
    steps_value: int,
    guidance_value: float,
    seed_value: Optional[float],
    negative_prompt_value: Optional[str],
    pipeline_name: str = DEFAULT_PIPELINE_NAME,
) -> Tuple[str, Image.Image]:
    if not torch.cuda.is_available():
        raise gr.Error("CUDA is required for image generation.")

    width, height = _parse_resolution(resolution_value)
    negative_prompt_payload = _prepare_negative_prompt(negative_prompt_value)
    seed = DEFAULT_SEED if seed_value is None else int(seed_value)

    try:
        pipeline = get_pipeline(pipeline_name=pipeline_name)
    except RuntimeError as exc:
        raise gr.Error(str(exc)) from exc

    start = time.perf_counter()
    try:
        image = run_pipeline(
            pipeline=pipeline,
            json_prompt=prompt_data,
            negative_prompt=negative_prompt_payload,
            width=width,
            height=height,
            seed=seed,
            num_steps=int(steps_value),
            guidance_scale=float(guidance_value),
        )
    except Exception as exc:
        LOGGER.exception("Failed to generate image.")
        raise gr.Error("Image generation failed. Check the logs for details.") from exc

    elapsed = time.perf_counter() - start
    status = f"Image generation time: {elapsed:.2f}s at {width}x{height}"
    return status, image


def _toggle_visibility(task_name: str):
    task_key = _ensure_task_key(task_name)
    return [
        gr.update(visible=task_key == "inspire"),
        gr.update(visible=task_key == "generate"),
        gr.update(visible=task_key == "refine"),
    ]


def _clear_inputs():
    return (
        None,
        "",
        "",
        "",
        DEFAULT_SAMPLING.temperature,
        DEFAULT_SAMPLING.top_p,
        DEFAULT_SAMPLING.max_tokens,
        "",
        "",
        None,
        "",
        None,
        gr.update(visible=False),
        DEFAULT_RESOLUTION,
        DEFAULT_STEPS,
        DEFAULT_GUIDANCE_SCALE,
        DEFAULT_SEED,
        DEFAULT_NEGATIVE_PROMPT,
    )


@torch.inference_mode()
def create_json_prompt(
    task: str,
    image_value: Optional[Image.Image],
    generate_value: Optional[str],
    refine_prompt: Optional[str],
    refine_instruction: Optional[str],
    temperature_value: float,
    top_p_value: float,
    max_tokens_value: int,
):
    formatted_prompt, latency_report, prompt_dict = _generate_prompt(
        task=task,
        image_value=image_value,
        generate_value=generate_value,
        refine_prompt=refine_prompt,
        refine_instruction=refine_instruction,
        temperature_value=temperature_value,
        top_p_value=top_p_value,
        max_tokens_value=max_tokens_value,
    )
    return (
        formatted_prompt,
        latency_report,
        prompt_dict,
        "",
        None,
        gr.update(visible=True),
    )


def generate_image_from_state(
    prompt_state: Optional[Dict[str, Any]],
    resolution_value: str,
    steps_value: int,
    guidance_value: float,
    seed_value: Optional[float],
    negative_prompt_value: Optional[str],
):
    if not prompt_state:
        raise gr.Error("Create a JSON prompt first.")
    return _run_image_generation(
        prompt_data=prompt_state,
        resolution_value=resolution_value,
        steps_value=steps_value,
        guidance_value=guidance_value,
        seed_value=seed_value,
        negative_prompt_value=negative_prompt_value,
    )


def run_full_pipeline(
    task: str,
    image_value: Optional[Image.Image],
    generate_value: Optional[str],
    refine_prompt: Optional[str],
    refine_instruction: Optional[str],
    temperature_value: float,
    top_p_value: float,
    max_tokens_value: int,
    resolution_value: str,
    steps_value: int,
    guidance_value: float,
    seed_value: Optional[float],
    negative_prompt_value: Optional[str],
):
    task_key = _ensure_task_key(task)
    formatted_prompt, latency_report, prompt_dict = _generate_prompt(
        task=task_key,
        image_value=image_value,
        generate_value=generate_value,
        refine_prompt=refine_prompt,
        refine_instruction=refine_instruction,
        temperature_value=temperature_value,
        top_p_value=top_p_value,
        max_tokens_value=max_tokens_value,
    )
    status, image = _run_image_generation(
        prompt_data=prompt_dict,
        resolution_value=resolution_value,
        steps_value=steps_value,
        guidance_value=guidance_value,
        seed_value=seed_value,
        negative_prompt_value=negative_prompt_value,
    )
    return (
        formatted_prompt,
        latency_report,
        prompt_dict,
        status,
        image,
        gr.update(visible=True),
    )


def build_demo() -> gr.Blocks:
    hero_css = textwrap.dedent(
        """
        .hero-row {
            justify-content: center;
            gap: 0.5rem;
        }
        .hero-item {
            align-items: center;
            display: flex;
            flex-direction: column;
            gap: 0.25rem;
        }
        .hero-item .gr-image {
            max-width: 512px;
        }
        .hero-image img {
            height: 512px !important;
            width: 512px !important;
            object-fit: cover;
        }
        .hero-caption {
            text-align: center;
            width: 100%;
            margin: 0;
        }
        """
    )

    with gr.Blocks(title="GAIA Inference Demo", css=hero_css) as demo:
        hero_markdown = textwrap.dedent(
            """
            # GAIA Prompt & Image Generation
            by [Bria.AI](https://bria.ai)
            To access via API: [TODO](TODO).
            Choose a mode to craft a structured JSON prompt and optionally render an image.
            """
        )
        gr.Markdown(hero_markdown)

        hero_images = [
            (ASSETS_DIR / "zebra_balloons.jpeg", "Zebra with balloons"),
            (ASSETS_DIR / "face_portrait.jpeg", "Face portrait"),
        ]
        with gr.Row(equal_height=True, elem_classes=["hero-row"]):
            for image_path, caption in hero_images:
                with gr.Column(scale=0, min_width=512, elem_classes=["hero-item"]):
                    gr.Image(
                        value=str(image_path),
                        type="filepath",
                        show_label=False,
                        interactive=False,
                        elem_classes=["hero-image"],
                        height=512,
                        width=512,
                    )
                    gr.Markdown(caption, elem_classes=["hero-caption"])

        task = gr.Radio(
            choices=TASK_CHOICES,
            label="Task",
            value=DEFAULT_TASK_LABEL,
            interactive=True,
            info="Choose what you want the model to do.",
        )

        with gr.Row():
            with gr.Column(scale=1, min_width=320):
                inspire_group = gr.Group(visible=True)
                with inspire_group:
                    inspire_image = gr.Image(
                        label="Reference image",
                        type="pil",
                        image_mode="RGB",
                    )

                generate_group = gr.Group(visible=False)
                with generate_group:
                    generate_prompt = gr.Textbox(
                        label="Short prompt",
                        placeholder="e.g., cyberpunk city at sunrise",
                        lines=3,
                    )

                refine_group = gr.Group(visible=False)
                with refine_group:
                    refine_input = gr.TextArea(
                        label="Existing structured prompt",
                        placeholder="Paste the current structured prompt here.",
                        lines=12,
                    )
                    refine_edits = gr.TextArea(
                        label="Editing instructions",
                        placeholder="Describe the changes you want. One instruction per line works well.",
                        lines=6,
                    )

                with gr.Accordion("additional settings", open=False):
                    temperature = gr.Slider(
                        minimum=0.0,
                        maximum=1.2,
                        value=DEFAULT_SAMPLING.temperature,
                        step=0.05,
                        label="Temperature",
                    )
                    top_p = gr.Slider(
                        minimum=0.0,
                        maximum=1.0,
                        value=DEFAULT_SAMPLING.top_p,
                        step=0.05,
                        label="Top-p",
                    )
                    max_tokens = gr.Slider(
                        minimum=64,
                        maximum=4096,
                        value=DEFAULT_SAMPLING.max_tokens,
                        step=64,
                        label="Max tokens",
                    )

            with gr.Column(scale=1, min_width=320):
                create_button = gr.Button("Create JSON prompt", variant="primary")
                generate_button = gr.Button("Generate image", variant="secondary", visible=False)
                full_pipeline_button = gr.Button("Run full pipeline")
                clear_button = gr.Button("Clear inputs")

                with gr.Accordion("image generation settings", open=False):
                    resolution = gr.Dropdown(
                        choices=RESOLUTIONS_WH,
                        value=DEFAULT_RESOLUTION,
                        label="Resolution (W H)",
                    )
                    steps = gr.Slider(
                        minimum=10,
                        maximum=150,
                        step=1,
                        value=DEFAULT_STEPS,
                        label="Steps",
                    )
                    guidance = gr.Slider(
                        minimum=0.1,
                        maximum=20.0,
                        step=0.1,
                        value=DEFAULT_GUIDANCE_SCALE,
                        label="Guidance scale",
                    )
                    seed = gr.Number(
                        value=DEFAULT_SEED,
                        precision=0,
                        label="Seed (-1 for random)",
                    )
                    negative_prompt = gr.TextArea(
                        label="Negative prompt (JSON)",
                        placeholder='Optional JSON string, e.g. ""',
                        lines=4,
                        value=DEFAULT_NEGATIVE_PROMPT,
                    )

        output = gr.TextArea(
            label="Generated JSON prompt",
            lines=18,
            interactive=False,
        )
        latency = gr.Markdown("")
        pipeline_status = gr.Markdown("")
        result_image = gr.Image(label="Generated image", type="pil")
        prompt_state = gr.State()

        task.change(
            fn=_toggle_visibility,
            inputs=task,
            outputs=[inspire_group, generate_group, refine_group],
        )

        clear_button.click(
            fn=_clear_inputs,
            inputs=[],
            outputs=[
                inspire_image,
                generate_prompt,
                refine_input,
                refine_edits,
                temperature,
                top_p,
                max_tokens,
                output,
                latency,
                prompt_state,
                pipeline_status,
                result_image,
                generate_button,
                resolution,
                steps,
                guidance,
                seed,
                negative_prompt,
            ],
        )

        create_button.click(
            fn=create_json_prompt,
            inputs=[
                task,
                inspire_image,
                generate_prompt,
                refine_input,
                refine_edits,
                temperature,
                top_p,
                max_tokens,
            ],
            outputs=[
                output,
                latency,
                prompt_state,
                pipeline_status,
                result_image,
                generate_button,
            ],
        )

        generate_button.click(
            fn=generate_image_from_state,
            inputs=[
                prompt_state,
                resolution,
                steps,
                guidance,
                seed,
                negative_prompt,
            ],
            outputs=[
                pipeline_status,
                result_image,
            ],
        )

        full_pipeline_button.click(
            fn=run_full_pipeline,
            inputs=[
                task,
                inspire_image,
                generate_prompt,
                refine_input,
                refine_edits,
                temperature,
                top_p,
                max_tokens,
                resolution,
                steps,
                guidance,
                seed,
                negative_prompt,
            ],
            outputs=[
                output,
                latency,
                prompt_state,
                pipeline_status,
                result_image,
                generate_button,
            ],
        )

        gr.Examples(
            label="Usage Examples",
            examples=USAGE_EXAMPLES,
            inputs=[
                task,
                inspire_image,
                generate_prompt,
                refine_input,
                refine_edits,
                temperature,
                top_p,
                max_tokens,
                resolution,
                steps,
                guidance,
                seed,
                negative_prompt,
            ],
            outputs=[
                output,
                latency,
                prompt_state,
                pipeline_status,
                result_image,
                generate_button,
            ],
            fn=run_full_pipeline,
        )

    return demo


logging.basicConfig(level=getattr(logging, os.environ.get("LOG_LEVEL", "INFO").upper(), logging.INFO))

if __name__ == "__main__":
    demo = build_demo()
    demo.queue().launch()