Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,187 +1,54 @@
|
|
| 1 |
-
|
| 2 |
-
from typing import List, Tuple, Dict
|
| 3 |
import os
|
| 4 |
-
import
|
| 5 |
-
import
|
| 6 |
-
import
|
| 7 |
-
from openai import OpenAI
|
| 8 |
-
import edge_tts
|
| 9 |
-
import tempfile
|
| 10 |
-
from pydub import AudioSegment
|
| 11 |
-
import base64
|
| 12 |
-
from pathlib import Path
|
| 13 |
-
import shutil # Importamos shutil para manejo de directorios
|
| 14 |
|
| 15 |
-
|
| 16 |
-
class ConversationConfig:
|
| 17 |
-
max_words: int = 3000
|
| 18 |
-
prefix_url: str = "https://r.jina.ai/"
|
| 19 |
-
model_name: str = "meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo"
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
self.llm_client = OpenAI(api_key=llm_api_key, base_url="https://api.together.xyz/v1")
|
| 25 |
-
self.llm_out = None
|
| 26 |
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
full_url = f"{self.config.prefix_url}{url}"
|
| 32 |
-
try:
|
| 33 |
-
response = httpx.get(full_url, timeout=60.0)
|
| 34 |
-
response.raise_for_status()
|
| 35 |
-
return response.text
|
| 36 |
-
except httpx.HTTPError as e:
|
| 37 |
-
raise RuntimeError(f"Failed to fetch URL: {e}")
|
| 38 |
-
|
| 39 |
-
def extract_conversation(self, text: str) -> Dict:
|
| 40 |
-
if not text:
|
| 41 |
-
raise ValueError("Input text cannot be empty")
|
| 42 |
-
|
| 43 |
-
try:
|
| 44 |
-
# Prompt mejorado para obtener JSON consistente
|
| 45 |
-
prompt = (
|
| 46 |
-
f"{text}\nConvert the provided text into a short informative podcast conversation "
|
| 47 |
-
f"between two experts. Return ONLY a JSON object with the following structure:\n"
|
| 48 |
-
'{"conversation": [{"speaker": "Speaker1", "text": "..."}, {"speaker": "Speaker2", "text": "..."}]}'
|
| 49 |
-
)
|
| 50 |
-
|
| 51 |
-
chat_completion = self.llm_client.chat.completions.create(
|
| 52 |
-
messages=[{"role": "user", "content": prompt}],
|
| 53 |
-
model=self.config.model_name,
|
| 54 |
-
response_format={"type": "json_object"} # Fuerza formato JSON
|
| 55 |
-
)
|
| 56 |
-
|
| 57 |
-
# Extracción robusta de JSON
|
| 58 |
-
response_content = chat_completion.choices[0].message.content
|
| 59 |
-
json_str = response_content.strip()
|
| 60 |
-
|
| 61 |
-
# Limpieza de texto alrededor del JSON
|
| 62 |
-
if not json_str.startswith('{'):
|
| 63 |
-
start = json_str.find('{')
|
| 64 |
-
if start != -1:
|
| 65 |
-
json_str = json_str[start:]
|
| 66 |
-
|
| 67 |
-
if not json_str.endswith('}'):
|
| 68 |
-
end = json_str.rfind('}')
|
| 69 |
-
if end != -1:
|
| 70 |
-
json_str = json_str[:end+1]
|
| 71 |
-
|
| 72 |
-
return json.loads(json_str)
|
| 73 |
-
except Exception as e:
|
| 74 |
-
# Debug: Imprime la respuesta del modelo para diagnóstico
|
| 75 |
-
print(f"Error en extract_conversation: {str(e)}")
|
| 76 |
-
print(f"Respuesta del modelo: {response_content}")
|
| 77 |
-
raise RuntimeError(f"Failed to extract conversation: {str(e)}")
|
| 78 |
-
|
| 79 |
-
async def text_to_speech(self, conversation_json: Dict, voice_1: str, voice_2: str) -> Tuple[List[str], str]:
|
| 80 |
-
output_dir = Path(self._create_output_directory())
|
| 81 |
-
filenames = []
|
| 82 |
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
return filenames, str(output_dir)
|
| 96 |
-
except Exception as e:
|
| 97 |
-
raise RuntimeError(f"Failed to convert text to speech: {e}")
|
| 98 |
-
|
| 99 |
-
async def _generate_audio(self, text: str, voice: str, rate: int = 0, pitch: int = 0) -> Tuple[str, str]:
|
| 100 |
-
if not text.strip():
|
| 101 |
-
return None, "Text cannot be empty"
|
| 102 |
-
if not voice:
|
| 103 |
-
return None, "Voice cannot be empty"
|
| 104 |
-
|
| 105 |
-
voice_short_name = voice.split(" - ")[0]
|
| 106 |
-
rate_str = f"{rate:+d}%"
|
| 107 |
-
pitch_str = f"{pitch:+d}Hz"
|
| 108 |
-
communicate = edge_tts.Communicate(text, voice_short_name, rate=rate_str, pitch=pitch_str)
|
| 109 |
-
|
| 110 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
|
| 111 |
-
tmp_path = tmp_file.name
|
| 112 |
-
await communicate.save(tmp_path)
|
| 113 |
-
|
| 114 |
-
return tmp_path, None
|
| 115 |
-
|
| 116 |
-
def _create_output_directory(self) -> str:
|
| 117 |
-
random_bytes = os.urandom(8)
|
| 118 |
-
folder_name = base64.urlsafe_b64encode(random_bytes).decode("utf-8")
|
| 119 |
-
os.makedirs(folder_name, exist_ok=True)
|
| 120 |
-
return folder_name
|
| 121 |
-
|
| 122 |
-
def combine_audio_files(self, filenames: List[str], output_file: str) -> None:
|
| 123 |
-
if not filenames:
|
| 124 |
-
raise ValueError("No input files provided")
|
| 125 |
-
|
| 126 |
-
try:
|
| 127 |
-
combined = AudioSegment.empty()
|
| 128 |
-
for filename in filenames:
|
| 129 |
-
audio_segment = AudioSegment.from_file(filename, format="mp3")
|
| 130 |
-
combined += audio_segment
|
| 131 |
-
|
| 132 |
-
combined.export(output_file, format="mp3")
|
| 133 |
-
|
| 134 |
-
# Limpieza mejorada y robusta
|
| 135 |
-
dir_path = os.path.dirname(filenames[0])
|
| 136 |
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
conversation_json = self.extract_conversation(text)
|
| 164 |
-
conversation_text = "\n".join(
|
| 165 |
-
f"{turn['speaker']}: {turn['text']}" for turn in conversation_json["conversation"]
|
| 166 |
-
)
|
| 167 |
-
self.llm_out = conversation_json
|
| 168 |
-
audio_files, folder_name = await self.text_to_speech(
|
| 169 |
-
conversation_json, voice_1, voice_2
|
| 170 |
-
)
|
| 171 |
-
|
| 172 |
-
final_output = os.path.join(folder_name, "combined_output.mp3")
|
| 173 |
-
self.combine_audio_files(audio_files, final_output)
|
| 174 |
-
return final_output, conversation_text
|
| 175 |
-
|
| 176 |
-
async def text_to_audio(self, text: str, voice_1: str, voice_2: str) -> Tuple[str, str]:
|
| 177 |
-
"""Método para procesar texto directo"""
|
| 178 |
-
conversation_json = self.extract_conversation(text)
|
| 179 |
-
conversation_text = "\n".join(
|
| 180 |
-
f"{turn['speaker']}: {turn['text']}" for turn in conversation_json["conversation"]
|
| 181 |
-
)
|
| 182 |
-
audio_files, folder_name = await self.text_to_speech(
|
| 183 |
-
conversation_json, voice_1, voice_2
|
| 184 |
-
)
|
| 185 |
-
final_output = os.path.join(folder_name, "combined_output.mp3")
|
| 186 |
-
self.combine_audio_files(audio_files, final_output)
|
| 187 |
-
return final_output, conversation_text
|
|
|
|
| 1 |
+
import gradio as gr
|
|
|
|
| 2 |
import os
|
| 3 |
+
import asyncio
|
| 4 |
+
from conver import ConversationConfig, URLToAudioConverter
|
| 5 |
+
from dotenv import load_dotenv
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
+
load_dotenv()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
+
async def synthesize(article_url, text_input, language="en"):
|
| 10 |
+
if not article_url and not text_input:
|
| 11 |
+
return "Error: Ingresa una URL o texto", None
|
|
|
|
|
|
|
| 12 |
|
| 13 |
+
try:
|
| 14 |
+
config = ConversationConfig()
|
| 15 |
+
converter = URLToAudioConverter(config, llm_api_key=os.environ.get("TOGETHER_API_KEY"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
+
# Voces humanizadas
|
| 18 |
+
voices = {
|
| 19 |
+
"en": ("en-US-AvaMultilingualNeural", "en-US-AndrewMultilingualNeural"),
|
| 20 |
+
"es": ("es-ES-AlvaroNeural", "es-ES-ElviraNeural")
|
| 21 |
+
}
|
| 22 |
+
voice1, voice2 = voices.get(language, voices["en"])
|
| 23 |
+
|
| 24 |
+
if text_input:
|
| 25 |
+
output_file, conversation = await converter.text_to_audio(text_input, voice1, voice2)
|
| 26 |
+
else:
|
| 27 |
+
output_file, conversation = await converter.url_to_audio(article_url, voice1, voice2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
+
return conversation, output_file
|
| 30 |
+
except Exception as e:
|
| 31 |
+
return f"Error: {str(e)}", None
|
| 32 |
+
|
| 33 |
+
def synthesize_sync(article_url, text_input, language):
|
| 34 |
+
return asyncio.run(synthesize(article_url, text_input, language))
|
| 35 |
+
|
| 36 |
+
with gr.Blocks(theme='gstaff/sketch') as demo:
|
| 37 |
+
gr.Markdown("# 🎙 Podcast Converter (Human Voices)")
|
| 38 |
+
with gr.Group():
|
| 39 |
+
text_url = gr.Textbox(label="URL (opcional)", placeholder="https://...")
|
| 40 |
+
text_input = gr.Textbox(label="O texto directo", lines=5)
|
| 41 |
+
language = gr.Dropdown(["en", "es"], label="Idioma", value="en")
|
| 42 |
+
btn = gr.Button("Generar Podcast", variant="primary")
|
| 43 |
+
|
| 44 |
+
with gr.Row():
|
| 45 |
+
conv_display = gr.Textbox(label="Conversación", interactive=False, lines=10)
|
| 46 |
+
aud = gr.Audio(label="Audio Generado", interactive=False)
|
| 47 |
+
|
| 48 |
+
btn.click(
|
| 49 |
+
synthesize_sync,
|
| 50 |
+
inputs=[text_url, text_input, language],
|
| 51 |
+
outputs=[conv_display, aud]
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|