Spaces:
Build error
Build error
Commit
·
51ca1a3
0
Parent(s):
Duplicate from masapasa/damage-detections
Browse files- .gitattributes +28 -0
- README.md +14 -0
- app.py +209 -0
- damage-detection.h5 +3 -0
- damage-detections.h5 +3 -0
- requirements.txt +11 -0
- yolov4-custom.cfg +1160 -0
- yolov4-custom_best.weights +3 -0
.gitattributes
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
yolov4-custom_best.weights filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: Oral_Cancer_Detection
|
| 3 |
+
emoji: 👀
|
| 4 |
+
colorFrom: indigo
|
| 5 |
+
colorTo: purple
|
| 6 |
+
sdk: streamlit
|
| 7 |
+
sdk_version: 1.9.0
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
license: afl-3.0
|
| 11 |
+
duplicated_from: masapasa/damage-detections
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
|
app.py
ADDED
|
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import numpy as np
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import tensorflow as tf
|
| 5 |
+
from tensorflow import keras
|
| 6 |
+
from keras.models import Sequential
|
| 7 |
+
from keras.layers import Dense
|
| 8 |
+
from keras.layers import Dropout
|
| 9 |
+
from keras.layers import Flatten
|
| 10 |
+
from keras.constraints import maxnorm
|
| 11 |
+
from tensorflow.keras.optimizers import SGD
|
| 12 |
+
from keras.layers.convolutional import Conv2D
|
| 13 |
+
from keras.layers import Dense, Conv2D ,Flatten,Dropout,MaxPool2D, BatchNormalization
|
| 14 |
+
from keras.utils import np_utils
|
| 15 |
+
import tensorflow as tf
|
| 16 |
+
from keras.preprocessing.image import ImageDataGenerator
|
| 17 |
+
from tensorflow.keras.preprocessing import image_dataset_from_directory
|
| 18 |
+
from tensorflow.keras.preprocessing import image
|
| 19 |
+
from tensorflow.keras.applications.vgg19 import VGG19
|
| 20 |
+
import keras
|
| 21 |
+
from PIL import Image
|
| 22 |
+
import matplotlib.pyplot as plt
|
| 23 |
+
import seaborn
|
| 24 |
+
from sklearn.metrics import confusion_matrix , classification_report
|
| 25 |
+
import os
|
| 26 |
+
import cv2
|
| 27 |
+
from skimage.transform import resize
|
| 28 |
+
import streamlit as st
|
| 29 |
+
|
| 30 |
+
def get_output_layers(net):
|
| 31 |
+
|
| 32 |
+
layer_names = net.getLayerNames()
|
| 33 |
+
|
| 34 |
+
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
|
| 35 |
+
|
| 36 |
+
return output_layers
|
| 37 |
+
|
| 38 |
+
# function to draw bounding box on the detected object with class name
|
| 39 |
+
def draw_bounding_box(img, class_id, confidence, x, y, x_plus_w, y_plus_h, COLORS):
|
| 40 |
+
|
| 41 |
+
label = f'damage:{confidence}'
|
| 42 |
+
|
| 43 |
+
color = COLORS[class_id]
|
| 44 |
+
|
| 45 |
+
cv2.rectangle(img, (x,y), (x_plus_w,y_plus_h), color, 2)
|
| 46 |
+
|
| 47 |
+
cv2.putText(img, label, (x-10,y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
|
| 48 |
+
|
| 49 |
+
# plt.imshow(img)
|
| 50 |
+
# plt.show()
|
| 51 |
+
|
| 52 |
+
def detection_inference(image, scale = 1/255, image_size = 416, conf_threshold = 0.1, nms_threshold = 0.4):
|
| 53 |
+
Width = image.shape[1]
|
| 54 |
+
Height = image.shape[0]
|
| 55 |
+
|
| 56 |
+
net=cv2.dnn.readNet('yolov4-custom_best.weights','yolov4-custom.cfg')
|
| 57 |
+
COLORS = np.random.uniform(0, 255, size=(1, 3))
|
| 58 |
+
|
| 59 |
+
blob = cv2.dnn.blobFromImage(image, scale, (image_size, image_size), (0,0,0), True, crop=False)
|
| 60 |
+
net.setInput(blob)
|
| 61 |
+
|
| 62 |
+
outs = net.forward(get_output_layers(net))
|
| 63 |
+
|
| 64 |
+
class_ids = []
|
| 65 |
+
confidences = []
|
| 66 |
+
boxes = []
|
| 67 |
+
|
| 68 |
+
for out in outs:
|
| 69 |
+
for detection in out:
|
| 70 |
+
scores=detection[5:]
|
| 71 |
+
class_id=np.argmax(scores)
|
| 72 |
+
confidence=scores[class_id]
|
| 73 |
+
if confidence > 0.1:
|
| 74 |
+
center_x = int(detection[0] * Width)
|
| 75 |
+
center_y = int(detection[1] * Height)
|
| 76 |
+
w = int(detection[2] * Width)
|
| 77 |
+
h = int(detection[3] * Height)
|
| 78 |
+
x = center_x - w / 2
|
| 79 |
+
y = center_y - h / 2
|
| 80 |
+
class_ids.append(class_id)
|
| 81 |
+
confidences.append(float(confidence))
|
| 82 |
+
boxes.append([x, y, w, h])
|
| 83 |
+
|
| 84 |
+
indices = cv2.dnn.NMSBoxes(boxes, confidences, conf_threshold, nms_threshold)
|
| 85 |
+
|
| 86 |
+
for i in indices:
|
| 87 |
+
i = i[0]
|
| 88 |
+
box = boxes[i]
|
| 89 |
+
x = box[0]
|
| 90 |
+
y = box[1]
|
| 91 |
+
w = box[2]
|
| 92 |
+
h = box[3]
|
| 93 |
+
|
| 94 |
+
draw_bounding_box(image, class_ids[i], confidences[i], round(x), round(y), round(x+w), round(y+h), COLORS)
|
| 95 |
+
|
| 96 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 97 |
+
plt.imshow(image)
|
| 98 |
+
plt.show()
|
| 99 |
+
|
| 100 |
+
return image
|
| 101 |
+
# st.image(image, caption='Object detection output', use_column_width=True)
|
| 102 |
+
|
| 103 |
+
def _predict(img, model):
|
| 104 |
+
m = keras.models.load_model(model)
|
| 105 |
+
img2 = img.resize((224, 224))
|
| 106 |
+
|
| 107 |
+
image_array = np.asarray(img2)
|
| 108 |
+
new_one = image_array.reshape((1, 224, 224, 3))
|
| 109 |
+
|
| 110 |
+
y_pred = m(new_one)
|
| 111 |
+
print(y_pred)
|
| 112 |
+
val = np.argmax(y_pred, axis = 1)
|
| 113 |
+
return y_pred, val
|
| 114 |
+
|
| 115 |
+
@tf.custom_gradient
|
| 116 |
+
def guidedRelu(x):
|
| 117 |
+
def grad(dy):
|
| 118 |
+
return tf.cast(dy>0,"float32") * tf.cast(x>0, "float32") * dy
|
| 119 |
+
return tf.nn.relu(x), grad
|
| 120 |
+
|
| 121 |
+
def gradcam(img, model):
|
| 122 |
+
m = keras.models.load_model(model)
|
| 123 |
+
LAYER_NAME = 'block5_conv4'
|
| 124 |
+
gb_model = tf.keras.models.Model(
|
| 125 |
+
inputs = [m.inputs],
|
| 126 |
+
outputs = [m.get_layer(LAYER_NAME).output]
|
| 127 |
+
)
|
| 128 |
+
layer_dict = [layer for layer in gb_model.layers[1:] if hasattr(layer,'activation')]
|
| 129 |
+
|
| 130 |
+
for layer in layer_dict:
|
| 131 |
+
if layer.activation == tf.keras.activations.relu:
|
| 132 |
+
layer.activation = guidedRelu
|
| 133 |
+
|
| 134 |
+
img2 = img.resize((224, 224))
|
| 135 |
+
|
| 136 |
+
image_array = np.asarray(img2)
|
| 137 |
+
print(image_array.shape)
|
| 138 |
+
new_one = image_array.reshape((1, 224, 224, 3))
|
| 139 |
+
|
| 140 |
+
with tf.GradientTape() as tape:
|
| 141 |
+
inputs = tf.cast(new_one, tf.float32)
|
| 142 |
+
tape.watch(inputs)
|
| 143 |
+
outputs = gb_model(inputs)[0]
|
| 144 |
+
grads = tape.gradient(outputs,inputs)[0]
|
| 145 |
+
|
| 146 |
+
weights = tf.reduce_mean(grads, axis=(0, 1))
|
| 147 |
+
grad_cam = np.ones(outputs.shape[0: 2], dtype = np.float32)
|
| 148 |
+
for i, w in enumerate(weights):
|
| 149 |
+
grad_cam += w * outputs[:, :, i]
|
| 150 |
+
|
| 151 |
+
grad_cam_img = cv2.resize(grad_cam.numpy(), (img.size[0], img.size[1]))
|
| 152 |
+
grad_cam_img = np.maximum(grad_cam_img, 0)
|
| 153 |
+
heatmap = (grad_cam_img - grad_cam_img.min()) / (grad_cam_img.max() - grad_cam_img.min())
|
| 154 |
+
grad_cam_img = cv2.applyColorMap(np.uint8(255*heatmap), cv2.COLORMAP_JET)
|
| 155 |
+
output_image = cv2.addWeighted(np.asarray(img).astype('uint8'), 1, grad_cam_img, 0.4, 0)
|
| 156 |
+
|
| 157 |
+
output_img = Image.fromarray(output_image)
|
| 158 |
+
|
| 159 |
+
st.image(output_img, caption='Class Activation Visualization', use_column_width=True)
|
| 160 |
+
|
| 161 |
+
plt.imshow(output_image)
|
| 162 |
+
plt.axis("off")
|
| 163 |
+
plt.show()
|
| 164 |
+
|
| 165 |
+
# guided_back_prop = grads
|
| 166 |
+
# guided_cam = np.maximum(grad_cam, 0)
|
| 167 |
+
# guided_cam = guided_cam / np.max(guided_cam) # scale 0 to 1.0
|
| 168 |
+
# guided_cam = resize(guided_cam, (224,224), preserve_range=True)
|
| 169 |
+
|
| 170 |
+
# #pointwise multiplcation of guided backprop and grad CAM
|
| 171 |
+
# gd_gb = np.dstack((
|
| 172 |
+
# guided_back_prop[:, :, 0] * guided_cam,
|
| 173 |
+
# guided_back_prop[:, :, 1] * guided_cam,
|
| 174 |
+
# guided_back_prop[:, :, 2] * guided_cam,
|
| 175 |
+
# ))
|
| 176 |
+
# plt.imshow(gd_gb)
|
| 177 |
+
# plt.axis("off")
|
| 178 |
+
# plt.show()
|
| 179 |
+
|
| 180 |
+
uploaded_file = st.file_uploader(
|
| 181 |
+
"Choose an image of your infrastructure", type=['jpg', 'jpeg', 'png'])
|
| 182 |
+
|
| 183 |
+
if uploaded_file is not None:
|
| 184 |
+
img = Image.open(uploaded_file).convert('RGB')
|
| 185 |
+
cv_img = np.array(img)
|
| 186 |
+
cv_img = cv2.cvtColor(cv_img, cv2.COLOR_RGB2BGR)
|
| 187 |
+
# img2 = Image.open('test.jpg')
|
| 188 |
+
st.image(img, caption='Uploaded file of your infrastructure', use_column_width=True)
|
| 189 |
+
|
| 190 |
+
# similarity = ssim(img, img2)
|
| 191 |
+
# st.write("")
|
| 192 |
+
# st.write(f'This is {similarity * 100}% histopathological image')
|
| 193 |
+
|
| 194 |
+
# if similarity >= 0.85:
|
| 195 |
+
st.write("")
|
| 196 |
+
st.write("Classifying...")
|
| 197 |
+
|
| 198 |
+
y_pred, val = _predict(img, 'damage-detections.h5')
|
| 199 |
+
if val == 0:
|
| 200 |
+
st.write(f'The infrastructure has damage.')
|
| 201 |
+
final_img = detection_inference(cv_img)
|
| 202 |
+
final_pil_image = Image.fromarray(final_img)
|
| 203 |
+
gradcam(final_pil_image, 'damage-detections.h5')
|
| 204 |
+
else:
|
| 205 |
+
st.write(f'The infrastructure does not have damage.')
|
| 206 |
+
gradcam(img, 'damage-detections.h5')
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
|
damage-detection.h5
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7da652d3775f743f065e4d0289f9ab03f1d7d38b55058150e90f6e7e1044f060
|
| 3 |
+
size 134
|
damage-detections.h5
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:83636d8b5cd109904b8dddf9c0a8b2cbc5953951dba6272f1301b8cb6c1998ea
|
| 3 |
+
size 558474384
|
requirements.txt
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
keras==2.8.0
|
| 2 |
+
matplotlib==3.2.2
|
| 3 |
+
numpy==1.21.6
|
| 4 |
+
opencv-contrib-python==3.4.13.47
|
| 5 |
+
pandas==1.3.5
|
| 6 |
+
Pillow==9.1.1
|
| 7 |
+
scikit_image==0.18.3
|
| 8 |
+
scikit_learn==1.1.1
|
| 9 |
+
seaborn==0.11.2
|
| 10 |
+
streamlit==1.9.2
|
| 11 |
+
tensorflow==2.8.0
|
yolov4-custom.cfg
ADDED
|
@@ -0,0 +1,1160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[net]
|
| 2 |
+
# Testing
|
| 3 |
+
#batch=1
|
| 4 |
+
#subdivisions=1
|
| 5 |
+
# Training
|
| 6 |
+
batch=1
|
| 7 |
+
subdivisions=1
|
| 8 |
+
width=416
|
| 9 |
+
height=416
|
| 10 |
+
channels=3
|
| 11 |
+
momentum=0.949
|
| 12 |
+
decay=0.0005
|
| 13 |
+
angle=0
|
| 14 |
+
saturation = 1.5
|
| 15 |
+
exposure = 1.5
|
| 16 |
+
hue=.1
|
| 17 |
+
|
| 18 |
+
learning_rate=0.001
|
| 19 |
+
burn_in=1000
|
| 20 |
+
max_batches = 6000
|
| 21 |
+
policy=steps
|
| 22 |
+
steps=4800,5400
|
| 23 |
+
scales=.1,.1
|
| 24 |
+
|
| 25 |
+
#cutmix=1
|
| 26 |
+
mosaic=1
|
| 27 |
+
|
| 28 |
+
#:104x104 54:52x52 85:26x26 104:13x13 for 416
|
| 29 |
+
|
| 30 |
+
[convolutional]
|
| 31 |
+
batch_normalize=1
|
| 32 |
+
filters=32
|
| 33 |
+
size=3
|
| 34 |
+
stride=1
|
| 35 |
+
pad=1
|
| 36 |
+
activation=mish
|
| 37 |
+
|
| 38 |
+
# Downsample
|
| 39 |
+
|
| 40 |
+
[convolutional]
|
| 41 |
+
batch_normalize=1
|
| 42 |
+
filters=64
|
| 43 |
+
size=3
|
| 44 |
+
stride=2
|
| 45 |
+
pad=1
|
| 46 |
+
activation=mish
|
| 47 |
+
|
| 48 |
+
[convolutional]
|
| 49 |
+
batch_normalize=1
|
| 50 |
+
filters=64
|
| 51 |
+
size=1
|
| 52 |
+
stride=1
|
| 53 |
+
pad=1
|
| 54 |
+
activation=mish
|
| 55 |
+
|
| 56 |
+
[route]
|
| 57 |
+
layers = -2
|
| 58 |
+
|
| 59 |
+
[convolutional]
|
| 60 |
+
batch_normalize=1
|
| 61 |
+
filters=64
|
| 62 |
+
size=1
|
| 63 |
+
stride=1
|
| 64 |
+
pad=1
|
| 65 |
+
activation=mish
|
| 66 |
+
|
| 67 |
+
[convolutional]
|
| 68 |
+
batch_normalize=1
|
| 69 |
+
filters=32
|
| 70 |
+
size=1
|
| 71 |
+
stride=1
|
| 72 |
+
pad=1
|
| 73 |
+
activation=mish
|
| 74 |
+
|
| 75 |
+
[convolutional]
|
| 76 |
+
batch_normalize=1
|
| 77 |
+
filters=64
|
| 78 |
+
size=3
|
| 79 |
+
stride=1
|
| 80 |
+
pad=1
|
| 81 |
+
activation=mish
|
| 82 |
+
|
| 83 |
+
[shortcut]
|
| 84 |
+
from=-3
|
| 85 |
+
activation=linear
|
| 86 |
+
|
| 87 |
+
[convolutional]
|
| 88 |
+
batch_normalize=1
|
| 89 |
+
filters=64
|
| 90 |
+
size=1
|
| 91 |
+
stride=1
|
| 92 |
+
pad=1
|
| 93 |
+
activation=mish
|
| 94 |
+
|
| 95 |
+
[route]
|
| 96 |
+
layers = -1,-7
|
| 97 |
+
|
| 98 |
+
[convolutional]
|
| 99 |
+
batch_normalize=1
|
| 100 |
+
filters=64
|
| 101 |
+
size=1
|
| 102 |
+
stride=1
|
| 103 |
+
pad=1
|
| 104 |
+
activation=mish
|
| 105 |
+
|
| 106 |
+
# Downsample
|
| 107 |
+
|
| 108 |
+
[convolutional]
|
| 109 |
+
batch_normalize=1
|
| 110 |
+
filters=128
|
| 111 |
+
size=3
|
| 112 |
+
stride=2
|
| 113 |
+
pad=1
|
| 114 |
+
activation=mish
|
| 115 |
+
|
| 116 |
+
[convolutional]
|
| 117 |
+
batch_normalize=1
|
| 118 |
+
filters=64
|
| 119 |
+
size=1
|
| 120 |
+
stride=1
|
| 121 |
+
pad=1
|
| 122 |
+
activation=mish
|
| 123 |
+
|
| 124 |
+
[route]
|
| 125 |
+
layers = -2
|
| 126 |
+
|
| 127 |
+
[convolutional]
|
| 128 |
+
batch_normalize=1
|
| 129 |
+
filters=64
|
| 130 |
+
size=1
|
| 131 |
+
stride=1
|
| 132 |
+
pad=1
|
| 133 |
+
activation=mish
|
| 134 |
+
|
| 135 |
+
[convolutional]
|
| 136 |
+
batch_normalize=1
|
| 137 |
+
filters=64
|
| 138 |
+
size=1
|
| 139 |
+
stride=1
|
| 140 |
+
pad=1
|
| 141 |
+
activation=mish
|
| 142 |
+
|
| 143 |
+
[convolutional]
|
| 144 |
+
batch_normalize=1
|
| 145 |
+
filters=64
|
| 146 |
+
size=3
|
| 147 |
+
stride=1
|
| 148 |
+
pad=1
|
| 149 |
+
activation=mish
|
| 150 |
+
|
| 151 |
+
[shortcut]
|
| 152 |
+
from=-3
|
| 153 |
+
activation=linear
|
| 154 |
+
|
| 155 |
+
[convolutional]
|
| 156 |
+
batch_normalize=1
|
| 157 |
+
filters=64
|
| 158 |
+
size=1
|
| 159 |
+
stride=1
|
| 160 |
+
pad=1
|
| 161 |
+
activation=mish
|
| 162 |
+
|
| 163 |
+
[convolutional]
|
| 164 |
+
batch_normalize=1
|
| 165 |
+
filters=64
|
| 166 |
+
size=3
|
| 167 |
+
stride=1
|
| 168 |
+
pad=1
|
| 169 |
+
activation=mish
|
| 170 |
+
|
| 171 |
+
[shortcut]
|
| 172 |
+
from=-3
|
| 173 |
+
activation=linear
|
| 174 |
+
|
| 175 |
+
[convolutional]
|
| 176 |
+
batch_normalize=1
|
| 177 |
+
filters=64
|
| 178 |
+
size=1
|
| 179 |
+
stride=1
|
| 180 |
+
pad=1
|
| 181 |
+
activation=mish
|
| 182 |
+
|
| 183 |
+
[route]
|
| 184 |
+
layers = -1,-10
|
| 185 |
+
|
| 186 |
+
[convolutional]
|
| 187 |
+
batch_normalize=1
|
| 188 |
+
filters=128
|
| 189 |
+
size=1
|
| 190 |
+
stride=1
|
| 191 |
+
pad=1
|
| 192 |
+
activation=mish
|
| 193 |
+
|
| 194 |
+
# Downsample
|
| 195 |
+
|
| 196 |
+
[convolutional]
|
| 197 |
+
batch_normalize=1
|
| 198 |
+
filters=256
|
| 199 |
+
size=3
|
| 200 |
+
stride=2
|
| 201 |
+
pad=1
|
| 202 |
+
activation=mish
|
| 203 |
+
|
| 204 |
+
[convolutional]
|
| 205 |
+
batch_normalize=1
|
| 206 |
+
filters=128
|
| 207 |
+
size=1
|
| 208 |
+
stride=1
|
| 209 |
+
pad=1
|
| 210 |
+
activation=mish
|
| 211 |
+
|
| 212 |
+
[route]
|
| 213 |
+
layers = -2
|
| 214 |
+
|
| 215 |
+
[convolutional]
|
| 216 |
+
batch_normalize=1
|
| 217 |
+
filters=128
|
| 218 |
+
size=1
|
| 219 |
+
stride=1
|
| 220 |
+
pad=1
|
| 221 |
+
activation=mish
|
| 222 |
+
|
| 223 |
+
[convolutional]
|
| 224 |
+
batch_normalize=1
|
| 225 |
+
filters=128
|
| 226 |
+
size=1
|
| 227 |
+
stride=1
|
| 228 |
+
pad=1
|
| 229 |
+
activation=mish
|
| 230 |
+
|
| 231 |
+
[convolutional]
|
| 232 |
+
batch_normalize=1
|
| 233 |
+
filters=128
|
| 234 |
+
size=3
|
| 235 |
+
stride=1
|
| 236 |
+
pad=1
|
| 237 |
+
activation=mish
|
| 238 |
+
|
| 239 |
+
[shortcut]
|
| 240 |
+
from=-3
|
| 241 |
+
activation=linear
|
| 242 |
+
|
| 243 |
+
[convolutional]
|
| 244 |
+
batch_normalize=1
|
| 245 |
+
filters=128
|
| 246 |
+
size=1
|
| 247 |
+
stride=1
|
| 248 |
+
pad=1
|
| 249 |
+
activation=mish
|
| 250 |
+
|
| 251 |
+
[convolutional]
|
| 252 |
+
batch_normalize=1
|
| 253 |
+
filters=128
|
| 254 |
+
size=3
|
| 255 |
+
stride=1
|
| 256 |
+
pad=1
|
| 257 |
+
activation=mish
|
| 258 |
+
|
| 259 |
+
[shortcut]
|
| 260 |
+
from=-3
|
| 261 |
+
activation=linear
|
| 262 |
+
|
| 263 |
+
[convolutional]
|
| 264 |
+
batch_normalize=1
|
| 265 |
+
filters=128
|
| 266 |
+
size=1
|
| 267 |
+
stride=1
|
| 268 |
+
pad=1
|
| 269 |
+
activation=mish
|
| 270 |
+
|
| 271 |
+
[convolutional]
|
| 272 |
+
batch_normalize=1
|
| 273 |
+
filters=128
|
| 274 |
+
size=3
|
| 275 |
+
stride=1
|
| 276 |
+
pad=1
|
| 277 |
+
activation=mish
|
| 278 |
+
|
| 279 |
+
[shortcut]
|
| 280 |
+
from=-3
|
| 281 |
+
activation=linear
|
| 282 |
+
|
| 283 |
+
[convolutional]
|
| 284 |
+
batch_normalize=1
|
| 285 |
+
filters=128
|
| 286 |
+
size=1
|
| 287 |
+
stride=1
|
| 288 |
+
pad=1
|
| 289 |
+
activation=mish
|
| 290 |
+
|
| 291 |
+
[convolutional]
|
| 292 |
+
batch_normalize=1
|
| 293 |
+
filters=128
|
| 294 |
+
size=3
|
| 295 |
+
stride=1
|
| 296 |
+
pad=1
|
| 297 |
+
activation=mish
|
| 298 |
+
|
| 299 |
+
[shortcut]
|
| 300 |
+
from=-3
|
| 301 |
+
activation=linear
|
| 302 |
+
|
| 303 |
+
|
| 304 |
+
[convolutional]
|
| 305 |
+
batch_normalize=1
|
| 306 |
+
filters=128
|
| 307 |
+
size=1
|
| 308 |
+
stride=1
|
| 309 |
+
pad=1
|
| 310 |
+
activation=mish
|
| 311 |
+
|
| 312 |
+
[convolutional]
|
| 313 |
+
batch_normalize=1
|
| 314 |
+
filters=128
|
| 315 |
+
size=3
|
| 316 |
+
stride=1
|
| 317 |
+
pad=1
|
| 318 |
+
activation=mish
|
| 319 |
+
|
| 320 |
+
[shortcut]
|
| 321 |
+
from=-3
|
| 322 |
+
activation=linear
|
| 323 |
+
|
| 324 |
+
[convolutional]
|
| 325 |
+
batch_normalize=1
|
| 326 |
+
filters=128
|
| 327 |
+
size=1
|
| 328 |
+
stride=1
|
| 329 |
+
pad=1
|
| 330 |
+
activation=mish
|
| 331 |
+
|
| 332 |
+
[convolutional]
|
| 333 |
+
batch_normalize=1
|
| 334 |
+
filters=128
|
| 335 |
+
size=3
|
| 336 |
+
stride=1
|
| 337 |
+
pad=1
|
| 338 |
+
activation=mish
|
| 339 |
+
|
| 340 |
+
[shortcut]
|
| 341 |
+
from=-3
|
| 342 |
+
activation=linear
|
| 343 |
+
|
| 344 |
+
[convolutional]
|
| 345 |
+
batch_normalize=1
|
| 346 |
+
filters=128
|
| 347 |
+
size=1
|
| 348 |
+
stride=1
|
| 349 |
+
pad=1
|
| 350 |
+
activation=mish
|
| 351 |
+
|
| 352 |
+
[convolutional]
|
| 353 |
+
batch_normalize=1
|
| 354 |
+
filters=128
|
| 355 |
+
size=3
|
| 356 |
+
stride=1
|
| 357 |
+
pad=1
|
| 358 |
+
activation=mish
|
| 359 |
+
|
| 360 |
+
[shortcut]
|
| 361 |
+
from=-3
|
| 362 |
+
activation=linear
|
| 363 |
+
|
| 364 |
+
[convolutional]
|
| 365 |
+
batch_normalize=1
|
| 366 |
+
filters=128
|
| 367 |
+
size=1
|
| 368 |
+
stride=1
|
| 369 |
+
pad=1
|
| 370 |
+
activation=mish
|
| 371 |
+
|
| 372 |
+
[convolutional]
|
| 373 |
+
batch_normalize=1
|
| 374 |
+
filters=128
|
| 375 |
+
size=3
|
| 376 |
+
stride=1
|
| 377 |
+
pad=1
|
| 378 |
+
activation=mish
|
| 379 |
+
|
| 380 |
+
[shortcut]
|
| 381 |
+
from=-3
|
| 382 |
+
activation=linear
|
| 383 |
+
|
| 384 |
+
[convolutional]
|
| 385 |
+
batch_normalize=1
|
| 386 |
+
filters=128
|
| 387 |
+
size=1
|
| 388 |
+
stride=1
|
| 389 |
+
pad=1
|
| 390 |
+
activation=mish
|
| 391 |
+
|
| 392 |
+
[route]
|
| 393 |
+
layers = -1,-28
|
| 394 |
+
|
| 395 |
+
[convolutional]
|
| 396 |
+
batch_normalize=1
|
| 397 |
+
filters=256
|
| 398 |
+
size=1
|
| 399 |
+
stride=1
|
| 400 |
+
pad=1
|
| 401 |
+
activation=mish
|
| 402 |
+
|
| 403 |
+
# Downsample
|
| 404 |
+
|
| 405 |
+
[convolutional]
|
| 406 |
+
batch_normalize=1
|
| 407 |
+
filters=512
|
| 408 |
+
size=3
|
| 409 |
+
stride=2
|
| 410 |
+
pad=1
|
| 411 |
+
activation=mish
|
| 412 |
+
|
| 413 |
+
[convolutional]
|
| 414 |
+
batch_normalize=1
|
| 415 |
+
filters=256
|
| 416 |
+
size=1
|
| 417 |
+
stride=1
|
| 418 |
+
pad=1
|
| 419 |
+
activation=mish
|
| 420 |
+
|
| 421 |
+
[route]
|
| 422 |
+
layers = -2
|
| 423 |
+
|
| 424 |
+
[convolutional]
|
| 425 |
+
batch_normalize=1
|
| 426 |
+
filters=256
|
| 427 |
+
size=1
|
| 428 |
+
stride=1
|
| 429 |
+
pad=1
|
| 430 |
+
activation=mish
|
| 431 |
+
|
| 432 |
+
[convolutional]
|
| 433 |
+
batch_normalize=1
|
| 434 |
+
filters=256
|
| 435 |
+
size=1
|
| 436 |
+
stride=1
|
| 437 |
+
pad=1
|
| 438 |
+
activation=mish
|
| 439 |
+
|
| 440 |
+
[convolutional]
|
| 441 |
+
batch_normalize=1
|
| 442 |
+
filters=256
|
| 443 |
+
size=3
|
| 444 |
+
stride=1
|
| 445 |
+
pad=1
|
| 446 |
+
activation=mish
|
| 447 |
+
|
| 448 |
+
[shortcut]
|
| 449 |
+
from=-3
|
| 450 |
+
activation=linear
|
| 451 |
+
|
| 452 |
+
|
| 453 |
+
[convolutional]
|
| 454 |
+
batch_normalize=1
|
| 455 |
+
filters=256
|
| 456 |
+
size=1
|
| 457 |
+
stride=1
|
| 458 |
+
pad=1
|
| 459 |
+
activation=mish
|
| 460 |
+
|
| 461 |
+
[convolutional]
|
| 462 |
+
batch_normalize=1
|
| 463 |
+
filters=256
|
| 464 |
+
size=3
|
| 465 |
+
stride=1
|
| 466 |
+
pad=1
|
| 467 |
+
activation=mish
|
| 468 |
+
|
| 469 |
+
[shortcut]
|
| 470 |
+
from=-3
|
| 471 |
+
activation=linear
|
| 472 |
+
|
| 473 |
+
|
| 474 |
+
[convolutional]
|
| 475 |
+
batch_normalize=1
|
| 476 |
+
filters=256
|
| 477 |
+
size=1
|
| 478 |
+
stride=1
|
| 479 |
+
pad=1
|
| 480 |
+
activation=mish
|
| 481 |
+
|
| 482 |
+
[convolutional]
|
| 483 |
+
batch_normalize=1
|
| 484 |
+
filters=256
|
| 485 |
+
size=3
|
| 486 |
+
stride=1
|
| 487 |
+
pad=1
|
| 488 |
+
activation=mish
|
| 489 |
+
|
| 490 |
+
[shortcut]
|
| 491 |
+
from=-3
|
| 492 |
+
activation=linear
|
| 493 |
+
|
| 494 |
+
|
| 495 |
+
[convolutional]
|
| 496 |
+
batch_normalize=1
|
| 497 |
+
filters=256
|
| 498 |
+
size=1
|
| 499 |
+
stride=1
|
| 500 |
+
pad=1
|
| 501 |
+
activation=mish
|
| 502 |
+
|
| 503 |
+
[convolutional]
|
| 504 |
+
batch_normalize=1
|
| 505 |
+
filters=256
|
| 506 |
+
size=3
|
| 507 |
+
stride=1
|
| 508 |
+
pad=1
|
| 509 |
+
activation=mish
|
| 510 |
+
|
| 511 |
+
[shortcut]
|
| 512 |
+
from=-3
|
| 513 |
+
activation=linear
|
| 514 |
+
|
| 515 |
+
|
| 516 |
+
[convolutional]
|
| 517 |
+
batch_normalize=1
|
| 518 |
+
filters=256
|
| 519 |
+
size=1
|
| 520 |
+
stride=1
|
| 521 |
+
pad=1
|
| 522 |
+
activation=mish
|
| 523 |
+
|
| 524 |
+
[convolutional]
|
| 525 |
+
batch_normalize=1
|
| 526 |
+
filters=256
|
| 527 |
+
size=3
|
| 528 |
+
stride=1
|
| 529 |
+
pad=1
|
| 530 |
+
activation=mish
|
| 531 |
+
|
| 532 |
+
[shortcut]
|
| 533 |
+
from=-3
|
| 534 |
+
activation=linear
|
| 535 |
+
|
| 536 |
+
|
| 537 |
+
[convolutional]
|
| 538 |
+
batch_normalize=1
|
| 539 |
+
filters=256
|
| 540 |
+
size=1
|
| 541 |
+
stride=1
|
| 542 |
+
pad=1
|
| 543 |
+
activation=mish
|
| 544 |
+
|
| 545 |
+
[convolutional]
|
| 546 |
+
batch_normalize=1
|
| 547 |
+
filters=256
|
| 548 |
+
size=3
|
| 549 |
+
stride=1
|
| 550 |
+
pad=1
|
| 551 |
+
activation=mish
|
| 552 |
+
|
| 553 |
+
[shortcut]
|
| 554 |
+
from=-3
|
| 555 |
+
activation=linear
|
| 556 |
+
|
| 557 |
+
|
| 558 |
+
[convolutional]
|
| 559 |
+
batch_normalize=1
|
| 560 |
+
filters=256
|
| 561 |
+
size=1
|
| 562 |
+
stride=1
|
| 563 |
+
pad=1
|
| 564 |
+
activation=mish
|
| 565 |
+
|
| 566 |
+
[convolutional]
|
| 567 |
+
batch_normalize=1
|
| 568 |
+
filters=256
|
| 569 |
+
size=3
|
| 570 |
+
stride=1
|
| 571 |
+
pad=1
|
| 572 |
+
activation=mish
|
| 573 |
+
|
| 574 |
+
[shortcut]
|
| 575 |
+
from=-3
|
| 576 |
+
activation=linear
|
| 577 |
+
|
| 578 |
+
[convolutional]
|
| 579 |
+
batch_normalize=1
|
| 580 |
+
filters=256
|
| 581 |
+
size=1
|
| 582 |
+
stride=1
|
| 583 |
+
pad=1
|
| 584 |
+
activation=mish
|
| 585 |
+
|
| 586 |
+
[convolutional]
|
| 587 |
+
batch_normalize=1
|
| 588 |
+
filters=256
|
| 589 |
+
size=3
|
| 590 |
+
stride=1
|
| 591 |
+
pad=1
|
| 592 |
+
activation=mish
|
| 593 |
+
|
| 594 |
+
[shortcut]
|
| 595 |
+
from=-3
|
| 596 |
+
activation=linear
|
| 597 |
+
|
| 598 |
+
[convolutional]
|
| 599 |
+
batch_normalize=1
|
| 600 |
+
filters=256
|
| 601 |
+
size=1
|
| 602 |
+
stride=1
|
| 603 |
+
pad=1
|
| 604 |
+
activation=mish
|
| 605 |
+
|
| 606 |
+
[route]
|
| 607 |
+
layers = -1,-28
|
| 608 |
+
|
| 609 |
+
[convolutional]
|
| 610 |
+
batch_normalize=1
|
| 611 |
+
filters=512
|
| 612 |
+
size=1
|
| 613 |
+
stride=1
|
| 614 |
+
pad=1
|
| 615 |
+
activation=mish
|
| 616 |
+
|
| 617 |
+
# Downsample
|
| 618 |
+
|
| 619 |
+
[convolutional]
|
| 620 |
+
batch_normalize=1
|
| 621 |
+
filters=1024
|
| 622 |
+
size=3
|
| 623 |
+
stride=2
|
| 624 |
+
pad=1
|
| 625 |
+
activation=mish
|
| 626 |
+
|
| 627 |
+
[convolutional]
|
| 628 |
+
batch_normalize=1
|
| 629 |
+
filters=512
|
| 630 |
+
size=1
|
| 631 |
+
stride=1
|
| 632 |
+
pad=1
|
| 633 |
+
activation=mish
|
| 634 |
+
|
| 635 |
+
[route]
|
| 636 |
+
layers = -2
|
| 637 |
+
|
| 638 |
+
[convolutional]
|
| 639 |
+
batch_normalize=1
|
| 640 |
+
filters=512
|
| 641 |
+
size=1
|
| 642 |
+
stride=1
|
| 643 |
+
pad=1
|
| 644 |
+
activation=mish
|
| 645 |
+
|
| 646 |
+
[convolutional]
|
| 647 |
+
batch_normalize=1
|
| 648 |
+
filters=512
|
| 649 |
+
size=1
|
| 650 |
+
stride=1
|
| 651 |
+
pad=1
|
| 652 |
+
activation=mish
|
| 653 |
+
|
| 654 |
+
[convolutional]
|
| 655 |
+
batch_normalize=1
|
| 656 |
+
filters=512
|
| 657 |
+
size=3
|
| 658 |
+
stride=1
|
| 659 |
+
pad=1
|
| 660 |
+
activation=mish
|
| 661 |
+
|
| 662 |
+
[shortcut]
|
| 663 |
+
from=-3
|
| 664 |
+
activation=linear
|
| 665 |
+
|
| 666 |
+
[convolutional]
|
| 667 |
+
batch_normalize=1
|
| 668 |
+
filters=512
|
| 669 |
+
size=1
|
| 670 |
+
stride=1
|
| 671 |
+
pad=1
|
| 672 |
+
activation=mish
|
| 673 |
+
|
| 674 |
+
[convolutional]
|
| 675 |
+
batch_normalize=1
|
| 676 |
+
filters=512
|
| 677 |
+
size=3
|
| 678 |
+
stride=1
|
| 679 |
+
pad=1
|
| 680 |
+
activation=mish
|
| 681 |
+
|
| 682 |
+
[shortcut]
|
| 683 |
+
from=-3
|
| 684 |
+
activation=linear
|
| 685 |
+
|
| 686 |
+
[convolutional]
|
| 687 |
+
batch_normalize=1
|
| 688 |
+
filters=512
|
| 689 |
+
size=1
|
| 690 |
+
stride=1
|
| 691 |
+
pad=1
|
| 692 |
+
activation=mish
|
| 693 |
+
|
| 694 |
+
[convolutional]
|
| 695 |
+
batch_normalize=1
|
| 696 |
+
filters=512
|
| 697 |
+
size=3
|
| 698 |
+
stride=1
|
| 699 |
+
pad=1
|
| 700 |
+
activation=mish
|
| 701 |
+
|
| 702 |
+
[shortcut]
|
| 703 |
+
from=-3
|
| 704 |
+
activation=linear
|
| 705 |
+
|
| 706 |
+
[convolutional]
|
| 707 |
+
batch_normalize=1
|
| 708 |
+
filters=512
|
| 709 |
+
size=1
|
| 710 |
+
stride=1
|
| 711 |
+
pad=1
|
| 712 |
+
activation=mish
|
| 713 |
+
|
| 714 |
+
[convolutional]
|
| 715 |
+
batch_normalize=1
|
| 716 |
+
filters=512
|
| 717 |
+
size=3
|
| 718 |
+
stride=1
|
| 719 |
+
pad=1
|
| 720 |
+
activation=mish
|
| 721 |
+
|
| 722 |
+
[shortcut]
|
| 723 |
+
from=-3
|
| 724 |
+
activation=linear
|
| 725 |
+
|
| 726 |
+
[convolutional]
|
| 727 |
+
batch_normalize=1
|
| 728 |
+
filters=512
|
| 729 |
+
size=1
|
| 730 |
+
stride=1
|
| 731 |
+
pad=1
|
| 732 |
+
activation=mish
|
| 733 |
+
|
| 734 |
+
[route]
|
| 735 |
+
layers = -1,-16
|
| 736 |
+
|
| 737 |
+
[convolutional]
|
| 738 |
+
batch_normalize=1
|
| 739 |
+
filters=1024
|
| 740 |
+
size=1
|
| 741 |
+
stride=1
|
| 742 |
+
pad=1
|
| 743 |
+
activation=mish
|
| 744 |
+
stopbackward=800
|
| 745 |
+
|
| 746 |
+
##########################
|
| 747 |
+
|
| 748 |
+
[convolutional]
|
| 749 |
+
batch_normalize=1
|
| 750 |
+
filters=512
|
| 751 |
+
size=1
|
| 752 |
+
stride=1
|
| 753 |
+
pad=1
|
| 754 |
+
activation=leaky
|
| 755 |
+
|
| 756 |
+
[convolutional]
|
| 757 |
+
batch_normalize=1
|
| 758 |
+
size=3
|
| 759 |
+
stride=1
|
| 760 |
+
pad=1
|
| 761 |
+
filters=1024
|
| 762 |
+
activation=leaky
|
| 763 |
+
|
| 764 |
+
[convolutional]
|
| 765 |
+
batch_normalize=1
|
| 766 |
+
filters=512
|
| 767 |
+
size=1
|
| 768 |
+
stride=1
|
| 769 |
+
pad=1
|
| 770 |
+
activation=leaky
|
| 771 |
+
|
| 772 |
+
### SPP ###
|
| 773 |
+
[maxpool]
|
| 774 |
+
stride=1
|
| 775 |
+
size=5
|
| 776 |
+
|
| 777 |
+
[route]
|
| 778 |
+
layers=-2
|
| 779 |
+
|
| 780 |
+
[maxpool]
|
| 781 |
+
stride=1
|
| 782 |
+
size=9
|
| 783 |
+
|
| 784 |
+
[route]
|
| 785 |
+
layers=-4
|
| 786 |
+
|
| 787 |
+
[maxpool]
|
| 788 |
+
stride=1
|
| 789 |
+
size=13
|
| 790 |
+
|
| 791 |
+
[route]
|
| 792 |
+
layers=-1,-3,-5,-6
|
| 793 |
+
### End SPP ###
|
| 794 |
+
|
| 795 |
+
[convolutional]
|
| 796 |
+
batch_normalize=1
|
| 797 |
+
filters=512
|
| 798 |
+
size=1
|
| 799 |
+
stride=1
|
| 800 |
+
pad=1
|
| 801 |
+
activation=leaky
|
| 802 |
+
|
| 803 |
+
[convolutional]
|
| 804 |
+
batch_normalize=1
|
| 805 |
+
size=3
|
| 806 |
+
stride=1
|
| 807 |
+
pad=1
|
| 808 |
+
filters=1024
|
| 809 |
+
activation=leaky
|
| 810 |
+
|
| 811 |
+
[convolutional]
|
| 812 |
+
batch_normalize=1
|
| 813 |
+
filters=512
|
| 814 |
+
size=1
|
| 815 |
+
stride=1
|
| 816 |
+
pad=1
|
| 817 |
+
activation=leaky
|
| 818 |
+
|
| 819 |
+
[convolutional]
|
| 820 |
+
batch_normalize=1
|
| 821 |
+
filters=256
|
| 822 |
+
size=1
|
| 823 |
+
stride=1
|
| 824 |
+
pad=1
|
| 825 |
+
activation=leaky
|
| 826 |
+
|
| 827 |
+
[upsample]
|
| 828 |
+
stride=2
|
| 829 |
+
|
| 830 |
+
[route]
|
| 831 |
+
layers = 85
|
| 832 |
+
|
| 833 |
+
[convolutional]
|
| 834 |
+
batch_normalize=1
|
| 835 |
+
filters=256
|
| 836 |
+
size=1
|
| 837 |
+
stride=1
|
| 838 |
+
pad=1
|
| 839 |
+
activation=leaky
|
| 840 |
+
|
| 841 |
+
[route]
|
| 842 |
+
layers = -1, -3
|
| 843 |
+
|
| 844 |
+
[convolutional]
|
| 845 |
+
batch_normalize=1
|
| 846 |
+
filters=256
|
| 847 |
+
size=1
|
| 848 |
+
stride=1
|
| 849 |
+
pad=1
|
| 850 |
+
activation=leaky
|
| 851 |
+
|
| 852 |
+
[convolutional]
|
| 853 |
+
batch_normalize=1
|
| 854 |
+
size=3
|
| 855 |
+
stride=1
|
| 856 |
+
pad=1
|
| 857 |
+
filters=512
|
| 858 |
+
activation=leaky
|
| 859 |
+
|
| 860 |
+
[convolutional]
|
| 861 |
+
batch_normalize=1
|
| 862 |
+
filters=256
|
| 863 |
+
size=1
|
| 864 |
+
stride=1
|
| 865 |
+
pad=1
|
| 866 |
+
activation=leaky
|
| 867 |
+
|
| 868 |
+
[convolutional]
|
| 869 |
+
batch_normalize=1
|
| 870 |
+
size=3
|
| 871 |
+
stride=1
|
| 872 |
+
pad=1
|
| 873 |
+
filters=512
|
| 874 |
+
activation=leaky
|
| 875 |
+
|
| 876 |
+
[convolutional]
|
| 877 |
+
batch_normalize=1
|
| 878 |
+
filters=256
|
| 879 |
+
size=1
|
| 880 |
+
stride=1
|
| 881 |
+
pad=1
|
| 882 |
+
activation=leaky
|
| 883 |
+
|
| 884 |
+
[convolutional]
|
| 885 |
+
batch_normalize=1
|
| 886 |
+
filters=128
|
| 887 |
+
size=1
|
| 888 |
+
stride=1
|
| 889 |
+
pad=1
|
| 890 |
+
activation=leaky
|
| 891 |
+
|
| 892 |
+
[upsample]
|
| 893 |
+
stride=2
|
| 894 |
+
|
| 895 |
+
[route]
|
| 896 |
+
layers = 54
|
| 897 |
+
|
| 898 |
+
[convolutional]
|
| 899 |
+
batch_normalize=1
|
| 900 |
+
filters=128
|
| 901 |
+
size=1
|
| 902 |
+
stride=1
|
| 903 |
+
pad=1
|
| 904 |
+
activation=leaky
|
| 905 |
+
|
| 906 |
+
[route]
|
| 907 |
+
layers = -1, -3
|
| 908 |
+
|
| 909 |
+
[convolutional]
|
| 910 |
+
batch_normalize=1
|
| 911 |
+
filters=128
|
| 912 |
+
size=1
|
| 913 |
+
stride=1
|
| 914 |
+
pad=1
|
| 915 |
+
activation=leaky
|
| 916 |
+
|
| 917 |
+
[convolutional]
|
| 918 |
+
batch_normalize=1
|
| 919 |
+
size=3
|
| 920 |
+
stride=1
|
| 921 |
+
pad=1
|
| 922 |
+
filters=256
|
| 923 |
+
activation=leaky
|
| 924 |
+
|
| 925 |
+
[convolutional]
|
| 926 |
+
batch_normalize=1
|
| 927 |
+
filters=128
|
| 928 |
+
size=1
|
| 929 |
+
stride=1
|
| 930 |
+
pad=1
|
| 931 |
+
activation=leaky
|
| 932 |
+
|
| 933 |
+
[convolutional]
|
| 934 |
+
batch_normalize=1
|
| 935 |
+
size=3
|
| 936 |
+
stride=1
|
| 937 |
+
pad=1
|
| 938 |
+
filters=256
|
| 939 |
+
activation=leaky
|
| 940 |
+
|
| 941 |
+
[convolutional]
|
| 942 |
+
batch_normalize=1
|
| 943 |
+
filters=128
|
| 944 |
+
size=1
|
| 945 |
+
stride=1
|
| 946 |
+
pad=1
|
| 947 |
+
activation=leaky
|
| 948 |
+
|
| 949 |
+
##########################
|
| 950 |
+
|
| 951 |
+
[convolutional]
|
| 952 |
+
batch_normalize=1
|
| 953 |
+
size=3
|
| 954 |
+
stride=1
|
| 955 |
+
pad=1
|
| 956 |
+
filters=256
|
| 957 |
+
activation=leaky
|
| 958 |
+
|
| 959 |
+
[convolutional]
|
| 960 |
+
size=1
|
| 961 |
+
stride=1
|
| 962 |
+
pad=1
|
| 963 |
+
filters=18
|
| 964 |
+
activation=linear
|
| 965 |
+
|
| 966 |
+
|
| 967 |
+
[yolo]
|
| 968 |
+
mask = 0,1,2
|
| 969 |
+
anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
|
| 970 |
+
classes=1
|
| 971 |
+
num=9
|
| 972 |
+
jitter=.3
|
| 973 |
+
ignore_thresh = .7
|
| 974 |
+
truth_thresh = 1
|
| 975 |
+
scale_x_y = 1.2
|
| 976 |
+
iou_thresh=0.213
|
| 977 |
+
cls_normalizer=1.0
|
| 978 |
+
iou_normalizer=0.07
|
| 979 |
+
iou_loss=ciou
|
| 980 |
+
nms_kind=greedynms
|
| 981 |
+
beta_nms=0.6
|
| 982 |
+
max_delta=5
|
| 983 |
+
|
| 984 |
+
|
| 985 |
+
[route]
|
| 986 |
+
layers = -4
|
| 987 |
+
|
| 988 |
+
[convolutional]
|
| 989 |
+
batch_normalize=1
|
| 990 |
+
size=3
|
| 991 |
+
stride=2
|
| 992 |
+
pad=1
|
| 993 |
+
filters=256
|
| 994 |
+
activation=leaky
|
| 995 |
+
|
| 996 |
+
[route]
|
| 997 |
+
layers = -1, -16
|
| 998 |
+
|
| 999 |
+
[convolutional]
|
| 1000 |
+
batch_normalize=1
|
| 1001 |
+
filters=256
|
| 1002 |
+
size=1
|
| 1003 |
+
stride=1
|
| 1004 |
+
pad=1
|
| 1005 |
+
activation=leaky
|
| 1006 |
+
|
| 1007 |
+
[convolutional]
|
| 1008 |
+
batch_normalize=1
|
| 1009 |
+
size=3
|
| 1010 |
+
stride=1
|
| 1011 |
+
pad=1
|
| 1012 |
+
filters=512
|
| 1013 |
+
activation=leaky
|
| 1014 |
+
|
| 1015 |
+
[convolutional]
|
| 1016 |
+
batch_normalize=1
|
| 1017 |
+
filters=256
|
| 1018 |
+
size=1
|
| 1019 |
+
stride=1
|
| 1020 |
+
pad=1
|
| 1021 |
+
activation=leaky
|
| 1022 |
+
|
| 1023 |
+
[convolutional]
|
| 1024 |
+
batch_normalize=1
|
| 1025 |
+
size=3
|
| 1026 |
+
stride=1
|
| 1027 |
+
pad=1
|
| 1028 |
+
filters=512
|
| 1029 |
+
activation=leaky
|
| 1030 |
+
|
| 1031 |
+
[convolutional]
|
| 1032 |
+
batch_normalize=1
|
| 1033 |
+
filters=256
|
| 1034 |
+
size=1
|
| 1035 |
+
stride=1
|
| 1036 |
+
pad=1
|
| 1037 |
+
activation=leaky
|
| 1038 |
+
|
| 1039 |
+
[convolutional]
|
| 1040 |
+
batch_normalize=1
|
| 1041 |
+
size=3
|
| 1042 |
+
stride=1
|
| 1043 |
+
pad=1
|
| 1044 |
+
filters=512
|
| 1045 |
+
activation=leaky
|
| 1046 |
+
|
| 1047 |
+
[convolutional]
|
| 1048 |
+
size=1
|
| 1049 |
+
stride=1
|
| 1050 |
+
pad=1
|
| 1051 |
+
filters=18
|
| 1052 |
+
activation=linear
|
| 1053 |
+
|
| 1054 |
+
|
| 1055 |
+
[yolo]
|
| 1056 |
+
mask = 3,4,5
|
| 1057 |
+
anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
|
| 1058 |
+
classes=1
|
| 1059 |
+
num=9
|
| 1060 |
+
jitter=.3
|
| 1061 |
+
ignore_thresh = .7
|
| 1062 |
+
truth_thresh = 1
|
| 1063 |
+
scale_x_y = 1.1
|
| 1064 |
+
iou_thresh=0.213
|
| 1065 |
+
cls_normalizer=1.0
|
| 1066 |
+
iou_normalizer=0.07
|
| 1067 |
+
iou_loss=ciou
|
| 1068 |
+
nms_kind=greedynms
|
| 1069 |
+
beta_nms=0.6
|
| 1070 |
+
max_delta=5
|
| 1071 |
+
|
| 1072 |
+
|
| 1073 |
+
[route]
|
| 1074 |
+
layers = -4
|
| 1075 |
+
|
| 1076 |
+
[convolutional]
|
| 1077 |
+
batch_normalize=1
|
| 1078 |
+
size=3
|
| 1079 |
+
stride=2
|
| 1080 |
+
pad=1
|
| 1081 |
+
filters=512
|
| 1082 |
+
activation=leaky
|
| 1083 |
+
|
| 1084 |
+
[route]
|
| 1085 |
+
layers = -1, -37
|
| 1086 |
+
|
| 1087 |
+
[convolutional]
|
| 1088 |
+
batch_normalize=1
|
| 1089 |
+
filters=512
|
| 1090 |
+
size=1
|
| 1091 |
+
stride=1
|
| 1092 |
+
pad=1
|
| 1093 |
+
activation=leaky
|
| 1094 |
+
|
| 1095 |
+
[convolutional]
|
| 1096 |
+
batch_normalize=1
|
| 1097 |
+
size=3
|
| 1098 |
+
stride=1
|
| 1099 |
+
pad=1
|
| 1100 |
+
filters=1024
|
| 1101 |
+
activation=leaky
|
| 1102 |
+
|
| 1103 |
+
[convolutional]
|
| 1104 |
+
batch_normalize=1
|
| 1105 |
+
filters=512
|
| 1106 |
+
size=1
|
| 1107 |
+
stride=1
|
| 1108 |
+
pad=1
|
| 1109 |
+
activation=leaky
|
| 1110 |
+
|
| 1111 |
+
[convolutional]
|
| 1112 |
+
batch_normalize=1
|
| 1113 |
+
size=3
|
| 1114 |
+
stride=1
|
| 1115 |
+
pad=1
|
| 1116 |
+
filters=1024
|
| 1117 |
+
activation=leaky
|
| 1118 |
+
|
| 1119 |
+
[convolutional]
|
| 1120 |
+
batch_normalize=1
|
| 1121 |
+
filters=512
|
| 1122 |
+
size=1
|
| 1123 |
+
stride=1
|
| 1124 |
+
pad=1
|
| 1125 |
+
activation=leaky
|
| 1126 |
+
|
| 1127 |
+
[convolutional]
|
| 1128 |
+
batch_normalize=1
|
| 1129 |
+
size=3
|
| 1130 |
+
stride=1
|
| 1131 |
+
pad=1
|
| 1132 |
+
filters=1024
|
| 1133 |
+
activation=leaky
|
| 1134 |
+
|
| 1135 |
+
[convolutional]
|
| 1136 |
+
size=1
|
| 1137 |
+
stride=1
|
| 1138 |
+
pad=1
|
| 1139 |
+
filters=18
|
| 1140 |
+
activation=linear
|
| 1141 |
+
|
| 1142 |
+
|
| 1143 |
+
[yolo]
|
| 1144 |
+
mask = 6,7,8
|
| 1145 |
+
anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
|
| 1146 |
+
classes=1
|
| 1147 |
+
num=9
|
| 1148 |
+
jitter=.3
|
| 1149 |
+
ignore_thresh = .7
|
| 1150 |
+
truth_thresh = 1
|
| 1151 |
+
random=1
|
| 1152 |
+
scale_x_y = 1.05
|
| 1153 |
+
iou_thresh=0.213
|
| 1154 |
+
cls_normalizer=1.0
|
| 1155 |
+
iou_normalizer=0.07
|
| 1156 |
+
iou_loss=ciou
|
| 1157 |
+
nms_kind=greedynms
|
| 1158 |
+
beta_nms=0.6
|
| 1159 |
+
max_delta=5
|
| 1160 |
+
|
yolov4-custom_best.weights
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:eedc9817644125a630fcd0cc2a9b0dc3d009cce46a9178c16afbf1d73b96c632
|
| 3 |
+
size 256015980
|