File size: 8,622 Bytes
50ce094
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# FINALXLS-R-MMS

# ============================================================================
# CELL 1: SETUP AND INSTALLATION
# ============================================================================
import os
import warnings
warnings.filterwarnings('ignore')

print("πŸš€ MMS Language Identification Test (Final Corrected Version)")
print("=" * 60)

# Mount Google Drive
from google.colab import drive

# Install and update necessary packages
print("πŸ“¦ Installing and updating packages...")

print("βœ… Setup complete! Please restart the runtime now to apply updates.")


# ============================================================================
# CELL 2: MODEL LOADING AND MAPPINGS (CORRECTED)
# ============================================================================
import torch
import librosa
import pandas as pd
import numpy as np
from datetime import datetime
from transformers import Wav2Vec2FeatureExtractor, AutoModelForAudioClassification
from sklearn.metrics import accuracy_score, classification_report

# --- CORRECTED: Ground truth mapping from your 2-letter folder names ---
# This remains the same as your code.
CUSTOM_FOLDER_MAPPING = {
    'as': 'asm', 'bn': 'ben', 'br': 'brx', 'doi': 'dgo', 'en': 'eng',
    'gu': 'guj', 'hi': 'hin', 'kn': 'kan', 'kok': 'kok', 'ks': 'kas',
    'mai': 'mai', 'ml': 'mal', 'mni': 'mni', 'mr': 'mar', 'ne': 'nep',
    'or': 'ory', 'pa': 'pa', 'sa': 'san', 'sat': 'sat', 'sd': 'snd',
    'ta': 'tam', 'te': 'tel', 'ur': 'urd'
}

# --- NEW: Comprehensive Normalization Mapping ---
# This map standardizes the model's predictions to match YOUR ground truth format.
NORMALIZATION_MAP = {
    'asm': 'asm', 'ben': 'ben', 'brx': 'brx', 'dgo': 'dgo', 'eng': 'eng',
    'guj': 'guj', 'hin': 'hin', 'kan': 'kan', 'kok': 'kok', 'kas': 'kas',
    'mai': 'mai', 'mal': 'mal', 'mni': 'mni', 'mar': 'mar', 'ory': 'ory',
    'pan': 'pa',  # Corrects 'pan' to 'pa'
    'san': 'san', 'sat': 'sat', 'snd': 'snd', 'tam': 'tam', 'tel': 'tel', 'urd': 'urd',
    'npi': 'nep'  # CRUCIAL: Fixes the Nepali mismatch
}

# For generating readable reports
ISO_TO_FULL_NAME = {
    'asm': 'Assamese', 'ben': 'Bengali', 'brx': 'Bodo', 'dgo': 'Dogri', 'eng': 'English',
    'guj': 'Gujarati', 'hin': 'Hindi', 'kan': 'Kannada', 'kok': 'Konkani', 'kas': 'Kashmiri',
    'mai': 'Maithili', 'mal': 'Malayalam', 'mni': 'Manipuri', 'mar': 'Marathi', 'nep': 'Nepali',
    'ory': 'Odia', 'pa': 'Punjabi', 'san': 'Sanskrit', 'sat': 'Santali', 'snd': 'Sindhi',
    'tam': 'Tamil', 'tel': 'Telugu', 'urd': 'Urdu'
}

# --- Paths and Model Loading (No Changes) ---
AUDIO_FOLDER = "/content/drive/MyDrive/Audio_files"
RESULTS_FOLDER = "/content/drive/MyDrive/mms_lid_results"
os.makedirs(RESULTS_FOLDER, exist_ok=True)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"πŸ”§ Device: {device}")
MODEL_NAME = "facebook/mms-lid-256"
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(MODEL_NAME)
model = AutoModelForAudioClassification.from_pretrained(MODEL_NAME).to(device)
model.eval()

print(f"βœ… MMS LID model and feature extractor loaded successfully: {MODEL_NAME}")


# ============================================================================
# CELL 3: AUDIO PROCESSING AND PREDICTION (CORRECTED)
# ============================================================================
def load_audio_raw(file_path):
    try:
        audio, sr = librosa.load(file_path, sr=16000, mono=True)
        duration = len(audio) / 16000
        return audio, duration
    except Exception as e:
        print(f"Error loading {file_path}: {e}")
        return None, 0

def predict_language_mms_top5(audio_array):
    """
    Predicts the top 5 languages, but only from the list of target Indian languages.
    """
    try:
        inputs = feature_extractor(audio_array, sampling_rate=16000, return_tensors="pt")
        inputs = {k: v.to(device) for k, v in inputs.items()}

        with torch.no_grad():
            outputs = model(**inputs)

        logits = outputs.logits
        probabilities = torch.softmax(logits, dim=-1)[0]

        # --- Whitelist Logic ---
        target_lang_codes = list(CUSTOM_FOLDER_MAPPING.values())
        target_indices = [model.config.label2id[lang] for lang in target_lang_codes if lang in model.config.label2id]

        # Create a mask to only consider target languages
        mask = torch.zeros_like(probabilities)
        mask[target_indices] = 1

        # Apply mask and re-normalize probabilities
        masked_probs = probabilities * mask
        if masked_probs.sum() > 0:
            renormalized_probs = masked_probs / masked_probs.sum()
        else:
            renormalized_probs = masked_probs # Avoid division by zero

        # Get Top-5 predictions from the whitelisted languages
        top5_probs, top5_indices = torch.topk(renormalized_probs, 5)
        top5_lang_codes = [model.config.id2label[i.item()] for i in top5_indices]

        return top5_lang_codes, top5_probs.cpu().numpy()

    except Exception as e:
        return ["error"], [0.0]

def find_audio_files(base_path):
    audio_files = []
    for root, _, files in os.walk(base_path):
        folder_code = os.path.basename(root).lower()
        if folder_code in CUSTOM_FOLDER_MAPPING:
            ground_truth_iso = CUSTOM_FOLDER_MAPPING[folder_code]
            for file in files:
                if file.lower().endswith(('.wav', '.mp3', '.m4a', '.flac', '.ogg')):
                    audio_files.append({
                        "file_path": os.path.join(root, file),
                        "filename": file,
                        "ground_truth": ground_truth_iso
                    })
    return audio_files

print("βœ… Corrected prediction functions are ready!")


# ============================================================================
# CELL 4: PROCESS ALL FILES AND GENERATE REPORT (CORRECTED)
# ============================================================================
def run_full_analysis_corrected():
    print("πŸš€ Processing FULL dataset with Corrected Top-5 Logic...")

    audio_files = find_audio_files(AUDIO_FOLDER)
    if not audio_files:
        print("❌ No audio files found.")
        return

    results = []
    print(f"πŸ”„ Processing {len(audio_files)} files...")

    for i, file_info in enumerate(audio_files):
        if (i + 1) % 100 == 0:
            print(f"Progress: {i+1}/{len(audio_files)}")

        audio, duration = load_audio_raw(str(file_info['file_path']))
        if audio is None:
            results.append({**file_info, 'predicted_language': 'load_error', 'top5_predictions': [], 'confidence': 0.0, 'duration': 0.0})
        else:
            top5_langs, top5_probs = predict_language_mms_top5(audio)

            # Apply normalization to all predictions
            normalized_top5 = [NORMALIZATION_MAP.get(lang, 'unknown') for lang in top5_langs]

            results.append({
                **file_info,
                'predicted_language': normalized_top5[0], # Top-1 prediction
                'confidence': top5_probs[0],
                'duration': duration,
                'is_short_file': duration < 3.0,
                'top5_predictions': normalized_top5
            })

    results_df = pd.DataFrame(results)
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    csv_path = f"{RESULTS_FOLDER}/mms_corrected_top5_results_{timestamp}.csv"
    results_df.to_csv(csv_path, index=False)
    print(f"\nβœ… Processing complete! Results saved to: {csv_path}")

    # --- Final Detailed Analysis ---
    print("\n" + "=" * 60)
    print("πŸ“Š MMS LID MODEL - FINAL CORRECTED ANALYSIS")
    print("=" * 60)

    valid_df = results_df[results_df['predicted_language'] != 'load_error'].copy()

    # Calculate Top-1 Accuracy
    top1_accuracy = accuracy_score(valid_df['ground_truth'], valid_df['predicted_language'])

    # Calculate Top-5 Accuracy
    valid_df['is_top5_correct'] = valid_df.apply(lambda row: row['ground_truth'] in row['top5_predictions'], axis=1)
    top5_accuracy = valid_df['is_top5_correct'].mean()

    print(f"\n🎯 OVERALL TOP-1 ACCURACY: {top1_accuracy:.2%}")
    print(f"🎯 OVERALL TOP-5 ACCURACY: {top5_accuracy:.2%}")

    print(f"\nπŸ“‹ LANGUAGE-WISE ACCURACY:")
    report_df = pd.DataFrame(classification_report(valid_df['ground_truth'], valid_df['predicted_language'], output_dict=True, zero_division=0)).transpose()
    report_df['Language'] = report_df.index.map(ISO_TO_FULL_NAME)
    print(report_df[['Language', 'precision', 'recall', 'f1-score', 'support']])

# Run the final, corrected analysis
run_full_analysis_corrected()