File size: 15,215 Bytes
72431fa 763c57d 72431fa 763c57d 72431fa fbc8ccb 72431fa 763c57d 72431fa fbc8ccb 72431fa 763c57d 72431fa 763c57d 72431fa fbc8ccb afeeac0 72431fa afeeac0 72431fa fbc8ccb 763c57d fbc8ccb af6fe58 72431fa af6fe58 72431fa 763c57d 72431fa afeeac0 72431fa afeeac0 763c57d 72431fa afeeac0 72431fa fbc8ccb 72431fa afeeac0 72431fa 763c57d 72431fa 763c57d 72431fa 763c57d 72431fa afeeac0 72431fa afeeac0 72431fa afeeac0 72431fa afeeac0 72431fa afeeac0 72431fa afeeac0 72431fa afeeac0 72431fa 763c57d 72431fa 69b756e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
"""Dataset Card Drafter - MVP Space.
Watches davanstrien/* datasets and opens PRs with auto-generated descriptions.
"""
import asyncio
import json
import logging
import os
from datetime import datetime
from pathlib import Path
import gradio as gr
from huggingface_hub import (
DatasetCard,
WebhookPayload,
WebhooksServer,
get_repo_discussions,
)
from description_generator import ViewerNotReadyError, generate_description
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Space URL for attribution
SPACE_URL = "https://huggingface.co/spaces/librarian-bots/dataset-card-drafter"
BOT_NAME = "librarian-bot"
PR_TITLE = "Add dataset description"
# Configuration
WATCHED_PREFIXES = ["davanstrien/"] # Repos to watch
MIN_DESCRIPTION_LENGTH = 100 # Chars below which we generate
# Persistence directory
DATA_DIR = Path("/data") if Path("/data").exists() else Path("./local_data")
DATA_DIR.mkdir(exist_ok=True)
PROCESSED_FILE = DATA_DIR / "processed.json"
PENDING_FILE = DATA_DIR / "pending.json"
# Retry configuration
RETRY_DELAYS = [60, 120, 300] # Seconds to wait between retries (1min, 2min, 5min)
def load_processed() -> dict:
"""Load processed datasets from persistence."""
if PROCESSED_FILE.exists():
return json.loads(PROCESSED_FILE.read_text())
return {}
def save_processed(data: dict) -> None:
"""Save processed datasets to persistence."""
PROCESSED_FILE.write_text(json.dumps(data, indent=2))
def load_pending() -> dict:
"""Load pending datasets from persistence."""
if PENDING_FILE.exists():
return json.loads(PENDING_FILE.read_text())
return {}
def save_pending(data: dict) -> None:
"""Save pending datasets to persistence."""
PENDING_FILE.write_text(json.dumps(data, indent=2))
def add_to_pending(dataset_id: str, reason: str) -> None:
"""Add a dataset to the pending queue."""
pending = load_pending()
pending[dataset_id] = {
"added": datetime.now().isoformat(),
"reason": reason,
"retries": 0,
}
save_pending(pending)
logger.info(f"Added {dataset_id} to pending queue: {reason}")
def remove_from_pending(dataset_id: str) -> None:
"""Remove a dataset from the pending queue."""
pending = load_pending()
if dataset_id in pending:
del pending[dataset_id]
save_pending(pending)
logger.info(f"Removed {dataset_id} from pending queue")
def is_watched_repo(repo_name: str) -> bool:
"""Check if a repo is in our watched list."""
return any(repo_name.startswith(prefix) for prefix in WATCHED_PREFIXES)
def should_generate(card: DatasetCard) -> bool:
"""Check if a dataset card needs a description."""
if not card.text:
return True
return len(card.text.strip()) < MIN_DESCRIPTION_LENGTH
def has_existing_pr(dataset_id: str) -> bool:
"""Check if there's already an open PR from librarian-bot for this dataset."""
try:
discussions = list(get_repo_discussions(dataset_id, repo_type="dataset"))
for discussion in discussions:
if not discussion.is_pull_request:
continue
# Check if it's from librarian-bot and matches our PR title
if discussion.author == BOT_NAME and discussion.title == PR_TITLE:
# Check if still open
if discussion.status == "open":
return True
return False
except Exception:
# If we can't check, err on the side of caution
return False
def build_pr_description(description: str) -> str:
"""Build the PR description with attribution and the generated content."""
return f"""## Auto-generated Dataset Description
This PR was automatically generated by the [Dataset Card Drafter]({SPACE_URL}) Space.
### Suggested Description
{description}
---
*If you find this description helpful, please merge the PR. If you'd like to edit it first, you can modify the README.md in this branch before merging.*
*Generated by [{BOT_NAME}]({SPACE_URL})*"""
async def process_dataset(dataset_id: str, inference_token: str, pr_token: str) -> dict:
"""Process a single dataset: check, generate, and open PR.
Args:
dataset_id: The dataset to process
inference_token: Token for inference API calls (e.g., davanstrien's token)
pr_token: Token for opening PRs (librarian-bot's token)
Returns a status dict with results.
"""
# Check for existing open PR first
if has_existing_pr(dataset_id):
remove_from_pending(dataset_id) # Clean up if it was pending
return {"status": "skipped", "reason": "open PR already exists"}
# Load current card (or create new if none exists)
try:
card = DatasetCard.load(dataset_id)
except Exception:
# No README exists - create a new card
card = DatasetCard("")
logger.info(f"No existing card for {dataset_id}, creating new one")
# Check if description needed
if not should_generate(card):
remove_from_pending(dataset_id) # Clean up if it was pending
return {"status": "skipped", "reason": "description exists"}
# Generate description using inference token
try:
description = generate_description(dataset_id, inference_token)
except ViewerNotReadyError as e:
return {"status": "pending", "reason": str(e)}
except Exception as e:
return {"status": "error", "reason": f"generation failed: {e}"}
if not description:
return {"status": "error", "reason": "empty description generated"}
# Update card and push as PR using librarian-bot token
card.text = description
try:
commit_info = card.push_to_hub(
repo_id=dataset_id,
repo_type="dataset",
commit_message=PR_TITLE,
commit_description=build_pr_description(description),
create_pr=True,
token=pr_token,
)
pr_url = getattr(commit_info, "pr_url", str(commit_info))
except Exception as e:
return {"status": "error", "reason": f"PR creation failed: {e}"}
# Success - remove from pending if it was there
remove_from_pending(dataset_id)
return {"status": "pr_created", "pr_url": pr_url, "description": description}
async def retry_pending_dataset(dataset_id: str) -> None:
"""Background task to retry a pending dataset after delays."""
inference_token = os.getenv("HF_TOKEN")
pr_token = os.getenv("LIBRARIAN_BOT_TOKEN")
if not inference_token or not pr_token:
logger.error("Missing tokens for retry")
return
for i, delay in enumerate(RETRY_DELAYS):
logger.info(f"Waiting {delay}s before retry {i + 1} for {dataset_id}")
await asyncio.sleep(delay)
# Update retry count
pending = load_pending()
if dataset_id not in pending:
logger.info(f"{dataset_id} no longer pending, stopping retries")
return
pending[dataset_id]["retries"] = i + 1
save_pending(pending)
# Try processing
result = await process_dataset(dataset_id, inference_token, pr_token)
if result["status"] == "pr_created":
logger.info(f"Successfully processed {dataset_id} on retry {i + 1}")
# Log to processed
processed = load_processed()
processed[dataset_id] = {
"pr_url": result.get("pr_url"),
"timestamp": datetime.now().isoformat(),
"status": "pr_created",
"trigger": "retry",
"retry_attempt": i + 1,
}
save_processed(processed)
return
elif result["status"] != "pending":
# Got a definitive answer (error or skipped), stop retrying
logger.info(f"Stopping retries for {dataset_id}: {result}")
remove_from_pending(dataset_id)
return
# Exhausted retries
logger.warning(f"Exhausted retries for {dataset_id}")
pending = load_pending()
if dataset_id in pending:
pending[dataset_id]["exhausted"] = True
save_pending(pending)
# Gradio UI
with gr.Blocks(title="Dataset Card Drafter") as demo:
gr.Markdown("# Dataset Card Drafter MVP")
gr.Markdown(
f"Watching datasets matching: `{'`, `'.join(WATCHED_PREFIXES)}`\n\n"
f"Triggers when description < {MIN_DESCRIPTION_LENGTH} characters."
)
with gr.Tab("Status"):
status_display = gr.JSON(label="Processed Datasets", value=load_processed)
refresh_btn = gr.Button("Refresh")
refresh_btn.click(fn=load_processed, outputs=status_display)
with gr.Tab("Pending"):
gr.Markdown(
"Datasets waiting for the viewer to be ready.\n\n"
"Background retries happen at 1min, 2min, 5min intervals."
)
pending_display = gr.JSON(label="Pending Datasets", value=load_pending)
pending_refresh_btn = gr.Button("Refresh")
pending_refresh_btn.click(fn=load_pending, outputs=pending_display)
# Manual retry button
retry_input = gr.Textbox(
label="Dataset ID to retry",
placeholder="davanstrien/dataset-name",
)
retry_btn = gr.Button("Retry Now")
retry_output = gr.JSON(label="Result")
async def manual_retry(dataset_id: str):
if not dataset_id:
return {"status": "error", "reason": "no dataset ID provided"}
inference_token = os.getenv("HF_TOKEN")
pr_token = os.getenv("LIBRARIAN_BOT_TOKEN")
if not inference_token or not pr_token:
return {"status": "error", "reason": "tokens not configured"}
result = await process_dataset(dataset_id, inference_token, pr_token)
if result.get("status") == "pr_created":
processed = load_processed()
processed[dataset_id] = {
"pr_url": result.get("pr_url"),
"timestamp": datetime.now().isoformat(),
"status": "pr_created",
"trigger": "manual_retry",
}
save_processed(processed)
return result
retry_btn.click(
fn=manual_retry,
inputs=retry_input,
outputs=retry_output,
)
with gr.Tab("Manual Test"):
gr.Markdown(
"Test description generation without opening a PR.\n\n"
"**Note:** This requires `HF_TOKEN` to be set."
)
test_input = gr.Textbox(
label="Dataset ID",
placeholder="davanstrien/test-dataset",
)
test_btn = gr.Button("Generate Description (Preview)")
test_output = gr.Textbox(label="Generated Description", lines=5)
test_status = gr.JSON(label="Status")
def test_generate(dataset_id: str):
if not dataset_id:
return "", {"status": "error", "reason": "no dataset ID provided"}
hf_token = os.getenv("HF_TOKEN")
if not hf_token:
return "", {"status": "error", "reason": "HF_TOKEN not set"}
try:
description = generate_description(dataset_id, hf_token)
return description, {"status": "success", "length": len(description)}
except Exception as e:
return "", {"status": "error", "reason": str(e)}
test_btn.click(
fn=test_generate,
inputs=test_input,
outputs=[test_output, test_status],
)
with gr.Tab("Trigger PR"):
gr.Markdown(
"Manually trigger description generation and PR creation.\n\n"
"**Warning:** This will open a real PR!\n\n"
"Requires `HF_TOKEN` (for inference) and `LIBRARIAN_BOT_TOKEN` (for PRs)."
)
trigger_input = gr.Textbox(
label="Dataset ID",
placeholder="davanstrien/test-dataset",
)
trigger_btn = gr.Button("Generate & Open PR", variant="primary")
trigger_output = gr.JSON(label="Result")
async def trigger_pr(dataset_id: str):
if not dataset_id:
return {"status": "error", "reason": "no dataset ID provided"}
inference_token = os.getenv("HF_TOKEN")
pr_token = os.getenv("LIBRARIAN_BOT_TOKEN")
if not inference_token:
return {"status": "error", "reason": "HF_TOKEN not set"}
if not pr_token:
return {"status": "error", "reason": "LIBRARIAN_BOT_TOKEN not set"}
result = await process_dataset(dataset_id, inference_token, pr_token)
# Save to processed log
if result.get("status") == "pr_created":
processed = load_processed()
processed[dataset_id] = {
"pr_url": result.get("pr_url"),
"timestamp": datetime.now().isoformat(),
"status": "pr_created",
"trigger": "manual",
}
save_processed(processed)
return result
trigger_btn.click(
fn=trigger_pr,
inputs=trigger_input,
outputs=trigger_output,
)
# WebhooksServer with automatic secret verification
app = WebhooksServer(ui=demo, webhook_secret=os.getenv("WEBHOOK_SECRET"))
@app.add_webhook("/dataset_update")
async def handle_dataset_webhook(payload: WebhookPayload) -> dict:
"""Handle dataset creation/update webhooks."""
# Filter for datasets only
if payload.repo.type != "dataset":
return {"status": "skipped", "reason": "not a dataset"}
# Filter for watched repos
if not is_watched_repo(payload.repo.name):
return {"status": "skipped", "reason": "not in watched list"}
dataset_id = payload.repo.name
# Get tokens
inference_token = os.getenv("HF_TOKEN")
pr_token = os.getenv("LIBRARIAN_BOT_TOKEN")
if not inference_token:
return {"status": "error", "reason": "HF_TOKEN not configured"}
if not pr_token:
return {"status": "error", "reason": "LIBRARIAN_BOT_TOKEN not configured"}
# Process the dataset
result = await process_dataset(dataset_id, inference_token, pr_token)
# Handle pending status - queue for retry
if result.get("status") == "pending":
add_to_pending(dataset_id, result.get("reason", "viewer not ready"))
# Spawn background retry task (non-blocking)
asyncio.create_task(retry_pending_dataset(dataset_id))
logger.info(f"Queued {dataset_id} for background retry")
return result
# Save to processed log
processed = load_processed()
processed[dataset_id] = {
"pr_url": result.get("pr_url"),
"timestamp": datetime.now().isoformat(),
"status": result.get("status"),
"reason": result.get("reason"),
"trigger": "webhook",
"event": payload.event.action if payload.event else None,
}
save_processed(processed)
return result
if __name__ == "__main__":
app.launch(ssr_mode=False)
|