Upload folder using huggingface_hub
Browse files- README.md +3 -6
- app.py +622 -0
- requirements.txt +4 -0
README.md
CHANGED
|
@@ -1,10 +1,7 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom: pink
|
| 5 |
-
colorTo: gray
|
| 6 |
sdk: static
|
| 7 |
-
pinned: false
|
| 8 |
---
|
| 9 |
|
| 10 |
-
|
|
|
|
| 1 |
---
|
| 2 |
+
title: XLS-R1B
|
| 3 |
+
emoji: π
|
|
|
|
|
|
|
| 4 |
sdk: static
|
|
|
|
| 5 |
---
|
| 6 |
|
| 7 |
+
# XLS-R1B
|
app.py
ADDED
|
@@ -0,0 +1,622 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# XLS-R1B
|
| 2 |
+
|
| 3 |
+
# ============================================================================
|
| 4 |
+
# CELL 1: SETUP AND INSTALLATION
|
| 5 |
+
# ============================================================================
|
| 6 |
+
import os
|
| 7 |
+
import warnings
|
| 8 |
+
warnings.filterwarnings('ignore')
|
| 9 |
+
|
| 10 |
+
print("π MMS Language Identification Test (Final Verified Version)")
|
| 11 |
+
print("=" * 60)
|
| 12 |
+
|
| 13 |
+
# Mount Google Drive
|
| 14 |
+
from google.colab import drive
|
| 15 |
+
|
| 16 |
+
# Install and update necessary packages
|
| 17 |
+
print("π¦ Installing and updating packages...")
|
| 18 |
+
|
| 19 |
+
print("β
Setup complete! Please restart the runtime now to apply updates.")
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
# ============================================================================
|
| 23 |
+
# CELL 2: MODEL LOADING (Final Verified Version)
|
| 24 |
+
# ============================================================================
|
| 25 |
+
import torch
|
| 26 |
+
import librosa
|
| 27 |
+
import pandas as pd
|
| 28 |
+
import numpy as np
|
| 29 |
+
from datetime import datetime
|
| 30 |
+
from transformers import Wav2Vec2FeatureExtractor, AutoModelForAudioClassification
|
| 31 |
+
from sklearn.metrics import accuracy_score, classification_report
|
| 32 |
+
|
| 33 |
+
# --- Your Folder and Language Mappings ---
|
| 34 |
+
CUSTOM_FOLDER_MAPPING = {
|
| 35 |
+
'as': 'asm', 'bn': 'ben', 'br': 'brx', 'doi': 'dgo', 'en': 'eng',
|
| 36 |
+
'gu': 'guj', 'hi': 'hin', 'kn': 'kan', 'kok': 'kok', 'ks': 'kas',
|
| 37 |
+
'mai': 'mai', 'ml': 'mal', 'mni': 'mni', 'mr': 'mar', 'ne': 'nep',
|
| 38 |
+
'or': 'ory', 'pa': 'pan', 'sa': 'san', 'sat': 'sat', 'sd': 'snd',
|
| 39 |
+
'ta': 'tam', 'te': 'tel', 'ur': 'urd'
|
| 40 |
+
}
|
| 41 |
+
ISO_TO_FULL_NAME = {
|
| 42 |
+
'asm': 'Assamese', 'ben': 'Bengali', 'brx': 'Bodo', 'dgo': 'Dogri', 'eng': 'English',
|
| 43 |
+
'guj': 'Gujarati', 'hin': 'Hindi', 'kan': 'Kannada', 'kok': 'Konkani', 'kas': 'Kashmiri',
|
| 44 |
+
'mai': 'Maithili', 'mal': 'Malayalam', 'mni': 'Manipuri', 'mar': 'Marathi', 'nep': 'Nepali',
|
| 45 |
+
'ory': 'Odia', 'pan': 'Punjabi', 'san': 'Sanskrit', 'sat': 'Santali', 'snd': 'Sindhi',
|
| 46 |
+
'tam': 'Tamil', 'tel': 'Telugu', 'urd': 'Urdu'
|
| 47 |
+
}
|
| 48 |
+
|
| 49 |
+
# --- Update Your Paths ---
|
| 50 |
+
AUDIO_FOLDER = "/content/drive/MyDrive/Audio_files" # <-- Update this
|
| 51 |
+
RESULTS_FOLDER = "/content/drive/MyDrive/mms_lid_results"
|
| 52 |
+
os.makedirs(RESULTS_FOLDER, exist_ok=True)
|
| 53 |
+
|
| 54 |
+
# --- Load Components Separately (The Fix) ---
|
| 55 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 56 |
+
print(f"π§ Device: {device}")
|
| 57 |
+
|
| 58 |
+
MODEL_NAME = "facebook/mms-lid-256"
|
| 59 |
+
|
| 60 |
+
# 1. Load the feature extractor ONLY
|
| 61 |
+
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(MODEL_NAME)
|
| 62 |
+
|
| 63 |
+
# 2. Load the model for classification
|
| 64 |
+
model = AutoModelForAudioClassification.from_pretrained(MODEL_NAME).to(device)
|
| 65 |
+
model.eval()
|
| 66 |
+
|
| 67 |
+
print(f"β
MMS LID model and feature extractor loaded successfully: {MODEL_NAME}")
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
# ============================================================================
|
| 71 |
+
# CELL 3: AUDIO PROCESSING AND PREDICTION
|
| 72 |
+
# ============================================================================
|
| 73 |
+
def load_audio_raw(file_path):
|
| 74 |
+
try:
|
| 75 |
+
audio, sr = librosa.load(file_path, sr=16000, mono=True)
|
| 76 |
+
duration = len(audio) / 16000
|
| 77 |
+
return audio, duration
|
| 78 |
+
except Exception as e:
|
| 79 |
+
print(f"Error loading {file_path}: {e}")
|
| 80 |
+
return None, 0
|
| 81 |
+
|
| 82 |
+
def predict_language_mms(audio_array):
|
| 83 |
+
try:
|
| 84 |
+
# Use the feature_extractor directly
|
| 85 |
+
inputs = feature_extractor(audio_array, sampling_rate=16000, return_tensors="pt")
|
| 86 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 87 |
+
|
| 88 |
+
with torch.no_grad():
|
| 89 |
+
outputs = model(**inputs)
|
| 90 |
+
|
| 91 |
+
logits = outputs.logits
|
| 92 |
+
pred_idx = torch.argmax(logits, dim=-1).item()
|
| 93 |
+
pred_lang_code = model.config.id2label[pred_idx]
|
| 94 |
+
|
| 95 |
+
probabilities = torch.softmax(logits, dim=-1)[0]
|
| 96 |
+
confidence = probabilities[pred_idx].item()
|
| 97 |
+
|
| 98 |
+
return pred_lang_code, confidence
|
| 99 |
+
|
| 100 |
+
except Exception as e:
|
| 101 |
+
return "error", 0.0
|
| 102 |
+
|
| 103 |
+
def find_audio_files(base_path):
|
| 104 |
+
audio_files = []
|
| 105 |
+
for root, _, files in os.walk(base_path):
|
| 106 |
+
folder_code = os.path.basename(root).lower()
|
| 107 |
+
if folder_code in CUSTOM_FOLDER_MAPPING:
|
| 108 |
+
ground_truth_iso = CUSTOM_FOLDER_MAPPING[folder_code]
|
| 109 |
+
for file in files:
|
| 110 |
+
if file.lower().endswith(('.wav', '.mp3', '.m4a', '.flac', '.ogg')):
|
| 111 |
+
audio_files.append({
|
| 112 |
+
"file_path": os.path.join(root, file),
|
| 113 |
+
"filename": file,
|
| 114 |
+
"ground_truth": ground_truth_iso
|
| 115 |
+
})
|
| 116 |
+
return audio_files
|
| 117 |
+
|
| 118 |
+
print("β
Functions are ready!")
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
# ============================================================================
|
| 122 |
+
# CELL 4: PROCESS ALL FILES AND GENERATE REPORT
|
| 123 |
+
# ============================================================================
|
| 124 |
+
def run_full_analysis():
|
| 125 |
+
print("π Processing FULL dataset with MMS LID Model...")
|
| 126 |
+
|
| 127 |
+
audio_files = find_audio_files(AUDIO_FOLDER)
|
| 128 |
+
if not audio_files:
|
| 129 |
+
print("β No audio files found. Please check your AUDIO_FOLDER path.")
|
| 130 |
+
return
|
| 131 |
+
|
| 132 |
+
total_files = len(audio_files)
|
| 133 |
+
results = []
|
| 134 |
+
|
| 135 |
+
print(f"π Processing {total_files} files...")
|
| 136 |
+
print("-" * 50)
|
| 137 |
+
|
| 138 |
+
for i, file_info in enumerate(audio_files):
|
| 139 |
+
if (i + 1) % 50 == 0:
|
| 140 |
+
print(f"Progress: {i+1}/{total_files} ({(i+1)/total_files*100:.1f}%)")
|
| 141 |
+
|
| 142 |
+
audio, duration = load_audio_raw(str(file_info['file_path']))
|
| 143 |
+
if audio is None:
|
| 144 |
+
result = {**file_info, "predicted_language": "load_error", "confidence": 0.0, "duration": 0.0, "is_short_file": False}
|
| 145 |
+
else:
|
| 146 |
+
pred_lang_code, confidence = predict_language_mms(audio)
|
| 147 |
+
is_short = duration < 3.0
|
| 148 |
+
result = {**file_info, "predicted_language": pred_lang_code, "confidence": confidence, "duration": duration, "is_short_file": is_short}
|
| 149 |
+
|
| 150 |
+
if is_short and pred_lang_code != "error":
|
| 151 |
+
print(f"β οΈ SHORT ({duration:.1f}s): {file_info['filename']} -> {ISO_TO_FULL_NAME.get(pred_lang_code, pred_lang_code)} ({confidence:.3f})")
|
| 152 |
+
|
| 153 |
+
results.append(result)
|
| 154 |
+
|
| 155 |
+
results_df = pd.DataFrame(results)
|
| 156 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 157 |
+
csv_path = f"{RESULTS_FOLDER}/mms_lid_results_{timestamp}.csv"
|
| 158 |
+
results_df.to_csv(csv_path, index=False)
|
| 159 |
+
print(f"\nβ
Processing complete! Results saved to: {csv_path}")
|
| 160 |
+
|
| 161 |
+
# --- Detailed Analysis ---
|
| 162 |
+
print("\n" + "=" * 60)
|
| 163 |
+
print("π MMS LID MODEL - DETAILED ANALYSIS")
|
| 164 |
+
print("=" * 60)
|
| 165 |
+
|
| 166 |
+
valid_data = results_df[(results_df['predicted_language'] != 'error') & (results_df['predicted_language'] != 'load_error')]
|
| 167 |
+
|
| 168 |
+
if len(valid_data) > 0:
|
| 169 |
+
overall_accuracy = accuracy_score(valid_data['ground_truth'], valid_data['predicted_language'])
|
| 170 |
+
print(f"\nπ― OVERALL MODEL ACCURACY: {overall_accuracy:.2%}")
|
| 171 |
+
|
| 172 |
+
print(f"\nπ LANGUAGE-WISE ACCURACY:")
|
| 173 |
+
report_true = [ISO_TO_FULL_NAME.get(code, code) for code in valid_data['ground_truth']]
|
| 174 |
+
report_pred = [ISO_TO_FULL_NAME.get(code, code) for code in valid_data['predicted_language']]
|
| 175 |
+
print(classification_report(report_true, report_pred, zero_division=0))
|
| 176 |
+
|
| 177 |
+
short_files = results_df[results_df.get('is_short_file', False) == True]
|
| 178 |
+
valid_short = short_files[(short_files['predicted_language'] != 'error') & (short_files['predicted_language'] != 'load_error')]
|
| 179 |
+
|
| 180 |
+
print(f"\nβ οΈ SHORT FILES ANALYSIS (<3 seconds):")
|
| 181 |
+
print(f"Total short files: {len(short_files)}")
|
| 182 |
+
if len(valid_short) > 0:
|
| 183 |
+
avg_conf = valid_short['confidence'].mean()
|
| 184 |
+
print(f"Average confidence for short files: {avg_conf:.3f}")
|
| 185 |
+
|
| 186 |
+
print("\n" + "=" * 60)
|
| 187 |
+
print("π ANALYSIS COMPLETE")
|
| 188 |
+
|
| 189 |
+
# Run the full analysis
|
| 190 |
+
run_full_analysis()
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
# ============================================================================
|
| 194 |
+
# CELL 5: GENERATE FILTERED EXCEL REPORT
|
| 195 |
+
# ============================================================================
|
| 196 |
+
import pandas as pd
|
| 197 |
+
from sklearn.metrics import accuracy_score
|
| 198 |
+
|
| 199 |
+
# Install the package needed to write Excel files
|
| 200 |
+
|
| 201 |
+
def generate_filtered_excel_report(df, folder_path):
|
| 202 |
+
"""
|
| 203 |
+
Generates an Excel report with overall and per-language accuracy,
|
| 204 |
+
excluding files shorter than 3 seconds from the accuracy calculation.
|
| 205 |
+
"""
|
| 206 |
+
if df is None or df.empty:
|
| 207 |
+
print("β No results DataFrame found. Please run the analysis in Cell 4 first.")
|
| 208 |
+
return
|
| 209 |
+
|
| 210 |
+
print("π Generating filtered accuracy report...")
|
| 211 |
+
|
| 212 |
+
# --- 1. Filter the DataFrame ---
|
| 213 |
+
# Exclude errors and files shorter than 3 seconds
|
| 214 |
+
accuracy_df = df[
|
| 215 |
+
(df['duration'] >= 3) &
|
| 216 |
+
(df['predicted_language'] != 'error') &
|
| 217 |
+
(df['predicted_language'] != 'load_error')
|
| 218 |
+
].copy()
|
| 219 |
+
|
| 220 |
+
print(f"Total files in accuracy calculation (>= 3s): {len(accuracy_df)} out of {len(df)}")
|
| 221 |
+
|
| 222 |
+
# --- 2. Calculate Overall Accuracy ---
|
| 223 |
+
if not accuracy_df.empty:
|
| 224 |
+
overall_accuracy = accuracy_score(accuracy_df['ground_truth'], accuracy_df['predicted_language'])
|
| 225 |
+
summary_df = pd.DataFrame([{'Overall Accuracy (>= 3s)': f"{overall_accuracy:.2%}"}])
|
| 226 |
+
else:
|
| 227 |
+
summary_df = pd.DataFrame([{'Overall Accuracy (>= 3s)': "N/A"}])
|
| 228 |
+
|
| 229 |
+
# --- 3. Calculate Per-Language Accuracy ---
|
| 230 |
+
per_language_stats = []
|
| 231 |
+
if not accuracy_df.empty:
|
| 232 |
+
# Use full names for the report
|
| 233 |
+
accuracy_df['ground_truth_name'] = accuracy_df['ground_truth'].map(ISO_TO_FULL_NAME)
|
| 234 |
+
accuracy_df['predicted_language_name'] = accuracy_df['predicted_language'].map(ISO_TO_FULL_NAME)
|
| 235 |
+
|
| 236 |
+
for lang_code, lang_name in sorted(ISO_TO_FULL_NAME.items()):
|
| 237 |
+
lang_df = accuracy_df[accuracy_df['ground_truth'] == lang_code]
|
| 238 |
+
if not lang_df.empty:
|
| 239 |
+
lang_accuracy = accuracy_score(lang_df['ground_truth'], lang_df['predicted_language'])
|
| 240 |
+
per_language_stats.append({
|
| 241 |
+
'Language': lang_name,
|
| 242 |
+
'Accuracy': f"{lang_accuracy:.2%}",
|
| 243 |
+
'File Count (>= 3s)': len(lang_df)
|
| 244 |
+
})
|
| 245 |
+
|
| 246 |
+
per_language_df = pd.DataFrame(per_language_stats)
|
| 247 |
+
|
| 248 |
+
# --- 4. Save to Excel ---
|
| 249 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 250 |
+
report_path = os.path.join(folder_path, f"filtered_accuracy_report_{timestamp}.xlsx")
|
| 251 |
+
|
| 252 |
+
with pd.ExcelWriter(report_path, engine='xlsxwriter') as writer:
|
| 253 |
+
summary_df.to_excel(writer, sheet_name='Summary', index=False)
|
| 254 |
+
per_language_df.to_excel(writer, sheet_name='Per_Language_Accuracy', index=False)
|
| 255 |
+
df.to_excel(writer, sheet_name='All_Results', index=False)
|
| 256 |
+
accuracy_df.to_excel(writer, sheet_name='Filtered_Results (for accuracy)', index=False)
|
| 257 |
+
|
| 258 |
+
# Auto-adjust column widths for readability
|
| 259 |
+
for sheet_name in writer.sheets:
|
| 260 |
+
worksheet = writer.sheets[sheet_name]
|
| 261 |
+
for idx, col in enumerate(pd.read_excel(report_path, sheet_name=sheet_name).columns):
|
| 262 |
+
max_len = max(
|
| 263 |
+
df[col].astype(str).map(len).max() if col in df else 0,
|
| 264 |
+
len(str(col))
|
| 265 |
+
) + 2
|
| 266 |
+
worksheet.set_column(idx, idx, max_len)
|
| 267 |
+
|
| 268 |
+
print(f"\nβ
Filtered Excel report saved successfully to: {report_path}")
|
| 269 |
+
|
| 270 |
+
# Run the function to generate the report
|
| 271 |
+
# This assumes 'full_results_df' was created in the previous cell
|
| 272 |
+
if 'full_results_df' in locals():
|
| 273 |
+
generate_filtered_excel_report(full_results_df, RESULTS_FOLDER)
|
| 274 |
+
else:
|
| 275 |
+
print("β 'full_results_df' not found. Please run the previous cell to process the dataset first.")
|
| 276 |
+
|
| 277 |
+
|
| 278 |
+
|
| 279 |
+
|
| 280 |
+
# ============================================================================
|
| 281 |
+
# CELL 5: LOAD EXISTING RESULTS AND EXTRACT FEATURES
|
| 282 |
+
# ============================================================================
|
| 283 |
+
import pandas as pd
|
| 284 |
+
import numpy as np
|
| 285 |
+
import librosa
|
| 286 |
+
import os
|
| 287 |
+
|
| 288 |
+
# --- 1. Load Your Existing CSV File ---
|
| 289 |
+
# β οΈ PASTE THE FULL PATH to your CSV file here
|
| 290 |
+
csv_path = "/content/drive/MyDrive/mms_lid_results/mms_lid_results_20250925_072344.csv"
|
| 291 |
+
|
| 292 |
+
try:
|
| 293 |
+
full_results_df = pd.read_csv(csv_path)
|
| 294 |
+
print(f"β
Successfully loaded {len(full_results_df)} records from {csv_path}")
|
| 295 |
+
except FileNotFoundError:
|
| 296 |
+
print(f"β ERROR: File not found at '{csv_path}'. Please check the path and try again.")
|
| 297 |
+
# Stop execution if the file is not found
|
| 298 |
+
raise
|
| 299 |
+
|
| 300 |
+
# --- 2. In-Depth Feature Extraction ---
|
| 301 |
+
print("\nπ Starting in-depth feature extraction...")
|
| 302 |
+
|
| 303 |
+
def extract_audio_features(row):
|
| 304 |
+
"""Calculates SNR proxy and silence ratio for a given audio file."""
|
| 305 |
+
try:
|
| 306 |
+
audio, sr = librosa.load(row['file_path'], sr=16000, mono=True)
|
| 307 |
+
|
| 308 |
+
# Calculate RMS energy for silence detection
|
| 309 |
+
rms = librosa.feature.rms(y=audio, frame_length=2048, hop_length=512)[0]
|
| 310 |
+
|
| 311 |
+
# Silence Ratio: Percentage of frames below 20% of max energy
|
| 312 |
+
silence_threshold = 0.2 * np.max(rms) if rms.size > 0 else 0
|
| 313 |
+
silence_ratio = np.mean(rms < silence_threshold) if rms.size > 0 else 1.0
|
| 314 |
+
|
| 315 |
+
# SNR Proxy: Ratio of energy in loud parts vs. quiet parts
|
| 316 |
+
loud_rms = np.mean(rms[rms >= silence_threshold]) if np.any(rms >= silence_threshold) else 0
|
| 317 |
+
quiet_rms = np.mean(rms[rms < silence_threshold]) if np.any(rms < silence_threshold) else 0
|
| 318 |
+
snr_proxy = 20 * np.log10(loud_rms / (quiet_rms + 1e-7) + 1e-7) if quiet_rms > 0 else 50.0
|
| 319 |
+
|
| 320 |
+
return pd.Series([snr_proxy, silence_ratio])
|
| 321 |
+
|
| 322 |
+
except Exception as e:
|
| 323 |
+
return pd.Series([np.nan, np.nan])
|
| 324 |
+
|
| 325 |
+
# Apply the feature extraction to each row
|
| 326 |
+
print("Calculating SNR and silence ratios for all files... (This may take a few minutes)")
|
| 327 |
+
features_df = full_results_df.apply(extract_audio_features, axis=1)
|
| 328 |
+
features_df.columns = ['snr_proxy', 'silence_ratio']
|
| 329 |
+
|
| 330 |
+
# Combine the new features with your existing results
|
| 331 |
+
analysis_df = pd.concat([full_results_df, features_df], axis=1)
|
| 332 |
+
|
| 333 |
+
print("β
Feature extraction complete!")
|
| 334 |
+
|
| 335 |
+
|
| 336 |
+
# ============================================================================
|
| 337 |
+
# CELL 6: COMPREHENSIVE ANALYSIS AND EXCEL REPORT
|
| 338 |
+
# ============================================================================
|
| 339 |
+
import pandas as pd
|
| 340 |
+
from sklearn.metrics import accuracy_score, confusion_matrix
|
| 341 |
+
|
| 342 |
+
# Install xlsxwriter if not already installed
|
| 343 |
+
|
| 344 |
+
def generate_comprehensive_report(df, folder_path):
|
| 345 |
+
"""
|
| 346 |
+
Generates a comprehensive Excel report with multiple analysis sheets.
|
| 347 |
+
"""
|
| 348 |
+
if 'analysis_df' not in locals():
|
| 349 |
+
print("β 'analysis_df' with features not found. Please run the feature extraction cell first.")
|
| 350 |
+
return
|
| 351 |
+
|
| 352 |
+
print("π Generating comprehensive analysis report...")
|
| 353 |
+
|
| 354 |
+
# --- Create a new Excel writer ---
|
| 355 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 356 |
+
report_path = os.path.join(folder_path, f"comprehensive_analysis_report_{timestamp}.xlsx")
|
| 357 |
+
writer = pd.ExcelWriter(report_path, engine='xlsxwriter')
|
| 358 |
+
|
| 359 |
+
# --- Sheet 1: All Results with Features ---
|
| 360 |
+
df.to_excel(writer, sheet_name='Results_with_Features', index=False)
|
| 361 |
+
|
| 362 |
+
# Filter for valid predictions for all subsequent analyses
|
| 363 |
+
valid_df = df[
|
| 364 |
+
(df['predicted_language'] != 'error') &
|
| 365 |
+
(df['predicted_language'] != 'load_error')
|
| 366 |
+
].copy()
|
| 367 |
+
|
| 368 |
+
# --- Sheet 2 & 3: Calibration Analysis ---
|
| 369 |
+
n_bins = 10
|
| 370 |
+
bins = np.linspace(0, 1, n_bins + 1)
|
| 371 |
+
valid_df['confidence_bin'] = pd.cut(valid_df['confidence'], bins=bins, include_lowest=True, right=True)
|
| 372 |
+
|
| 373 |
+
# Ensure all bins are present for groupby
|
| 374 |
+
valid_df['confidence_bin'] = valid_df['confidence_bin'].astype(str)
|
| 375 |
+
|
| 376 |
+
calib_data = valid_df.groupby('confidence_bin').apply(lambda x: pd.Series({
|
| 377 |
+
'bin_accuracy': accuracy_score(x['ground_truth'], x['predicted_language']),
|
| 378 |
+
'avg_confidence': x['confidence'].mean(),
|
| 379 |
+
'sample_count': len(x)
|
| 380 |
+
})).reset_index()
|
| 381 |
+
|
| 382 |
+
overall_ece = np.sum(np.abs(calib_data['bin_accuracy'] - calib_data['avg_confidence']) * (calib_data['sample_count'] / len(valid_df)))
|
| 383 |
+
|
| 384 |
+
calibration_overview_df = pd.DataFrame([{'Expected Calibration Error (ECE)': f"{overall_ece:.4f}"}])
|
| 385 |
+
calibration_overview_df.to_excel(writer, sheet_name='Calibration_Overview', index=False)
|
| 386 |
+
calib_data.to_excel(writer, sheet_name='Calibration_Bins', index=False)
|
| 387 |
+
|
| 388 |
+
# --- Sheets 4, 5, 6: Accuracy vs. Features ---
|
| 389 |
+
def get_accuracy_slice(dataframe, column, bins):
|
| 390 |
+
dataframe[f'{column}_bin'] = pd.cut(dataframe[column], bins=bins, include_lowest=True)
|
| 391 |
+
return dataframe.groupby(f'{column}_bin', observed=False).apply(lambda x: accuracy_score(x['ground_truth'], x['predicted_language']) if not x.empty else 0).reset_index(name='accuracy')
|
| 392 |
+
|
| 393 |
+
acc_vs_duration = get_accuracy_slice(valid_df.copy(), 'duration', bins=[0, 1, 2, 3, 5, 10, np.inf])
|
| 394 |
+
acc_vs_snr = get_accuracy_slice(valid_df.copy(), 'snr_proxy', bins=[-np.inf, 0, 10, 20, 30, 40, np.inf])
|
| 395 |
+
acc_vs_silence = get_accuracy_slice(valid_df.copy(), 'silence_ratio', bins=[-0.01, 0.1, 0.3, 0.5, 0.7, 1.0])
|
| 396 |
+
|
| 397 |
+
acc_vs_duration.to_excel(writer, sheet_name='Acc_vs_Duration', index=False)
|
| 398 |
+
acc_vs_snr.to_excel(writer, sheet_name='Acc_vs_SNR', index=False)
|
| 399 |
+
acc_vs_silence.to_excel(writer, sheet_name='Acc_vs_Silence', index=False)
|
| 400 |
+
|
| 401 |
+
# --- Sheet 7 & 8: Confusion Matrix and Asymmetry ---
|
| 402 |
+
labels = sorted(list(set(valid_df['ground_truth'].unique()) | set(valid_df['predicted_language'].unique())))
|
| 403 |
+
cm = confusion_matrix(valid_df['ground_truth'], valid_df['predicted_language'], labels=labels)
|
| 404 |
+
cm_df = pd.DataFrame(cm, index=[ISO_TO_FULL_NAME.get(l, l) for l in labels], columns=[ISO_TO_FULL_NAME.get(l, l) for l in labels])
|
| 405 |
+
|
| 406 |
+
confusion_asymmetry_df = cm_df.subtract(cm_df.T)
|
| 407 |
+
|
| 408 |
+
cm_df.to_excel(writer, sheet_name='Confusion_Matrix')
|
| 409 |
+
confusion_asymmetry_df.to_excel(writer, sheet_name='Confusion_Asymmetry')
|
| 410 |
+
|
| 411 |
+
# --- Sheet 9 & 10: Hard Cases Analysis ---
|
| 412 |
+
hard_misclassifications = valid_df[
|
| 413 |
+
(valid_df['ground_truth'] != valid_df['predicted_language']) &
|
| 414 |
+
(valid_df['confidence'] > 0.8)
|
| 415 |
+
].sort_values('confidence', ascending=False)
|
| 416 |
+
|
| 417 |
+
ambiguous_correct = valid_df[
|
| 418 |
+
(valid_df['ground_truth'] == valid_df['predicted_language']) &
|
| 419 |
+
(valid_df['confidence'] < 0.5)
|
| 420 |
+
].sort_values('confidence', ascending=True)
|
| 421 |
+
|
| 422 |
+
hard_misclassifications.to_excel(writer, sheet_name='Hard_Misclassifications', index=False)
|
| 423 |
+
ambiguous_correct.to_excel(writer, sheet_name='Ambiguous_Correct', index=False)
|
| 424 |
+
|
| 425 |
+
# --- Save the Excel file ---
|
| 426 |
+
writer.close()
|
| 427 |
+
print(f"\nβ
Comprehensive analysis report saved successfully to: {report_path}")
|
| 428 |
+
|
| 429 |
+
|
| 430 |
+
# Run the function to generate the final report
|
| 431 |
+
if 'analysis_df' in locals():
|
| 432 |
+
generate_comprehensive_report(analysis_df, RESULTS_FOLDER)
|
| 433 |
+
else:
|
| 434 |
+
print("β 'analysis_df' not found. Please run the feature extraction in the previous cell first.")
|
| 435 |
+
|
| 436 |
+
|
| 437 |
+
# ============================================================================
|
| 438 |
+
# CELL 6: COMPREHENSIVE ANALYSIS AND EXCEL REPORT (UNIFIED)
|
| 439 |
+
# ============================================================================
|
| 440 |
+
import pandas as pd
|
| 441 |
+
from sklearn.metrics import accuracy_score, confusion_matrix
|
| 442 |
+
|
| 443 |
+
# Install xlsxwriter if not already installed
|
| 444 |
+
|
| 445 |
+
def generate_comprehensive_report(df, folder_path):
|
| 446 |
+
"""
|
| 447 |
+
Generates a comprehensive Excel report with multiple analysis sheets.
|
| 448 |
+
"""
|
| 449 |
+
if df is None or df.empty:
|
| 450 |
+
print("β The 'analysis_df' DataFrame is empty. Please check the previous cell.")
|
| 451 |
+
return
|
| 452 |
+
|
| 453 |
+
print("π Generating comprehensive analysis report...")
|
| 454 |
+
|
| 455 |
+
# --- Create a new Excel writer ---
|
| 456 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 457 |
+
report_path = os.path.join(folder_path, f"comprehensive_analysis_report_{timestamp}.xlsx")
|
| 458 |
+
|
| 459 |
+
with pd.ExcelWriter(report_path, engine='xlsxwriter') as writer:
|
| 460 |
+
# --- Sheet 1: All Results with Features ---
|
| 461 |
+
df.to_excel(writer, sheet_name='Results_with_Features', index=False)
|
| 462 |
+
|
| 463 |
+
# Filter for valid predictions for all subsequent analyses
|
| 464 |
+
valid_df = df[
|
| 465 |
+
(df['predicted_language'] != 'error') &
|
| 466 |
+
(df['predicted_language'] != 'load_error')
|
| 467 |
+
].copy()
|
| 468 |
+
|
| 469 |
+
# --- Sheet 2 & 3: Calibration Analysis ---
|
| 470 |
+
n_bins = 10
|
| 471 |
+
bins = np.linspace(0, 1, n_bins + 1)
|
| 472 |
+
valid_df['confidence_bin'] = pd.cut(valid_df['confidence'], bins=bins, include_lowest=True, right=True)
|
| 473 |
+
valid_df['confidence_bin'] = valid_df['confidence_bin'].astype(str)
|
| 474 |
+
|
| 475 |
+
calib_data = valid_df.groupby('confidence_bin', observed=False).apply(lambda x: pd.Series({
|
| 476 |
+
'bin_accuracy': accuracy_score(x['ground_truth'], x['predicted_language']) if not x.empty else 0,
|
| 477 |
+
'avg_confidence': x['confidence'].mean() if not x.empty else 0,
|
| 478 |
+
'sample_count': len(x)
|
| 479 |
+
})).reset_index()
|
| 480 |
+
|
| 481 |
+
overall_ece = np.sum(np.abs(calib_data['bin_accuracy'] - calib_data['avg_confidence']) * (calib_data['sample_count'] / len(valid_df)))
|
| 482 |
+
|
| 483 |
+
calibration_overview_df = pd.DataFrame([{'Expected Calibration Error (ECE)': f"{overall_ece:.4f}"}])
|
| 484 |
+
calibration_overview_df.to_excel(writer, sheet_name='Calibration_Overview', index=False)
|
| 485 |
+
calib_data.to_excel(writer, sheet_name='Calibration_Bins', index=False)
|
| 486 |
+
|
| 487 |
+
# --- Sheets 4, 5, 6: Accuracy vs. Features ---
|
| 488 |
+
def get_accuracy_slice(dataframe, column, bins):
|
| 489 |
+
dataframe[f'{column}_bin'] = pd.cut(dataframe[column], bins=bins, include_lowest=True)
|
| 490 |
+
return dataframe.groupby(f'{column}_bin', observed=False).apply(lambda x: accuracy_score(x['ground_truth'], x['predicted_language']) if not x.empty else 0).reset_index(name='accuracy')
|
| 491 |
+
|
| 492 |
+
acc_vs_duration = get_accuracy_slice(valid_df.copy(), 'duration', bins=[0, 1, 2, 3, 5, 10, np.inf])
|
| 493 |
+
acc_vs_snr = get_accuracy_slice(valid_df.copy(), 'snr_proxy', bins=[-np.inf, 0, 10, 20, 30, 40, np.inf])
|
| 494 |
+
acc_vs_silence = get_accuracy_slice(valid_df.copy(), 'silence_ratio', bins=[-0.01, 0.1, 0.3, 0.5, 0.7, 1.0])
|
| 495 |
+
|
| 496 |
+
acc_vs_duration.to_excel(writer, sheet_name='Acc_vs_Duration', index=False)
|
| 497 |
+
acc_vs_snr.to_excel(writer, sheet_name='Acc_vs_SNR', index=False)
|
| 498 |
+
acc_vs_silence.to_excel(writer, sheet_name='Acc_vs_Silence', index=False)
|
| 499 |
+
|
| 500 |
+
# --- Sheet 7 & 8: Confusion Matrix and Asymmetry ---
|
| 501 |
+
labels = sorted(list(set(valid_df['ground_truth'].unique()) | set(valid_df['predicted_language'].unique())))
|
| 502 |
+
cm = confusion_matrix(valid_df['ground_truth'], valid_df['predicted_language'], labels=labels)
|
| 503 |
+
cm_df = pd.DataFrame(cm, index=[ISO_TO_FULL_NAME.get(l, l) for l in labels], columns=[ISO_TO_FULL_NAME.get(l, l) for l in labels])
|
| 504 |
+
|
| 505 |
+
confusion_asymmetry_df = cm_df.subtract(cm_df.T)
|
| 506 |
+
|
| 507 |
+
cm_df.to_excel(writer, sheet_name='Confusion_Matrix')
|
| 508 |
+
confusion_asymmetry_df.to_excel(writer, sheet_name='Confusion_Asymmetry')
|
| 509 |
+
|
| 510 |
+
# --- Sheet 9 & 10: Hard Cases Analysis ---
|
| 511 |
+
hard_misclassifications = valid_df[
|
| 512 |
+
(valid_df['ground_truth'] != valid_df['predicted_language']) &
|
| 513 |
+
(valid_df['confidence'] > 0.8)
|
| 514 |
+
].sort_values('confidence', ascending=False)
|
| 515 |
+
|
| 516 |
+
ambiguous_correct = valid_df[
|
| 517 |
+
(valid_df['ground_truth'] == valid_df['predicted_language']) &
|
| 518 |
+
(valid_df['confidence'] < 0.5)
|
| 519 |
+
].sort_values('confidence', ascending=True)
|
| 520 |
+
|
| 521 |
+
hard_misclassifications.to_excel(writer, sheet_name='Hard_Misclassifications', index=False)
|
| 522 |
+
ambiguous_correct.to_excel(writer, sheet_name='Ambiguous_Correct', index=False)
|
| 523 |
+
|
| 524 |
+
print(f"\nβ
Comprehensive analysis report saved successfully to: {report_path}")
|
| 525 |
+
|
| 526 |
+
# Run the function to generate the final report
|
| 527 |
+
# This will now work because 'analysis_df' was created in the cell right above
|
| 528 |
+
if 'analysis_df' in locals():
|
| 529 |
+
generate_comprehensive_report(analysis_df, RESULTS_FOLDER)
|
| 530 |
+
else:
|
| 531 |
+
print("β 'analysis_df' not found. Please re-run the previous cell to load and process the data.")
|
| 532 |
+
|
| 533 |
+
|
| 534 |
+
# ============================================================================
|
| 535 |
+
# FINAL ANALYSIS CELL: NORMALIZATION AND DUAL ACCURACY REPORTS
|
| 536 |
+
# ============================================================================
|
| 537 |
+
import pandas as pd
|
| 538 |
+
import numpy as np
|
| 539 |
+
from sklearn.metrics import accuracy_score, classification_report
|
| 540 |
+
import os
|
| 541 |
+
|
| 542 |
+
# Install xlsxwriter for Excel reporting
|
| 543 |
+
|
| 544 |
+
# --- 1. Load Your Existing CSV File ---
|
| 545 |
+
# β οΈ PASTE THE FULL PATH to your most recent CSV file here
|
| 546 |
+
csv_path = "/content/drive/MyDrive/mms_lid_results/mms_lid_results_20250925_072344.csv"
|
| 547 |
+
|
| 548 |
+
try:
|
| 549 |
+
results_df = pd.read_csv(csv_path)
|
| 550 |
+
print(f"β
Successfully loaded {len(results_df)} records from {csv_path}")
|
| 551 |
+
except FileNotFoundError:
|
| 552 |
+
print(f"β ERROR: File not found at '{csv_path}'. Please check the path and try again.")
|
| 553 |
+
raise
|
| 554 |
+
|
| 555 |
+
# --- 2. Define the Comprehensive Normalization Mapping ---
|
| 556 |
+
# This dictionary will standardize all known language code variations.
|
| 557 |
+
NORMALIZATION_MAPPING = {
|
| 558 |
+
# MMS model's 3-letter codes (prediction) to your 2-letter folder names (ground truth)
|
| 559 |
+
'asm': 'as', 'ben': 'bn', 'brx': 'br', 'dgo': 'doi', 'eng': 'en',
|
| 560 |
+
'guj': 'gu', 'hin': 'hi', 'kan': 'kn', 'kok': 'kok', 'kas': 'ks',
|
| 561 |
+
'mai': 'mai', 'mal': 'ml', 'mni': 'mni', 'mar': 'mr', 'nep': 'ne',
|
| 562 |
+
'ory': 'or', 'pan': 'pa', 'san': 'sa', 'sat': 'sat', 'snd': 'sd',
|
| 563 |
+
'tam': 'ta', 'tel': 'te', 'urd': 'ur',
|
| 564 |
+
# Crucial fix for Nepali
|
| 565 |
+
'npi': 'ne'
|
| 566 |
+
}
|
| 567 |
+
|
| 568 |
+
# --- 3. Apply Normalization ---
|
| 569 |
+
print("\nApplying comprehensive normalization to language codes...")
|
| 570 |
+
results_df['normalized_prediction'] = results_df['predicted_language'].map(NORMALIZATION_MAPPING)
|
| 571 |
+
# Fill any unmapped predictions with a placeholder to mark them as incorrect
|
| 572 |
+
results_df['normalized_prediction'].fillna('unknown', inplace=True)
|
| 573 |
+
|
| 574 |
+
# --- 4. Define the Analysis Function ---
|
| 575 |
+
def generate_accuracy_report(df, report_title):
|
| 576 |
+
"""Calculates and returns overall and per-language accuracy DataFrames."""
|
| 577 |
+
print(f"\n--- Generating Report: {report_title} ---")
|
| 578 |
+
|
| 579 |
+
# Filter for valid predictions (where normalization resulted in a known language)
|
| 580 |
+
valid_df = df[df['normalized_prediction'] != 'unknown'].copy()
|
| 581 |
+
print(f"Calculating accuracy on {len(valid_df)} valid predictions.")
|
| 582 |
+
|
| 583 |
+
if valid_df.empty:
|
| 584 |
+
print("No valid data to report on.")
|
| 585 |
+
return pd.DataFrame([{'Overall Accuracy': 'N/A'}]), pd.DataFrame()
|
| 586 |
+
|
| 587 |
+
# Calculate Overall Accuracy
|
| 588 |
+
overall_accuracy = accuracy_score(valid_df['ground_truth'], valid_df['normalized_prediction'])
|
| 589 |
+
summary_df = pd.DataFrame([{'Overall Accuracy': f"{overall_accuracy:.2%}"}])
|
| 590 |
+
print(f"Overall Accuracy: {overall_accuracy:.2%}")
|
| 591 |
+
|
| 592 |
+
# Calculate Per-Language Accuracy
|
| 593 |
+
report_dict = classification_report(valid_df['ground_truth'], valid_df['normalized_prediction'], output_dict=True, zero_division=0)
|
| 594 |
+
per_language_df = pd.DataFrame(report_dict).transpose().reset_index().rename(columns={'index': 'Language'})
|
| 595 |
+
|
| 596 |
+
# Keep only the rows for actual languages, not the summary rows
|
| 597 |
+
per_language_df = per_language_df[per_language_df['Language'].isin(valid_df['ground_truth'].unique())]
|
| 598 |
+
|
| 599 |
+
return summary_df, per_language_df
|
| 600 |
+
|
| 601 |
+
# --- 5. Generate Both Reports ---
|
| 602 |
+
# Report 1: Including ALL files
|
| 603 |
+
all_files_summary_df, all_files_per_lang_df = generate_accuracy_report(results_df, "All Audio Files")
|
| 604 |
+
|
| 605 |
+
# Report 2: Excluding files < 3 seconds
|
| 606 |
+
df_filtered = results_df[results_df['duration'] >= 3].copy()
|
| 607 |
+
filtered_summary_df, filtered_per_lang_df = generate_accuracy_report(df_filtered, "Audio Files >= 3 Seconds")
|
| 608 |
+
|
| 609 |
+
# --- 6. Save Everything to a Single Excel File ---
|
| 610 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 611 |
+
report_path = os.path.join(os.path.dirname(csv_path), f"final_corrected_analysis_{timestamp}.xlsx")
|
| 612 |
+
|
| 613 |
+
print(f"\nπΎ Saving final corrected analysis to: {report_path}")
|
| 614 |
+
|
| 615 |
+
with pd.ExcelWriter(report_path, engine='xlsxwriter') as writer:
|
| 616 |
+
all_files_summary_df.to_excel(writer, sheet_name='Overall_Accuracy_ALL_Files', index=False)
|
| 617 |
+
all_files_per_lang_df.to_excel(writer, sheet_name='Per_Lang_Accuracy_ALL_Files', index=False)
|
| 618 |
+
filtered_summary_df.to_excel(writer, sheet_name='Overall_Accuracy_>=3_Sec', index=False)
|
| 619 |
+
filtered_per_lang_df.to_excel(writer, sheet_name='Per_Lang_Accuracy_>=3_Sec', index=False)
|
| 620 |
+
results_df.to_excel(writer, sheet_name='Raw_Normalized_Results', index=False)
|
| 621 |
+
|
| 622 |
+
print("β
Analysis complete. All reports saved.")
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
numpy
|
| 2 |
+
pandas
|
| 3 |
+
torch
|
| 4 |
+
transformers
|