from typing import * import torch import torch.nn as nn from .. import SparseTensor __all__ = [ 'SparseDownsample', 'SparseUpsample', ] class SparseDownsample(nn.Module): """ Downsample a sparse tensor by a factor of `factor`. Implemented as average pooling. """ def __init__(self, factor: int, mode: Literal['mean', 'max'] = 'mean'): super(SparseDownsample, self).__init__() self.factor = factor self.mode = mode assert self.mode in ['mean', 'max'], f'Invalid mode: {self.mode}' def forward(self, x: SparseTensor) -> SparseTensor: cache = x.get_spatial_cache(f'downsample_{self.factor}') if cache is None: DIM = x.coords.shape[-1] - 1 coord = list(x.coords.unbind(dim=-1)) for i in range(DIM): coord[i+1] = coord[i+1] // self.factor MAX = [(s + self.factor - 1) // self.factor for s in x.spatial_shape] OFFSET = torch.cumprod(torch.tensor(MAX[::-1]), 0).tolist()[::-1] + [1] code = sum([c * o for c, o in zip(coord, OFFSET)]) code, idx = code.unique(return_inverse=True) new_coords = torch.stack( [code // OFFSET[0]] + [(code // OFFSET[i+1]) % MAX[i] for i in range(DIM)], dim=-1 ) else: new_coords, idx = cache new_feats = torch.scatter_reduce( torch.zeros(new_coords.shape[0], x.feats.shape[1], device=x.feats.device, dtype=x.feats.dtype), dim=0, index=idx.unsqueeze(1).expand(-1, x.feats.shape[1]), src=x.feats, reduce=self.mode, include_self=False, ) out = SparseTensor(new_feats, new_coords, x._shape) out._scale = tuple([s * self.factor for s in x._scale]) out._spatial_cache = x._spatial_cache if cache is None: x.register_spatial_cache(f'downsample_{self.factor}', (new_coords, idx)) out.register_spatial_cache(f'upsample_{self.factor}', (x.coords, idx)) out.register_spatial_cache(f'shape', torch.Size(MAX)) if self.training: subidx = x.coords[:, 1:] % self.factor subidx = sum([subidx[..., i] * self.factor ** i for i in range(DIM)]) subdivision = torch.zeros((new_coords.shape[0], self.factor ** DIM), device=x.device, dtype=torch.bool) subdivision[idx, subidx] = True out.register_spatial_cache(f'subdivision', subdivision) return out class SparseUpsample(nn.Module): """ Upsample a sparse tensor by a factor of `factor`. Implemented as nearest neighbor interpolation. """ def __init__( self, factor: int ): super(SparseUpsample, self).__init__() self.factor = factor def forward(self, x: SparseTensor, subdivision: Optional[SparseTensor] = None) -> SparseTensor: DIM = x.coords.shape[-1] - 1 cache = x.get_spatial_cache(f'upsample_{self.factor}') if cache is None: if subdivision is None: raise ValueError('Cache not found. Provide subdivision tensor or pair SparseUpsample with SparseDownsample.') else: sub = subdivision.feats N_leaf = sub.sum(dim=-1) subidx = sub.nonzero()[:, -1] new_coords = x.coords.clone().detach() new_coords[:, 1:] *= self.factor new_coords = torch.repeat_interleave(new_coords, N_leaf, dim=0, output_size=subidx.shape[0]) for i in range(DIM): new_coords[:, i+1] += subidx // self.factor ** i % self.factor idx = torch.repeat_interleave(torch.arange(x.coords.shape[0], device=x.device), N_leaf, dim=0, output_size=subidx.shape[0]) else: new_coords, idx = cache new_feats = x.feats[idx] out = SparseTensor(new_feats, new_coords, x._shape) out._scale = tuple([s / self.factor for s in x._scale]) if cache is not None: # only keep cache when subdiv following it out._spatial_cache = x._spatial_cache return out