Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,919 Bytes
917a889 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
from typing import *
import torch
from ..voxel import Voxel
import cumesh
from flex_gemm.ops.grid_sample import grid_sample_3d
class Mesh:
def __init__(self,
vertices,
faces,
vertex_attrs=None
):
self.vertices = vertices.float()
self.faces = faces.int()
self.vertex_attrs = vertex_attrs
@property
def device(self):
return self.vertices.device
def to(self, device, non_blocking=False):
return Mesh(
self.vertices.to(device, non_blocking=non_blocking),
self.faces.to(device, non_blocking=non_blocking),
self.vertex_attrs.to(device, non_blocking=non_blocking) if self.vertex_attrs is not None else None,
)
def cuda(self, non_blocking=False):
return self.to('cuda', non_blocking=non_blocking)
def cpu(self):
return self.to('cpu')
def fill_holes(self, max_hole_perimeter=3e-2):
vertices = self.vertices.cuda()
faces = self.faces.cuda()
mesh = cumesh.CuMesh()
mesh.init(vertices, faces)
mesh.get_edges()
mesh.get_boundary_info()
if mesh.num_boundaries == 0:
return
mesh.get_vertex_edge_adjacency()
mesh.get_vertex_boundary_adjacency()
mesh.get_manifold_boundary_adjacency()
mesh.read_manifold_boundary_adjacency()
mesh.get_boundary_connected_components()
mesh.get_boundary_loops()
if mesh.num_boundary_loops == 0:
return
mesh.fill_holes(max_hole_perimeter=max_hole_perimeter)
new_vertices, new_faces = mesh.read()
self.vertices = new_vertices.to(self.device)
self.faces = new_faces.to(self.device)
def remove_faces(self, face_mask: torch.Tensor):
vertices = self.vertices.cuda()
faces = self.faces.cuda()
mesh = cumesh.CuMesh()
mesh.init(vertices, faces)
mesh.remove_faces(face_mask)
new_vertices, new_faces = mesh.read()
self.vertices = new_vertices.to(self.device)
self.faces = new_faces.to(self.device)
def simplify(self, target=1000000, verbose: bool=False, options: dict={}):
vertices = self.vertices.cuda()
faces = self.faces.cuda()
mesh = cumesh.CuMesh()
mesh.init(vertices, faces)
mesh.simplify(target, verbose=verbose, options=options)
new_vertices, new_faces = mesh.read()
self.vertices = new_vertices.to(self.device)
self.faces = new_faces.to(self.device)
class TextureFilterMode:
CLOSEST = 0
LINEAR = 1
class TextureWrapMode:
CLAMP_TO_EDGE = 0
REPEAT = 1
MIRRORED_REPEAT = 2
class AlphaMode:
OPAQUE = 0
MASK = 1
BLEND = 2
class Texture:
def __init__(
self,
image: torch.Tensor,
filter_mode: TextureFilterMode = TextureFilterMode.LINEAR,
wrap_mode: TextureWrapMode = TextureWrapMode.REPEAT
):
self.image = image
self.filter_mode = filter_mode
self.wrap_mode = wrap_mode
def to(self, device, non_blocking=False):
return Texture(
self.image.to(device, non_blocking=non_blocking),
self.filter_mode,
self.wrap_mode,
)
class PbrMaterial:
def __init__(
self,
base_color_texture: Optional[Texture] = None,
base_color_factor: Union[torch.Tensor, List[float]] = [1.0, 1.0, 1.0],
metallic_texture: Optional[Texture] = None,
metallic_factor: float = 1.0,
roughness_texture: Optional[Texture] = None,
roughness_factor: float = 1.0,
alpha_texture: Optional[Texture] = None,
alpha_factor: float = 1.0,
alpha_mode: AlphaMode = AlphaMode.OPAQUE,
alpha_cutoff: float = 0.5,
):
self.base_color_texture = base_color_texture
self.base_color_factor = torch.tensor(base_color_factor, dtype=torch.float32)[:3]
self.metallic_texture = metallic_texture
self.metallic_factor = metallic_factor
self.roughness_texture = roughness_texture
self.roughness_factor = roughness_factor
self.alpha_texture = alpha_texture
self.alpha_factor = alpha_factor
self.alpha_mode = alpha_mode
self.alpha_cutoff = alpha_cutoff
def to(self, device, non_blocking=False):
return PbrMaterial(
base_color_texture=self.base_color_texture.to(device, non_blocking=non_blocking) if self.base_color_texture is not None else None,
base_color_factor=self.base_color_factor.to(device, non_blocking=non_blocking),
metallic_texture=self.metallic_texture.to(device, non_blocking=non_blocking) if self.metallic_texture is not None else None,
metallic_factor=self.metallic_factor,
roughness_texture=self.roughness_texture.to(device, non_blocking=non_blocking) if self.roughness_texture is not None else None,
roughness_factor=self.roughness_factor,
alpha_texture=self.alpha_texture.to(device, non_blocking=non_blocking) if self.alpha_texture is not None else None,
alpha_factor=self.alpha_factor,
alpha_mode=self.alpha_mode,
alpha_cutoff=self.alpha_cutoff,
)
class MeshWithPbrMaterial(Mesh):
def __init__(self,
vertices,
faces,
material_ids,
uv_coords,
materials: List[PbrMaterial],
):
self.vertices = vertices.float()
self.faces = faces.int()
self.material_ids = material_ids # [M]
self.uv_coords = uv_coords # [M, 3, 2]
self.materials = materials
self.layout = {
'base_color': slice(0, 3),
'metallic': slice(3, 4),
'roughness': slice(4, 5),
'alpha': slice(5, 6),
}
def to(self, device, non_blocking=False):
return MeshWithPbrMaterial(
self.vertices.to(device, non_blocking=non_blocking),
self.faces.to(device, non_blocking=non_blocking),
self.material_ids.to(device, non_blocking=non_blocking),
self.uv_coords.to(device, non_blocking=non_blocking),
[material.to(device, non_blocking=non_blocking) for material in self.materials],
)
class MeshWithVoxel(Mesh, Voxel):
def __init__(self,
vertices: torch.Tensor,
faces: torch.Tensor,
origin: list,
voxel_size: float,
coords: torch.Tensor,
attrs: torch.Tensor,
voxel_shape: torch.Size,
layout: Dict = {},
):
self.vertices = vertices.float()
self.faces = faces.int()
self.origin = torch.tensor(origin, dtype=torch.float32, device=self.device)
self.voxel_size = voxel_size
self.coords = coords
self.attrs = attrs
self.voxel_shape = voxel_shape
self.layout = layout
def to(self, device, non_blocking=False):
return MeshWithVoxel(
self.vertices.to(device, non_blocking=non_blocking),
self.faces.to(device, non_blocking=non_blocking),
self.origin.tolist(),
self.voxel_size,
self.coords.to(device, non_blocking=non_blocking),
self.attrs.to(device, non_blocking=non_blocking),
self.voxel_shape,
self.layout,
)
def query_attrs(self, xyz):
grid = ((xyz - self.origin) / self.voxel_size).reshape(1, -1, 3)
vertex_attrs = grid_sample_3d(
self.attrs,
torch.cat([torch.zeros_like(self.coords[..., :1]), self.coords], dim=-1),
self.voxel_shape,
grid,
mode='trilinear'
)[0]
return vertex_attrs
def query_vertex_attrs(self):
return self.query_attrs(self.vertices)
|