File size: 11,003 Bytes
5b3defa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
"""
HunyuanOCR Model Wrapper
Provides an easy-to-use interface for text detection and recognition
"""
import re
import os
import torch
from typing import Dict, List, Tuple, Optional
from PIL import Image
from transformers import AutoProcessor, HunYuanVLForConditionalGeneration
from transformers.modeling_outputs import CausalLMOutputWithPast
import requests
from io import BytesIO

# Monkey-patch HunYuanVLForConditionalGeneration.generate to fix dtype issue
def patched_generate(
    self,
    input_ids: Optional[torch.LongTensor] = None,
    attention_mask: Optional[torch.Tensor] = None,
    position_ids: Optional[torch.LongTensor] = None,
    imgs: Optional[list[torch.FloatTensor]] = None,
    imgs_pos: Optional[list[int]] = None,
    token_type_ids: Optional[torch.LongTensor] = None,
    pixel_values: Optional[torch.FloatTensor] = None,
    image_grid_thw: Optional[list[int]] = None,
    **kwargs,
) -> CausalLMOutputWithPast:
    if "inputs_embeds" in kwargs:
        raise NotImplementedError("`inputs_embeds` is not supported")

    inputs_embeds = self.model.embed_tokens(input_ids)

    if self.vit is not None and pixel_values is not None:
        # PATCH: Use model's dtype instead of forcing bfloat16
        pixel_values = pixel_values.to(self.dtype)
        image_embeds = self.vit(pixel_values, image_grid_thw)

        # ViT may be deployed on different GPUs from those used by LLMs, due to auto-mapping of accelerate.
        image_embeds = image_embeds.to(input_ids.device, non_blocking=True)

        image_mask, _ = self.get_placeholder_mask(
            input_ids, inputs_embeds=inputs_embeds, image_features=image_embeds
        )
        inputs_embeds = inputs_embeds.masked_scatter(image_mask, image_embeds)

    return super(HunYuanVLForConditionalGeneration, self).generate(
        inputs=input_ids,
        position_ids=position_ids,
        attention_mask=attention_mask,
        inputs_embeds=inputs_embeds,
        **kwargs,
    )

HunYuanVLForConditionalGeneration.generate = patched_generate


class HunyuanOCR:
    """Wrapper class for HunyuanOCR model for text spotting tasks"""
    
    def __init__(self, model_path: str = "tencent/HunyuanOCR", device: Optional[str] = None):
        """
        Initialize the HunyuanOCR model
        
        Args:
            model_path: Path or name of the model (default: "tencent/HunyuanOCR")
            device: Device to load model on (cuda/cpu). Auto-detected if None.
        """
        # Check if local model exists when using default path
        if model_path == "tencent/HunyuanOCR" and os.path.exists("HunyuanOCR"):
            print("Found local HunyuanOCR model, using it instead of downloading...")
            model_path = "HunyuanOCR"
            
        self.model_path = model_path
        
        # Auto-detect device if not specified
        if device is None:
            if torch.cuda.is_available():
                self.device = "cuda"
            elif torch.backends.mps.is_available():
                self.device = "mps"
            else:
                self.device = "cpu"
        else:
            self.device = device
            
        print(f"Loading HunyuanOCR model on {self.device}...")
        
        # Load processor
        self.processor = AutoProcessor.from_pretrained(model_path, use_fast=False)
        
        # Determine dtype based on device
        if self.device == "cuda":
            torch_dtype = torch.bfloat16
        elif self.device == "mps":
            torch_dtype = torch.float16
        else:
            torch_dtype = torch.float32
            
        # Load model
        self.model = HunYuanVLForConditionalGeneration.from_pretrained(
            model_path,
            attn_implementation="eager",
            torch_dtype=torch_dtype,
            device_map="auto" if self.device == "cuda" else None
        )
        
        if self.device != "cuda":
            self.model = self.model.to(self.device)
            
        print("Model loaded successfully!")
    
    def clean_repeated_substrings(self, text: str) -> str:
        """
        Clean repeated substrings in text output
        
        Args:
            text: Input text to clean
            
        Returns:
            Cleaned text
        """
        n = len(text)
        if n < 8000:
            return text
            
        for length in range(2, n // 10 + 1):
            candidate = text[-length:] 
            count = 0
            i = n - length
            
            while i >= 0 and text[i:i + length] == candidate:
                count += 1
                i -= length

            if count >= 10:
                return text[:n - length * (count - 1)]  

        return text
    
    def load_image(self, image_source: str) -> Image.Image:
        """
        Load image from URL or file path
        
        Args:
            image_source: URL or file path to image
            
        Returns:
            PIL Image object
        """
        if image_source.startswith(('http://', 'https://')):
            response = requests.get(image_source)
            response.raise_for_status()
            return Image.open(BytesIO(response.content))
        else:
            return Image.open(image_source)
    
    def detect_text(self, image: Image.Image, prompt: Optional[str] = None) -> str:
        """
        Detect and recognize text in image with bounding boxes
        
        Args:
            image: PIL Image object
            prompt: Custom prompt (default: text spotting prompt in Chinese)
            
        Returns:
            Model response with detected text and coordinates
        """
        # Default prompt for text spotting
        if prompt is None:
            prompt = "检测并识别图片中的文字,将文本内容与坐标格式化输出。"
        
        # Prepare messages
        messages = [
            {
                "role": "user",
                "content": [
                    {"type": "image"},
                    {"type": "text", "text": prompt},
                ],
            }
        ]
        
        # Apply chat template
        text = self.processor.apply_chat_template(
            messages, 
            tokenize=False, 
            add_generation_prompt=True
        )
        
        # Process inputs
        inputs = self.processor(
            text=[text],
            images=[image],
            padding=True,
            return_tensors="pt",
        )
        
        # Generate
        with torch.no_grad():
            # Get model's dtype
            model_dtype = next(self.model.parameters()).dtype
            
            if self.device == "cuda":
                device = next(self.model.parameters()).device
                inputs = inputs.to(device)
            else:
                # Move to device and cast floating point tensors to model's dtype
                new_inputs = {}
                for k, v in inputs.items():
                    if torch.is_tensor(v):
                        v = v.to(self.device)
                        if v.dtype in [torch.float16, torch.bfloat16, torch.float32]:
                            v = v.to(dtype=model_dtype)
                        new_inputs[k] = v
                    else:
                        new_inputs[k] = v
                inputs = new_inputs
            
            generated_ids = self.model.generate(
                **inputs, 
                max_new_tokens=2048, 
                do_sample=False
            )
        
        # Decode output
        if "input_ids" in inputs:
            input_ids = inputs["input_ids"]
        else:
            input_ids = inputs["inputs"]
            
        generated_ids_trimmed = [
            out_ids[len(in_ids):] 
            for in_ids, out_ids in zip(input_ids, generated_ids)
        ]
        
        output_text = self.processor.batch_decode(
            generated_ids_trimmed, 
            skip_special_tokens=True, 
            clean_up_tokenization_spaces=False
        )[0]
        
        # Clean repeated substrings
        output_text = self.clean_repeated_substrings(output_text)
        
        return output_text
    
    def parse_detection_results(self, response: str, image_width: int, image_height: int) -> List[Dict]:
        """
        Parse detection response into structured format with denormalized coordinates
        
        Args:
            response: Model output text
            image_width: Image width in pixels
            image_height: Image height in pixels
            
        Returns:
            List of dictionaries with 'text', 'x1', 'y1', 'x2', 'y2' keys
        """
        results = []
        
        # Pattern to match text and coordinates: text(x1,y1),(x2,y2)
        pattern = r'([^()]+?)(\(\d+,\d+\),\(\d+,\d+\))'
        matches = re.finditer(pattern, response)
        
        for match in matches:
            try:
                text = match.group(1).strip()
                coords = match.group(2)
                
                # Parse coordinates
                coord_pattern = r'\((\d+),(\d+)\)'
                coord_matches = re.findall(coord_pattern, coords)
                
                if len(coord_matches) == 2:
                    # Coordinates are normalized to [0, 1000], denormalize them
                    x1_norm, y1_norm = float(coord_matches[0][0]), float(coord_matches[0][1])
                    x2_norm, y2_norm = float(coord_matches[1][0]), float(coord_matches[1][1])
                    
                    # Denormalize to image dimensions
                    x1 = int(x1_norm * image_width / 1000)
                    y1 = int(y1_norm * image_height / 1000)
                    x2 = int(x2_norm * image_width / 1000)
                    y2 = int(y2_norm * image_height / 1000)
                    
                    results.append({
                        'text': text,
                        'x1': x1,
                        'y1': y1,
                        'x2': x2,
                        'y2': y2
                    })
            except Exception as e:
                print(f"Error parsing detection result: {str(e)}")
                continue
        
        return results
    
    def process_image(self, image_source: str, prompt: Optional[str] = None) -> Tuple[str, List[Dict]]:
        """
        Complete pipeline: load image, detect text, parse results
        
        Args:
            image_source: Path or URL to image
            prompt: Custom prompt for detection
            
        Returns:
            Tuple of (raw_response, parsed_results)
        """
        # Load image
        image = self.load_image(image_source)
        image_width, image_height = image.size
        
        # Detect text
        response = self.detect_text(image, prompt)
        
        # Parse results
        parsed_results = self.parse_detection_results(response, image_width, image_height)
        
        return response, parsed_results, image