Spaces:
Runtime error
Runtime error
| """ | |
| Inference main class. | |
| Author: Marcely Zanon Boito, 2024 | |
| """ | |
| from .CTC_model import mHubertForCTC | |
| import torch | |
| from transformers import Wav2Vec2CTCTokenizer, Wav2Vec2FeatureExtractor, Wav2Vec2Processor | |
| from transformers import HubertConfig | |
| from datasets import load_dataset | |
| fbk_test_id = 'FBK-MT/Speech-MASSIVE-test' | |
| mhubert_id = 'utter-project/mHuBERT-147' | |
| def load_asr_model(): | |
| # Load the ASR model | |
| tokenizer = Wav2Vec2CTCTokenizer("asr/vocab.json", unk_token="[UNK]", pad_token="[PAD]", word_delimiter_token="|") | |
| feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(mhubert_id) | |
| processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer) | |
| config = HubertConfig.from_pretrained("naver/mHuBERT-147-ASR-fr") | |
| model = mHubertForCTC.from_pretrained("naver/mHuBERT-147-ASR-fr", config=config) | |
| model.eval() | |
| return model, processor | |
| def run_asr_inference(model, processor, example): | |
| audio = processor(example["array"], sampling_rate=example["sampling_rate"]).input_values[0] | |
| input_values = torch.tensor(audio).unsqueeze(0) | |
| with torch.no_grad(): | |
| logits = model(input_values).logits | |
| pred_ids = torch.argmax(logits, dim=-1) | |
| prediction = processor.batch_decode(pred_ids)[0].replace('[CTC]', "") | |
| return prediction | |