Spaces:
Sleeping
Sleeping
Update conver.py
Browse files
conver.py
CHANGED
|
@@ -10,8 +10,7 @@ import tempfile
|
|
| 10 |
from pydub import AudioSegment
|
| 11 |
import base64
|
| 12 |
from pathlib import Path
|
| 13 |
-
import
|
| 14 |
-
import asyncio
|
| 15 |
|
| 16 |
@dataclass
|
| 17 |
class ConversationConfig:
|
|
@@ -28,43 +27,71 @@ class URLToAudioConverter:
|
|
| 28 |
def fetch_text(self, url: str) -> str:
|
| 29 |
if not url:
|
| 30 |
raise ValueError("URL cannot be empty")
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
def extract_conversation(self, text: str) -> Dict:
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
async def text_to_speech(self, conversation_json: Dict, voice_1: str, voice_2: str) -> Tuple[List[str], str]:
|
| 55 |
-
output_dir =
|
| 56 |
filenames = []
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
async def _generate_audio(self, text: str, voice: str, rate: int = 0, pitch: int = 0) -> Tuple[str, str]:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
voice_short_name = voice.split(" - ")[0]
|
| 69 |
rate_str = f"{rate:+d}%"
|
| 70 |
pitch_str = f"{pitch:+d}Hz"
|
|
@@ -75,80 +102,65 @@ class URLToAudioConverter:
|
|
| 75 |
return tmp_path, None
|
| 76 |
|
| 77 |
def _create_output_directory(self) -> str:
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
def combine_audio_files(self, filenames: List[str], output_file: str) -> None:
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
|
|
|
| 92 |
|
| 93 |
async def url_to_audio(self, url: str, voice_1: str, voice_2: str) -> Tuple[str, str]:
|
|
|
|
| 94 |
text = self.fetch_text(url)
|
| 95 |
words = text.split()
|
| 96 |
if len(words) > self.config.max_words:
|
| 97 |
-
text = " ".join(words[:
|
| 98 |
conversation_json = self.extract_conversation(text)
|
| 99 |
-
conversation_text = "\n".join(
|
|
|
|
|
|
|
| 100 |
self.llm_out = conversation_json
|
| 101 |
-
audio_files,
|
| 102 |
-
|
| 103 |
-
self.combine_audio_files(audio_files,
|
| 104 |
-
return
|
| 105 |
|
| 106 |
async def text_to_audio(self, text: str, voice_1: str, voice_2: str) -> Tuple[str, str]:
|
|
|
|
| 107 |
conversation_json = self.extract_conversation(text)
|
| 108 |
-
conversation_text = "\n".join(
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
self.
|
| 112 |
-
|
|
|
|
|
|
|
| 113 |
|
| 114 |
async def raw_text_to_audio(self, text: str, voice_1: str, voice_2: str) -> Tuple[str, str]:
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
# Verifica voces disponibles (DEBUG)
|
| 127 |
-
voices = await edge_tts.list_voices()
|
| 128 |
-
voice_names = [v['Name'] for v in voices]
|
| 129 |
-
print(f"Voces disponibles (primeras 5): {voice_names[:5]}...")
|
| 130 |
-
|
| 131 |
-
# Extrae el nombre corto de la voz (ej: "en-US-AvaMultilingualNeural")
|
| 132 |
-
voice_short = voice_1.split(" - ")[0] if " - " in voice_1 else voice_1
|
| 133 |
-
print(f"Voz a usar: {voice_short}")
|
| 134 |
-
|
| 135 |
-
# Genera el audio
|
| 136 |
-
communicate = edge_tts.Communicate(text, voice_short)
|
| 137 |
-
print("Generando audio...")
|
| 138 |
-
await communicate.save(output_file)
|
| 139 |
-
print("Audio generado.")
|
| 140 |
-
|
| 141 |
-
# Verifica que el archivo existe y no está vacío
|
| 142 |
-
if not os.path.exists(output_file):
|
| 143 |
-
print("ERROR: Archivo no creado.")
|
| 144 |
-
return "Error: Archivo no generado", None
|
| 145 |
-
elif os.path.getsize(output_file) == 0:
|
| 146 |
-
print("ERROR: Archivo vacío.")
|
| 147 |
-
return "Error: Archivo de audio vacío", None
|
| 148 |
-
|
| 149 |
-
print(f"=== DEBUG FIN (Archivo válido: {output_file}) ===")
|
| 150 |
-
return text, output_file
|
| 151 |
-
|
| 152 |
-
except Exception as e:
|
| 153 |
-
print(f"ERROR CRÍTICO: {str(e)}")
|
| 154 |
-
return f"Error: {str(e)}", None
|
|
|
|
| 10 |
from pydub import AudioSegment
|
| 11 |
import base64
|
| 12 |
from pathlib import Path
|
| 13 |
+
import time
|
|
|
|
| 14 |
|
| 15 |
@dataclass
|
| 16 |
class ConversationConfig:
|
|
|
|
| 27 |
def fetch_text(self, url: str) -> str:
|
| 28 |
if not url:
|
| 29 |
raise ValueError("URL cannot be empty")
|
| 30 |
+
|
| 31 |
+
full_url = f"{self.config.prefix_url}{url}"
|
| 32 |
+
try:
|
| 33 |
+
response = httpx.get(full_url, timeout=60.0)
|
| 34 |
+
response.raise_for_status()
|
| 35 |
+
return response.text
|
| 36 |
+
except httpx.HTTPError as e:
|
| 37 |
+
raise RuntimeError(f"Failed to fetch URL: {e}")
|
| 38 |
|
| 39 |
def extract_conversation(self, text: str) -> Dict:
|
| 40 |
+
if not text:
|
| 41 |
+
raise ValueError("Input text cannot be empty")
|
| 42 |
+
|
| 43 |
+
try:
|
| 44 |
+
prompt = (
|
| 45 |
+
f"{text}\nConvert the provided text into a short informative podcast conversation "
|
| 46 |
+
f"between two experts. Return ONLY a JSON object with the following structure:\n"
|
| 47 |
+
'{"conversation": [{"speaker": "Speaker1", "text": "..."}, {"speaker": "Speaker2", "text": "..."}]}'
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
chat_completion = self.llm_client.chat.completions.create(
|
| 51 |
+
messages=[{"role": "user", "content": prompt}],
|
| 52 |
+
model=self.config.model_name,
|
| 53 |
+
response_format={"type": "json_object"}
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
response_content = chat_completion.choices[0].message.content
|
| 57 |
+
json_str = response_content.strip()
|
| 58 |
+
|
| 59 |
+
if not json_str.startswith('{'):
|
| 60 |
+
start = json_str.find('{')
|
| 61 |
+
if start != -1:
|
| 62 |
+
json_str = json_str[start:]
|
| 63 |
+
|
| 64 |
+
if not json_str.endswith('}'):
|
| 65 |
+
end = json_str.rfind('}')
|
| 66 |
+
if end != -1:
|
| 67 |
+
json_str = json_str[:end+1]
|
| 68 |
+
|
| 69 |
+
return json.loads(json_str)
|
| 70 |
+
except Exception as e:
|
| 71 |
+
print(f"Error en extract_conversation: {str(e)}")
|
| 72 |
+
raise RuntimeError(f"Failed to extract conversation: {str(e)}")
|
| 73 |
|
| 74 |
async def text_to_speech(self, conversation_json: Dict, voice_1: str, voice_2: str) -> Tuple[List[str], str]:
|
| 75 |
+
output_dir = self._create_output_directory()
|
| 76 |
filenames = []
|
| 77 |
+
try:
|
| 78 |
+
for i, turn in enumerate(conversation_json["conversation"]):
|
| 79 |
+
filename = os.path.join(output_dir, f"output_{i}.mp3")
|
| 80 |
+
voice = voice_1 if i % 2 == 0 else voice_2
|
| 81 |
+
tmp_path, error = await self._generate_audio(turn["text"], voice)
|
| 82 |
+
if error:
|
| 83 |
+
raise RuntimeError(f"Text-to-speech failed: {error}")
|
| 84 |
+
os.rename(tmp_path, filename)
|
| 85 |
+
filenames.append(filename)
|
| 86 |
+
return filenames, output_dir
|
| 87 |
+
except Exception as e:
|
| 88 |
+
raise RuntimeError(f"Failed to convert text to speech: {e}")
|
| 89 |
|
| 90 |
async def _generate_audio(self, text: str, voice: str, rate: int = 0, pitch: int = 0) -> Tuple[str, str]:
|
| 91 |
+
if not text.strip():
|
| 92 |
+
return None, "Text cannot be empty"
|
| 93 |
+
if not voice:
|
| 94 |
+
return None, "Voice cannot be empty"
|
| 95 |
voice_short_name = voice.split(" - ")[0]
|
| 96 |
rate_str = f"{rate:+d}%"
|
| 97 |
pitch_str = f"{pitch:+d}Hz"
|
|
|
|
| 102 |
return tmp_path, None
|
| 103 |
|
| 104 |
def _create_output_directory(self) -> str:
|
| 105 |
+
os.makedirs("outputs", exist_ok=True)
|
| 106 |
+
return "outputs"
|
| 107 |
+
|
| 108 |
+
def clean_old_files(self, directory: str = "outputs", max_age_seconds: int = 86400):
|
| 109 |
+
now = time.time()
|
| 110 |
+
for filename in os.listdir(directory):
|
| 111 |
+
file_path = os.path.join(directory, filename)
|
| 112 |
+
if file_path.endswith(".mp3"):
|
| 113 |
+
file_age = now - os.path.getmtime(file_path)
|
| 114 |
+
if file_age > max_age_seconds:
|
| 115 |
+
os.remove(file_path)
|
| 116 |
|
| 117 |
def combine_audio_files(self, filenames: List[str], output_file: str) -> None:
|
| 118 |
+
if not filenames:
|
| 119 |
+
raise ValueError("No input files provided")
|
| 120 |
+
try:
|
| 121 |
+
combined = AudioSegment.empty()
|
| 122 |
+
for filename in filenames:
|
| 123 |
+
combined += AudioSegment.from_file(filename, format="mp3")
|
| 124 |
+
combined.export(output_file, format="mp3")
|
| 125 |
+
except Exception as e:
|
| 126 |
+
raise RuntimeError(f"Failed to combine audio files: {e}")
|
| 127 |
|
| 128 |
async def url_to_audio(self, url: str, voice_1: str, voice_2: str) -> Tuple[str, str]:
|
| 129 |
+
self.clean_old_files()
|
| 130 |
text = self.fetch_text(url)
|
| 131 |
words = text.split()
|
| 132 |
if len(words) > self.config.max_words:
|
| 133 |
+
text = " ".join(words[:self.config.max_words])
|
| 134 |
conversation_json = self.extract_conversation(text)
|
| 135 |
+
conversation_text = "\n".join(
|
| 136 |
+
f"{turn['speaker']}: {turn['text']}" for turn in conversation_json["conversation"]
|
| 137 |
+
)
|
| 138 |
self.llm_out = conversation_json
|
| 139 |
+
audio_files, output_dir = await self.text_to_speech(conversation_json, voice_1, voice_2)
|
| 140 |
+
output_file = os.path.join(output_dir, f"combined_{int(time.time())}.mp3")
|
| 141 |
+
self.combine_audio_files(audio_files, output_file)
|
| 142 |
+
return output_file, conversation_text
|
| 143 |
|
| 144 |
async def text_to_audio(self, text: str, voice_1: str, voice_2: str) -> Tuple[str, str]:
|
| 145 |
+
self.clean_old_files()
|
| 146 |
conversation_json = self.extract_conversation(text)
|
| 147 |
+
conversation_text = "\n".join(
|
| 148 |
+
f"{turn['speaker']}: {turn['text']}" for turn in conversation_json["conversation"]
|
| 149 |
+
)
|
| 150 |
+
audio_files, output_dir = await self.text_to_speech(conversation_json, voice_1, voice_2)
|
| 151 |
+
output_file = os.path.join(output_dir, f"combined_{int(time.time())}.mp3")
|
| 152 |
+
self.combine_audio_files(audio_files, output_file)
|
| 153 |
+
return output_file, conversation_text
|
| 154 |
|
| 155 |
async def raw_text_to_audio(self, text: str, voice_1: str, voice_2: str) -> Tuple[str, str]:
|
| 156 |
+
self.clean_old_files()
|
| 157 |
+
conversation = {
|
| 158 |
+
"conversation": [
|
| 159 |
+
{"speaker": "Host", "text": text},
|
| 160 |
+
{"speaker": "Co-host", "text": "(Continuación del tema)"}
|
| 161 |
+
]
|
| 162 |
+
}
|
| 163 |
+
audio_files, output_dir = await self.text_to_speech(conversation, voice_1, voice_2)
|
| 164 |
+
output_file = os.path.join(output_dir, f"raw_podcast_{int(time.time())}.mp3")
|
| 165 |
+
self.combine_audio_files(audio_files, output_file)
|
| 166 |
+
return text, output_file
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|