File size: 72,772 Bytes
830a558
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "3902fdc0",
   "metadata": {},
   "source": [
    "# Modeling Magnetohydrodynamics with Physics Informed Neural Operators"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "982a76df",
   "metadata": {},
   "source": [
    "In this notebook, we will study the application of physics informed data-driven modeling to the incompressible magnetohydrodynamics (MHD) equations representing an incompressible fluid in the presence of a magnetic field $\\mathbf{B}$. Our model will be built using a Tensor Factorized Fourier Neural Operator (tFNO), and trained in conjunction with the PDEs representing our system. The model is physics-informed during training by encoding known information about the physical system into the loss functions,  enabling generalization of the resulting model to a variety of settings in the solution space. Specifically, the PDEs and initial conditions are used as soft constraints learned by the neural network as its trains. Models covering different data regimes governed by the Reynolds number are trained using transfer learning to showcase how our model may be applied to both laminar and turbulent flows. The AI-accelerated surrogate model is compared to classical simulations to compare its throughput and accuracy.\n",
    "\n",
    "Note that while the majority of the code needed to run this example is provided in the notebook, the lower barrier to entry for training and evaluating models will be to run the scripts in the source directory, and the material referenced here should be used as a base for learning the underlying components leading to model training and evaluation. "
   ]
  },
  {
   "cell_type": "markdown",
   "id": "19f35947",
   "metadata": {},
   "source": [
    "#### Learning Outcomes\n",
    "* How to apply physics constraints to neural networks\n",
    "* Learn how the Tensor Factorized Fourier Neural Operator can be applied to physics based problems\n",
    "* Learn how to define PDEs with PhysicsNeMo\n",
    "* Train PINOs with PhysicsNeMo Core\n",
    "* Learn how data driven modeling can help build computationally efficient surrogates for physics problems"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "03be824a",
   "metadata": {},
   "source": [
    "## Pre-Requisites\n",
    "This workshop is derived primarily from the informative paper [Magnetohydrodynamics with physics informed neural operators\n",
    "](https://iopscience.iop.org/article/10.1088/2632-2153/ace30a)[1]. Reading the paper will provide both context and an overview of what will be presented in this workshop. Additionally, the paper serves as a great reference if more details are needed on any specific section. It is encouraged to read through the paper before continuing.\n",
    "\n",
    "[1] Rosofsky, S. G., & Huerta, E. A. (2023). Magnetohydrodynamics with physics informed neural operators. Machine Learning: Science and Technology, 4(3), 035002."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e5a666a2",
   "metadata": {},
   "source": [
    "## Problem Overview\n",
    "\n",
    "To examine the properties of PINOs with multiple complex equations, we examined the ability of the networks to reproduce the incompressible magnetohydrodynamics (MHD) equations representing an incompressible fluid in the presence of a magnetic field $\\mathbf{B}$. These equations are present in several astrophysical phenomena, including black hole accretion and binary neutron star mergers. Additionally, MDH has applications to nuclear power engineering, and plasma modeling. \n",
    "\n",
    "These equations for incompressible MHD are given by:\n",
    "\n",
    "$$\\begin{align*}\n",
    "\\partial_t \\mathbf{u}+\\mathbf{u} \\cdot \\nabla \\mathbf{u} &=\n",
    "-\\nabla \\left( p+\\frac{B^2}{2} \\right)/\\rho_0 +\\mathbf{B}\n",
    "\\cdot \\nabla \\mathbf{B}+\\nu \\nabla^2 \\mathbf{u}, \\\\\n",
    "\\partial_t \\mathbf{B}+\\mathbf{u} \\cdot \\nabla \\mathbf{B} &=\n",
    "\\mathbf{B} \\cdot \\nabla \\mathbf{u}+\\eta \\nabla^2 \\mathbf{B}, \\\\\n",
    "\\nabla \\cdot \\mathbf{u} &= 0, \\\\\n",
    "\\nabla \\cdot \\mathbf{B} &= 0,\n",
    "\\end{align*}$$\n",
    " \n",
    "where $\\mathbf{u}$ is the velocity field, $p$ is  the pressure, $B^2$ is the magnitude of the magnetic field, $\\rho_0=1$  is the density of the fluid, $\\nu$ is the kinetic viscosity,  and $\\eta$ is the magnetic resistivity.  We have two equations for evolution and two constraint equations.\n",
    "\n",
    "\n",
    "For the magnetic field divergence equation, we can either include it in the loss function or instead evolve the magnetic vector potential $\\mathbf{A}$. This quantity is defined such that\n",
    "\n",
    "$$\\begin{align*}\n",
    "\\mathbf{B} = \\nabla \\times \\mathbf{A},\n",
    "\\end{align*}$$\n",
    "\n",
    "which ensures that the divergence of $\\mathbf{B}$ is zero. By evolving magnetic vector potential $\\mathbf{A}$ instead of the magnetic field $\\mathbf{B}$, we have a new evolution equation for the vector potential $\\mathbf{A}$. This equation is given by \n",
    "\n",
    "$$\\begin{align*}\n",
    "\\partial_t \\mathbf{A} + \\mathbf{u} \\cdot \\nabla \\mathbf{A}=\\eta \\nabla^2 \\mathbf{A}.\n",
    "\\end{align*}$$\n",
    "\n",
    "In practice, using the magnetic vector potential representation leads to better model performance. "
   ]
  },
  {
   "cell_type": "markdown",
   "id": "5331b9b9",
   "metadata": {},
   "source": [
    "## Data Creation\n",
    "Note that in this HuggingFace Space, the data are available at `/data/mhd_data`. There are:\n",
    "1000 samples for Re=100, 100 samples for Re=250 and 100 samples for Re=1,000.\n",
    "\n",
    "To train our model, a representative dataset is first created that gives enough coverage of the solution space to train a surrogate model to make predictions on new data points. To obtain interesting results without additional computational difficulty, we will solve the equations in 2D with periodic boundary conditions. This results in solving a total of 3 evolution PDEs at each time step. Two for the velocity evolution, and one for the magnetic vector potential. \n",
    "\n",
    "The solution space to this problem can be obtained numerically by solving the PDEs from above with a numerical solver such as `dedalus`. To generate this data, `dedalus` is used to simulate a 2D periodic incompressible MHD flow with a passive tracer field for visualization. The initial flow is in the $x$-direction and depends only on $z$. The problem is non-dimensionalized using the shear-layer spacing and velocity jump, so the resulting viscosity and tracer diffusivity are related to the Reynolds and\n",
    "Schmidt numbers as:\n",
    "\n",
    "$$\\begin{align}\n",
    "\\nu &= \\frac{1}{\\text{Re}} \\\\\n",
    "\\eta &= \\frac{1}{\\text{Re}_M} \\\\\n",
    "D &= \\frac{\\nu}{\\text{Sc}}\n",
    "\\end{align}$$\n",
    "\n",
    "The initial data field for running the simulation is produced using the Gaussian Random Field method in which the radial basis function kernel (RBF) is transformed into Fourier space to obey the desired periodic boundary conditions. Finally, two initial data fields the vorticity potential and magnetic potential are used to guarantee initial velocity and magnetic fields are divergence free. \n",
    "\n",
    "The dataset is produced by running 1,000 simulations with different initial conditions, and evolving the system for 1,000 time steps. The time step used is $\\Delta t=0.001s$, however output data is saved at an interval of $t=0.01$ for a total time of $1$ second, resulting in 101 samples per simulation. \n",
    "\n",
    "Scripts to generate the dataset are in the `generate_mhd_data` folder. Make sure to source this environment with `source activate env` to make use of the environment.   To generate the dataset, run the command: \n",
    "```bash\n",
    "python dedalus_mhd_parallel.py\n",
    "```\n",
    "Note that depending on system resources, this process may take up to a few hours to complete. Once data generation is finished, we can exit the env with `conda deactivate`. "
   ]
  },
  {
   "cell_type": "markdown",
   "id": "69a099f7",
   "metadata": {},
   "source": [
    "## Defining our Constraints - Setting up the PDE\n",
    "\n",
    "Constraints are used to define the objectives for training our model. They house a set of nodes from which a computational graph is build for execution as well as the loss function. [PhysicsNeMo Sim](https://docs.nvidia.com/deeplearning/physicsnemo/physicsnemo-sym/index.html) provides utilities tailored for physics-informed machine learning, and uses abstracted APIs that allow users to think and model the problem from the lens of equations, constraints, etc. In this example, we will only leverage the physics-informed utilities to see how we can add physics to an existing data-driven model with ease while still maintaining the flexibility to define our own training loop and other details. The types of constraints used will be problem dependent. For this example, we can define the following constraints: \n",
    "\n",
    "**Data Loss**: Obtain simulation data and compare it to the PINO output.\n",
    "\n",
    "**PDE Loss**: Use the known PDEs of the system to describe violations of the time evolution of our system\n",
    "\n",
    "**Constraint Loss**: This loss describes constraints from the PDE. Specifically, the velocity divergence free condition and magnetic divergence free condition.\n",
    "\n",
    "**Initial Condition Loss**: Input field compared to the output at $t=0$\n",
    "\n",
    "**Boundary Condition Loss**: Difference in boundary terms. In our case, we have a periodic boundary constraint.\n",
    "\n",
    "\n",
    "\n",
    "To begin setting up our constraints, we can start by defining the MHD equations using the `PDE` class from `physicsnemo.sym.eq.pde`. The process of converting our PDEs into a form that is compatible with `PhysicsNeMo` involves defining a class to hold our equations, called `MHD_PDE`, and including each term of the equations. Each variable of the equations is set up as a `Sympy` `Function`, which is then used to create an attribute of our `MHD_PDE` class that holds the final `equations`.\n",
    "\n",
    "Because we have elected to solve the equations in two dimensions, we only have the input variables $x$, $y$, $t$ and and the Laplacian operator. \n",
    "\n",
    "In PhysicsNeMo, it is preferable to represent our equations by isolating our target terms on the left, and moving the rest of the equation to the right-hand-side. To do this, various components of each equation are compartmentalized, and the final set of equations is composed from these parts.\n",
    "\n",
    "```python\n",
    "from physicsnemo.sym.eq.pde import PDE\n",
    "from sympy import Symbol, Function, Number\n",
    "\n",
    "\n",
    "class MHD_PDE(PDE):\n",
    "    \"\"\"MHD PDEs using PhysicsNeMo Sym\"\"\"\n",
    "\n",
    "    name = \"MHD_PDE\"\n",
    "\n",
    "    def __init__(self, nu=1e-4, eta=1e-4, rho0=1.0):\n",
    "\n",
    "        # x, y, time\n",
    "        x, y, t, lap = Symbol(\"x\"), Symbol(\"y\"), Symbol(\"t\"), Symbol(\"lap\")\n",
    "\n",
    "        # make input variables\n",
    "        input_variables = {\"x\": x, \"y\": y, \"t\": t, \"lap\": lap}\n",
    "\n",
    "        # make functions\n",
    "        u = Function(\"u\")(*input_variables)\n",
    "        v = Function(\"v\")(*input_variables)\n",
    "        Bx = Function(\"Bx\")(*input_variables)\n",
    "        By = Function(\"By\")(*input_variables)\n",
    "        A = Function(\"A\")(*input_variables)\n",
    "        # pressure\n",
    "        ptot = Function(\"ptot\")(*input_variables)\n",
    "\n",
    "        u_rhs = Function(\"u_rhs\")(*input_variables)\n",
    "        v_rhs = Function(\"v_rhs\")(*input_variables)\n",
    "        Bx_rhs = Function(\"Bx_rhs\")(*input_variables)\n",
    "        By_rhs = Function(\"By_rhs\")(*input_variables)\n",
    "        A_rhs = Function(\"A_rhs\")(*input_variables)\n",
    "\n",
    "        # initialize constants\n",
    "        nu = Number(nu)\n",
    "        eta = Number(eta)\n",
    "        rho0 = Number(rho0)\n",
    "\n",
    "        # set equations\n",
    "        self.equations = {}\n",
    "\n",
    "        # u · ∇u\n",
    "        self.equations[\"vel_grad_u\"] = u * u.diff(x) + v * u.diff(y)\n",
    "        self.equations[\"vel_grad_v\"] = u * v.diff(x) + v * v.diff(y)\n",
    "        # B · ∇u\n",
    "        self.equations[\"B_grad_u\"] = Bx * u.diff(x) + v * Bx.diff(y)\n",
    "        self.equations[\"B_grad_v\"] = Bx * v.diff(x) + By * v.diff(y)\n",
    "        # u · ∇B\n",
    "        self.equations[\"vel_grad_Bx\"] = u * Bx.diff(x) + v * Bx.diff(y)\n",
    "        self.equations[\"vel_grad_By\"] = u * By.diff(x) + v * By.diff(y)\n",
    "        # B · ∇B\n",
    "        self.equations[\"B_grad_Bx\"] = Bx * Bx.diff(x) + By * Bx.diff(y)\n",
    "        self.equations[\"B_grad_By\"] = Bx * By.diff(x) + By * By.diff(y)\n",
    "        # ∇ × (u × B) = u(∇ · B) - B(∇ · u) + B · ∇u − u · ∇B\n",
    "        self.equations[\"uBy_x\"] = u * By.diff(x) + By * u.diff(x)\n",
    "        self.equations[\"uBy_y\"] = u * By.diff(y) + By * u.diff(y)\n",
    "        self.equations[\"vBx_x\"] = v * Bx.diff(x) + Bx * v.diff(x)\n",
    "        self.equations[\"vBx_y\"] = v * Bx.diff(y) + Bx * v.diff(y)\n",
    "        # ∇ · B \n",
    "        self.equations[\"div_B\"] = Bx.diff(x) + By.diff(y)\n",
    "        # ∇ · u \n",
    "        self.equations[\"div_vel\"] = u.diff(x) + v.diff(y)\n",
    "\n",
    "        # RHS of MHD equations\n",
    "        # = u · ∇u - p/rho + B · ∇B + ν * ∇^2(u)\n",
    "        self.equations[\"u_rhs\"] = (\n",
    "            -self.equations[\"vel_grad_u\"]\n",
    "            - ptot.diff(x) / rho0\n",
    "            + self.equations[\"B_grad_Bx\"] / rho0\n",
    "            + nu * u.diff(lap)\n",
    "        )\n",
    "        self.equations[\"v_rhs\"] = (\n",
    "            -self.equations[\"vel_grad_v\"]\n",
    "            - ptot.diff(y) / rho0\n",
    "            + self.equations[\"B_grad_By\"] / rho0\n",
    "            + nu * v.diff(lap)\n",
    "        )\n",
    "        # Uses identity above\n",
    "        # = ∇ × (u × B) + η * ∇^2(B)\n",
    "        self.equations[\"Bx_rhs\"] = (\n",
    "            self.equations[\"uBy_y\"] - self.equations[\"vBx_y\"] + eta * Bx.diff(lap)\n",
    "        )\n",
    "        self.equations[\"By_rhs\"] = -(\n",
    "            self.equations[\"uBy_x\"] - self.equations[\"vBx_x\"]\n",
    "        ) + eta * By.diff(lap)\n",
    "\n",
    "        # Final equations move all terms to RHS\n",
    "        # Node 18, 19, 20, 21\n",
    "        self.equations[\"Du\"] = u.diff(t) - u_rhs\n",
    "        self.equations[\"Dv\"] = v.diff(t) - v_rhs\n",
    "        self.equations[\"DBx\"] = Bx.diff(t) - Bx_rhs\n",
    "        self.equations[\"DBy\"] = By.diff(t) - By_rhs\n",
    "\n",
    "        # Vec potential equations\n",
    "        # Node 22, 23, 24\n",
    "        self.equations[\"vel_grad_A\"] = u * A.diff(x) + v * A.diff(y)\n",
    "        self.equations[\"A_rhs\"] = -self.equations[\"vel_grad_A\"] + eta * A.diff(lap)\n",
    "        self.equations[\"DA\"] = A.diff(t) - A_rhs\n",
    "```\n",
    "\n",
    "Our model's output can then be used to compute the loss between prediction and true values, and for computing loss based on initial conditions, PDEs, and simulation data.\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "677d49b4",
   "metadata": {
    "vscode": {
     "languageId": "plaintext"
    }
   },
   "source": [
    "## Defining our Constraints - Loss Functions \n",
    "\n",
    "Now that we have defined our PDE, we can define all of the constraints that make up the loss function for our problem. The loss functions are defined inside of a class called `LossMHD_PhysicsNeMo`, which can use a weighted sum of individual losses for training. Additionally, all of the fixed and constant parameters needed are added to the class definition.\n",
    "\n",
    "```python\n",
    "import torch\n",
    "import torch.nn.functional as F\n",
    "from physicsnemo.models.layers.spectral_layers import fourier_derivatives\n",
    "\n",
    "from .losses import (LpLoss, fourier_derivatives_lap, fourier_derivatives_ptot,\n",
    "                     fourier_derivatives_vec_pot)\n",
    "from .mhd_pde import MHD_PDE\n",
    "\n",
    "\n",
    "class LossMHDVecPot_PhysicsNeMo(object):\n",
    "    \"Calculate loss for MHD equations with vector potential, using physicsnemo derivatives\"\n",
    "\n",
    "    def __init__(\n",
    "        self,\n",
    "        nu=1e-4,\n",
    "        eta=1e-4,\n",
    "        rho0=1.0,\n",
    "        data_weight=1.0,\n",
    "        ic_weight=1.0,\n",
    "        pde_weight=1.0,\n",
    "        constraint_weight=1.0,\n",
    "        use_data_loss=True,\n",
    "        use_ic_loss=True,\n",
    "        use_pde_loss=True,\n",
    "        use_constraint_loss=True,\n",
    "        u_weight=1.0,\n",
    "        v_weight=1.0,\n",
    "        A_weight=1.0,\n",
    "        Du_weight=1.0,\n",
    "        Dv_weight=1.0,\n",
    "        DA_weight=1.0,\n",
    "        div_B_weight=1.0,\n",
    "        div_vel_weight=1.0,\n",
    "        Lx=1.0,\n",
    "        Ly=1.0,\n",
    "        tend=1.0,\n",
    "        use_weighted_mean=False,\n",
    "        **kwargs,\n",
    "    ):  # add **kwargs so that we ignore unexpected kwargs when passing a config dict):\n",
    "\n",
    "        self.nu = nu\n",
    "        self.eta = eta\n",
    "        self.rho0 = rho0\n",
    "        self.data_weight = data_weight\n",
    "        self.ic_weight = ic_weight\n",
    "        self.pde_weight = pde_weight\n",
    "        self.constraint_weight = constraint_weight\n",
    "        self.use_data_loss = use_data_loss\n",
    "        self.use_ic_loss = use_ic_loss\n",
    "        self.use_pde_loss = use_pde_loss\n",
    "        self.use_constraint_loss = use_constraint_loss\n",
    "        self.u_weight = u_weight\n",
    "        self.v_weight = v_weight\n",
    "        self.Du_weight = Du_weight\n",
    "        self.Dv_weight = Dv_weight\n",
    "        self.div_B_weight = div_B_weight\n",
    "        self.div_vel_weight = div_vel_weight\n",
    "        self.Lx = Lx\n",
    "        self.Ly = Ly\n",
    "        self.tend = tend\n",
    "        self.use_weighted_mean = use_weighted_mean\n",
    "        self.A_weight = A_weight\n",
    "        self.DA_weight = DA_weight\n",
    "        # Define 2D MHD PDEs\n",
    "        self.mhd_pde_eq = MHD_PDE(self.nu, self.eta, self.rho0)\n",
    "        self.mhd_pde_node = self.mhd_pde_eq.make_nodes()\n",
    "\n",
    "        if not self.use_data_loss:\n",
    "            self.data_weight = 0\n",
    "        if not self.use_ic_loss:\n",
    "            self.ic_weight = 0\n",
    "        if not self.use_pde_loss:\n",
    "            self.pde_weight = 0\n",
    "        if not self.use_constraint_loss:\n",
    "            self.constraint_weight = 0\n",
    "\n",
    "    def __call__(self, pred, true, inputs, return_loss_dict=False):\n",
    "        loss, loss_dict = self.compute_losses(pred, true, inputs)\n",
    "        return loss, loss_dict\n",
    "\n",
    "    def compute_losses(self, pred, true, inputs):\n",
    "        \"Compute weighted loss and dictionary\"\n",
    "        pred = pred.reshape(true.shape)\n",
    "        u = pred[..., 0]\n",
    "        v = pred[..., 1]\n",
    "        A = pred[..., 2]\n",
    "\n",
    "        loss_dict = {}\n",
    "\n",
    "        # Data\n",
    "        if self.use_data_loss:\n",
    "            loss_data, loss_u, loss_v, loss_A = self.data_loss(\n",
    "                pred, true, return_all_losses=True\n",
    "            )\n",
    "            loss_dict[\"loss_data\"] = loss_data\n",
    "            loss_dict[\"loss_u\"] = loss_u\n",
    "            loss_dict[\"loss_v\"] = loss_v\n",
    "            loss_dict[\"loss_A\"] = loss_A\n",
    "        else:\n",
    "            loss_data = 0\n",
    "        # IC\n",
    "        if self.use_ic_loss:\n",
    "            loss_ic, loss_u_ic, loss_v_ic, loss_A_ic = self.ic_loss(\n",
    "                pred, inputs, return_all_losses=True\n",
    "            )\n",
    "            loss_dict[\"loss_ic\"] = loss_ic\n",
    "            loss_dict[\"loss_u_ic\"] = loss_u_ic\n",
    "            loss_dict[\"loss_v_ic\"] = loss_v_ic\n",
    "            loss_dict[\"loss_A_ic\"] = loss_A_ic\n",
    "        else:\n",
    "            loss_ic = 0\n",
    "\n",
    "        # PDE\n",
    "        if self.use_pde_loss:\n",
    "            Du, Dv, DA = self.mhd_pde(u, v, A)\n",
    "            loss_pde, loss_Du, loss_Dv, loss_DA = self.mhd_pde_loss(\n",
    "                Du, Dv, DA, return_all_losses=True\n",
    "            )\n",
    "            loss_dict[\"loss_pde\"] = loss_pde\n",
    "            loss_dict[\"loss_Du\"] = loss_Du\n",
    "            loss_dict[\"loss_Dv\"] = loss_Dv\n",
    "            loss_dict[\"loss_DA\"] = loss_DA\n",
    "        else:\n",
    "            loss_pde = 0\n",
    "\n",
    "        # Constraints\n",
    "        if self.use_constraint_loss:\n",
    "            div_vel, div_B = self.mhd_constraint(u, v, A)\n",
    "            loss_constraint, loss_div_vel, loss_div_B = self.mhd_constraint_loss(\n",
    "                div_vel, div_B, return_all_losses=True\n",
    "            )\n",
    "            loss_dict[\"loss_constraint\"] = loss_constraint\n",
    "            loss_dict[\"loss_div_vel\"] = loss_div_vel\n",
    "            loss_dict[\"loss_div_B\"] = loss_div_B\n",
    "        else:\n",
    "            loss_constraint = 0\n",
    "\n",
    "        if self.use_weighted_mean:\n",
    "            weight_sum = (\n",
    "                self.data_weight\n",
    "                + self.ic_weight\n",
    "                + self.pde_weight\n",
    "                + self.constraint_weight\n",
    "            )\n",
    "        else:\n",
    "            weight_sum = 1.0\n",
    "\n",
    "        loss = (\n",
    "            self.data_weight * loss_data\n",
    "            + self.ic_weight * loss_ic\n",
    "            + self.pde_weight * loss_pde\n",
    "            + self.constraint_weight * loss_constraint\n",
    "        ) / weight_sum\n",
    "        loss_dict[\"loss\"] = loss\n",
    "        return loss, loss_dict\n",
    "\n",
    "```\n",
    "\n",
    "The MDH equations that we defined before are initialized for use within the  following loss functions. "
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c6c1a66a",
   "metadata": {},
   "source": [
    "### Data Loss\n",
    "The data loss is used to compare simulation data to the output of our model. The velocity in $x$ and $y$, as well as magnetic vector potential $\\mathbf{A}$ is directly compared to the ground truth data through the `Lp-Loss`, and the relative mean squared error is returned. \n",
    "\n",
    "\n",
    "```python\n",
    "def data_loss(self, pred, true, return_all_losses=False):\n",
    "    \"Compute data loss\"\n",
    "    lploss = LpLoss(size_average=True)\n",
    "    u_pred = pred[..., 0]\n",
    "    v_pred = pred[..., 1]\n",
    "    A_pred = pred[..., 2]\n",
    "\n",
    "    u_true = true[..., 0]\n",
    "    v_true = true[..., 1]\n",
    "    A_true = true[..., 2]\n",
    "\n",
    "    loss_u = lploss(u_pred, u_true)\n",
    "    loss_v = lploss(v_pred, v_true)\n",
    "    loss_A = lploss(A_pred, A_true)\n",
    "\n",
    "    if self.use_weighted_mean:\n",
    "        weight_sum = self.u_weight + self.v_weight + self.A_weight\n",
    "    else:\n",
    "        weight_sum = 1.0\n",
    "\n",
    "    loss_data = (\n",
    "        self.u_weight * loss_u + self.v_weight * loss_v + self.A_weight * loss_A\n",
    "    ) / weight_sum\n",
    "\n",
    "    if return_all_losses:\n",
    "        return loss_data, loss_u, loss_v, loss_A\n",
    "    else:\n",
    "        return loss_data\n",
    "```"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "fe2f1f44",
   "metadata": {},
   "source": [
    "## PDE Loss\n",
    "The PDE loss describes violations of the time evolution of the PDEs and the PINO outputs. In order to make this comparison, the spatial and temporal derivatives of the output fields need to be computed. To do so, Fourier differentiation is used to calculate the spacial derivatives, and second order finite differencing is used for temporal derivatives. The output fields are the velocity in the $x$ direction ($u$), the velocity in the $y$ direction ($v$), and the magnetic vector potential ($\\mathbf{A}$). The PDE loss is then defined as the MSE loss between zero and the PDE, after putting all the terms on the same side of the equation.\n",
    "\n",
    "Specifically, this loss covers the following equations: \n",
    "$$\\begin{align*}\n",
    "\\partial_t \\mathbf{u}+\\mathbf{u} \\cdot \\nabla \\mathbf{u} &=\n",
    "-\\nabla \\left( p+\\frac{B^2}{2} \\right)/\\rho_0 +\\mathbf{B}\n",
    "\\cdot \\nabla \\mathbf{B}+\\nu \\nabla^2 \\mathbf{u}, \\\\\n",
    "\n",
    "\\partial_t \\mathbf{A} + \\mathbf{u} \\cdot \\nabla \\mathbf{A} &=\\eta \\nabla^2 \\mathbf{A}\n",
    "\\end{align*}$$\n",
    "\n",
    "```python\n",
    "def mhd_pde(self, u, v, A, p=None):\n",
    "    \"Compute PDEs for MHD using vector potential\"\n",
    "    nt = u.size(1)\n",
    "    nx = u.size(2)\n",
    "    ny = u.size(3)\n",
    "    dt = self.tend / (nt - 1)\n",
    "\n",
    "    # compute fourier derivatives\n",
    "    f_du, _ = fourier_derivatives(u, [self.Lx, self.Ly])\n",
    "    f_dv, _ = fourier_derivatives(v, [self.Lx, self.Ly])\n",
    "    f_dBx, f_dBy, f_dA, f_dB, B2_h = fourier_derivatives_vec_pot(\n",
    "        A, [self.Lx, self.Ly]\n",
    "    )\n",
    "\n",
    "    u_x = f_du[:, 0:nt, :nx, :ny]\n",
    "    u_y = f_du[:, nt : 2 * nt, :nx, :ny]\n",
    "    v_x = f_dv[:, 0:nt, :nx, :ny]\n",
    "    v_y = f_dv[:, nt : 2 * nt, :nx, :ny]\n",
    "    A_x = f_dA[:, 0:nt, :nx, :ny]\n",
    "    A_y = f_dA[:, nt : 2 * nt, :nx, :ny]\n",
    "\n",
    "    Bx = f_dB[:, 0:nt, :nx, :ny]\n",
    "    By = f_dB[:, nt : 2 * nt, :nx, :ny]\n",
    "    Bx_x = f_dBx[:, 0:nt, :nx, :ny]\n",
    "    Bx_y = f_dBx[:, nt : 2 * nt, :nx, :ny]\n",
    "    By_x = f_dBy[:, 0:nt, :nx, :ny]\n",
    "    By_y = f_dBy[:, nt : 2 * nt, :nx, :ny]\n",
    "\n",
    "    u_lap = fourier_derivatives_lap(u, [self.Lx, self.Ly])\n",
    "    v_lap = fourier_derivatives_lap(v, [self.Lx, self.Ly])\n",
    "    A_lap = fourier_derivatives_lap(A, [self.Lx, self.Ly])\n",
    "\n",
    "    # note that for pressure, the zero mode (the mean) cannot be zero for invertability so it is set to 1\n",
    "    div_vel_grad_vel = u_x**2 + 2 * u_y * v_x + v_y**2\n",
    "    div_B_grad_B = Bx_x**2 + 2 * Bx_y * By_x + By_y**2\n",
    "    f_dptot = fourier_derivatives_ptot(\n",
    "        p, div_vel_grad_vel, div_B_grad_B, B2_h, self.rho0, [self.Lx, self.Ly]\n",
    "    )\n",
    "    ptot_x = f_dptot[:, 0:nt, :nx, :ny]\n",
    "    ptot_y = f_dptot[:, nt : 2 * nt, :nx, :ny]\n",
    "\n",
    "    # Plug inputs into dictionary\n",
    "    all_inputs = {\n",
    "        \"u\": u,\n",
    "        \"u__x\": u_x,\n",
    "        \"u__y\": u_y,\n",
    "        \"v\": v,\n",
    "        \"v__x\": v_x,\n",
    "        \"v__y\": v_y,\n",
    "        \"Bx\": Bx,\n",
    "        \"Bx__x\": Bx_x,\n",
    "        \"Bx__y\": Bx_y,\n",
    "        \"By\": By,\n",
    "        \"By__x\": By_x,\n",
    "        \"By__y\": By_y,\n",
    "        \"A__x\": A_x,\n",
    "        \"A__y\": A_y,\n",
    "        \"ptot__x\": ptot_x,\n",
    "        \"ptot__y\": ptot_y,\n",
    "        \"u__lap\": u_lap,\n",
    "        \"v__lap\": v_lap,\n",
    "        \"A__lap\": A_lap,\n",
    "    }\n",
    "\n",
    "    # Substitute values into PDE equations\n",
    "    u_rhs = self.mhd_pde_node[14].evaluate(all_inputs)[\"u_rhs\"]\n",
    "    v_rhs = self.mhd_pde_node[15].evaluate(all_inputs)[\"v_rhs\"]\n",
    "    A_rhs = self.mhd_pde_node[23].evaluate(all_inputs)[\"A_rhs\"]\n",
    "\n",
    "    u_t = self.Du_t(u, dt)\n",
    "    v_t = self.Du_t(v, dt)\n",
    "    A_t = self.Du_t(A, dt)\n",
    "\n",
    "    # Find difference\n",
    "    Du = self.mhd_pde_node[18].evaluate({\"u__t\": u_t, \"u_rhs\": u_rhs[:, 1:-1]})[\n",
    "        \"Du\"\n",
    "    ]\n",
    "    Dv = self.mhd_pde_node[19].evaluate({\"v__t\": v_t, \"v_rhs\": v_rhs[:, 1:-1]})[\n",
    "        \"Dv\"\n",
    "    ]\n",
    "    DA = self.mhd_pde_node[24].evaluate({\"A__t\": A_t, \"A_rhs\": A_rhs[:, 1:-1]})[\n",
    "        \"DA\"\n",
    "    ]\n",
    "\n",
    "    return Du, Dv, DA\n",
    "\n",
    "\n",
    "def mhd_pde_loss(self, Du, Dv, DA, return_all_losses=None):\n",
    "    \"Compute PDE loss\"\n",
    "    Du_val = torch.zeros_like(Du)\n",
    "    Dv_val = torch.zeros_like(Dv)\n",
    "    DA_val = torch.zeros_like(DA)\n",
    "\n",
    "    loss_Du = F.mse_loss(Du, Du_val)\n",
    "    loss_Dv = F.mse_loss(Dv, Dv_val)\n",
    "    loss_DA = F.mse_loss(DA, DA_val)\n",
    "\n",
    "    if self.use_weighted_mean:\n",
    "        weight_sum = self.Du_weight + self.Dv_weight + self.DA_weight\n",
    "    else:\n",
    "        weight_sum = 1.0\n",
    "\n",
    "    loss_pde = (\n",
    "        self.Du_weight * loss_Du\n",
    "        + self.Dv_weight * loss_Dv\n",
    "        + self.DA_weight * loss_DA\n",
    "    ) / weight_sum\n",
    "\n",
    "    if return_all_losses:\n",
    "        return loss_pde, loss_Du, loss_Dv, loss_DA\n",
    "    else:\n",
    "        return loss_pde\n",
    "```"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "cd40c1ed",
   "metadata": {},
   "source": [
    "## Constraint Loss\n",
    "The constraint illustrates the deviations of the velocity divergence free condition and the magnetic divergence free condition. These conditions are implemented similarly to the PDE loss, but without time derivative terms. The constraint loss is then the MSE between each of the constraint equations and zero.  \n",
    "\n",
    "Specifically, the equations used for constraint loss are:\n",
    "$$\\begin{align*}\n",
    "\\nabla \\cdot \\mathbf{u} &= 0, \\\\\n",
    "\\nabla \\cdot \\mathbf{B} &= 0\n",
    "\\end{align*}$$\n",
    "\n",
    "\n",
    "```python\n",
    "def mhd_constraint(self, u, v, A):\n",
    "    \"Compute constraints\"\n",
    "    nt = u.size(1)\n",
    "    nx = u.size(2)\n",
    "    ny = u.size(3)\n",
    "\n",
    "    f_du, _ = fourier_derivatives(u, [self.Lx, self.Ly])\n",
    "    f_dv, _ = fourier_derivatives(v, [self.Lx, self.Ly])\n",
    "    f_dBx, f_dBy, _, _, _ = fourier_derivatives_vec_pot(A, [self.Lx, self.Ly])\n",
    "\n",
    "    u_x = f_du[:, 0:nt, :nx, :ny]\n",
    "    v_y = f_dv[:, nt : 2 * nt, :nx, :ny]\n",
    "    Bx_x = f_dBx[:, 0:nt, :nx, :ny]\n",
    "    By_y = f_dBy[:, nt : 2 * nt, :nx, :ny]\n",
    "\n",
    "    div_B = self.mhd_pde_node[12].evaluate({\"Bx__x\": Bx_x, \"By__y\": By_y})[\"div_B\"]\n",
    "    div_vel = self.mhd_pde_node[13].evaluate({\"u__x\": u_x, \"v__y\": v_y})[\"div_vel\"]\n",
    "\n",
    "    return div_vel, div_B\n",
    "\n",
    "def mhd_constraint_loss(self, div_vel, div_B, return_all_losses=False):\n",
    "        \"Compute constraint loss\"\n",
    "        div_vel_val = torch.zeros_like(div_vel)\n",
    "        div_B_val = torch.zeros_like(div_B)\n",
    "\n",
    "        loss_div_vel = F.mse_loss(div_vel, div_vel_val)\n",
    "        loss_div_B = F.mse_loss(div_B, div_B_val)\n",
    "\n",
    "        if self.use_weighted_mean:\n",
    "            weight_sum = self.div_vel_weight + self.div_B_weight\n",
    "        else:\n",
    "            weight_sum = 1.0\n",
    "\n",
    "        loss_constraint = (\n",
    "            self.div_vel_weight * loss_div_vel + self.div_B_weight * loss_div_B\n",
    "        ) / weight_sum\n",
    "\n",
    "        if return_all_losses:\n",
    "            return loss_constraint, loss_div_vel, loss_div_B\n",
    "        else:\n",
    "            return loss_constraint\n",
    "```\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "627ae018",
   "metadata": {},
   "source": [
    "## Initial Condition Loss\n",
    "The initial condition loss encourages the model to associate the input field with the output field specifically at $t=0$. This constraint can usually be achieved with data loss, however this approach emphasized the importance of correct initial condition prediction, and enables training in the absence of data. Training without data and the significance of the initial condition term stem from the PDE loss term. \n",
    "\n",
    "```python\n",
    "def ic_loss(self, pred, input, return_all_losses=False):\n",
    "    \"Compute initial condition loss\"\n",
    "    lploss = LpLoss(size_average=True)\n",
    "    ic_pred = pred[:, 0]\n",
    "    ic_true = input[:, 0, ..., 3:]\n",
    "    u_ic_pred = ic_pred[..., 0]\n",
    "    v_ic_pred = ic_pred[..., 1]\n",
    "    A_ic_pred = ic_pred[..., 2]\n",
    "\n",
    "    u_ic_true = ic_true[..., 0]\n",
    "    v_ic_true = ic_true[..., 1]\n",
    "    A_ic_true = ic_true[..., 2]\n",
    "\n",
    "    loss_u_ic = lploss(u_ic_pred, u_ic_true)\n",
    "    loss_v_ic = lploss(v_ic_pred, v_ic_true)\n",
    "    loss_A_ic = lploss(A_ic_pred, A_ic_true)\n",
    "\n",
    "    if self.use_weighted_mean:\n",
    "        weight_sum = self.u_weight + self.v_weight + self.A_weight\n",
    "    else:\n",
    "        weight_sum = 1.0\n",
    "\n",
    "    loss_ic = (\n",
    "        self.u_weight * loss_u_ic\n",
    "        + self.v_weight * loss_v_ic\n",
    "        + self.A_weight * loss_A_ic\n",
    "    ) / weight_sum\n",
    "\n",
    "    if return_all_losses:\n",
    "        return loss_ic, loss_u_ic, loss_v_ic, loss_A_ic\n",
    "    else:\n",
    "        return loss_ic\n",
    "```\n",
    "\n",
    "Similar to the initial condition loss, boundary condition loss can be used to describe violations of the boundary terms. In this specific case, the tFNO architecture ensures that the periodic boundary conditions are satisfied, thus the term is not used in this example. "
   ]
  },
  {
   "cell_type": "markdown",
   "id": "58809a2f",
   "metadata": {},
   "source": [
    "In theory, training can be done by correctly predicting the initial conditions, boundary conditions and correctly evolving the PDE forward in time. In practice, having data helps the model converge more quickly. However, an incorrect initial condition results in the PDE evolving the wrong state forward in time, which is why it is emphasized as its own term. The initial condition loss is calculated by taking the input fields and computing the relative MSE with output fields at $t=0$. \n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f14c9c48",
   "metadata": {},
   "source": [
    "## Dataset and Dataloaders\n",
    "To use the data we have generated, we need to define a dataset and a dataloader that can ingest the files and parse them based on the relevant content. \n",
    "\n",
    "```python\n",
    "import glob\n",
    "import os\n",
    "\n",
    "import h5py\n",
    "from torch.utils import data\n",
    "\n",
    "\n",
    "class Dedalus2DDataset(data.Dataset):\n",
    "    \"Dataset for MHD 2D Dataset\"\n",
    "\n",
    "    def __init__(\n",
    "        self,\n",
    "        data_path,\n",
    "        output_names=\"output-\",\n",
    "        field_names=[\"magnetic field\", \"velocity\"],\n",
    "        num_train=None,\n",
    "        num_test=None,\n",
    "        num=None,\n",
    "        use_train=True,\n",
    "    ):\n",
    "        self.data_path = data_path\n",
    "        output_names = \"output-\" + \"?\"*len(str(len(os.listdir(data_path))))\n",
    "        self.output_names = output_names\n",
    "        raw_path = os.path.join(data_path, output_names, \"*.h5\")\n",
    "        files_raw = sorted(glob.glob(raw_path))\n",
    "        self.files_raw = files_raw\n",
    "        self.num_files_raw = num_files_raw = len(files_raw)\n",
    "        self.field_names = field_names\n",
    "        self.use_train = use_train\n",
    "\n",
    "        # Handle num parameter: -1 means use full dataset, otherwise limit to specified number\n",
    "        if num is not None and num > 0:\n",
    "            num_files_raw = min(num, num_files_raw)\n",
    "            files_raw = files_raw[:num_files_raw]\n",
    "            self.files_raw = files_raw\n",
    "            self.num_files_raw = num_files_raw\n",
    "\n",
    "        # Handle percentage-based splits\n",
    "        if num_train is not None and num_train <= 1.0:\n",
    "            # num_train is a percentage\n",
    "            num_train = int(num_train * num_files_raw)\n",
    "        elif num_train is None or num_train > num_files_raw:\n",
    "            num_train = num_files_raw\n",
    "\n",
    "        if num_test is not None and num_test <= 1.0:\n",
    "            # num_test is a percentage\n",
    "            num_test = int(num_test * num_files_raw)\n",
    "        elif num_test is None or num_test > (num_files_raw - num_train):\n",
    "            num_test = num_files_raw - num_train\n",
    "\n",
    "        self.num_train = num_train\n",
    "        self.train_files = self.files_raw[:num_train]\n",
    "        self.num_test = num_test\n",
    "        self.test_end = test_end = num_train + num_test\n",
    "        self.test_files = self.files_raw[num_train:test_end]\n",
    "        \n",
    "        if (self.use_train) or (self.test_files is None):\n",
    "            files = self.train_files\n",
    "        else:\n",
    "            files = self.test_files\n",
    "        self.files = files\n",
    "        self.num_files = num_files = len(files)\n",
    "\n",
    "    def __len__(self):\n",
    "        length = len(self.files)\n",
    "        return length\n",
    "\n",
    "    def __getitem__(self, index):\n",
    "        \"Gets item for dataloader\"\n",
    "        file = self.files[index]\n",
    "\n",
    "        field_names = self.field_names\n",
    "        fields = {}\n",
    "        coords = []\n",
    "        with h5py.File(file, mode=\"r\") as h5file:\n",
    "            data_file = h5file[\"tasks\"]\n",
    "            keys = list(data_file.keys())\n",
    "            if field_names is None:\n",
    "                field_names = keys\n",
    "            for field_name in field_names:\n",
    "                if field_name in data_file:\n",
    "                    field = data_file[field_name][:]\n",
    "                    fields[field_name] = field\n",
    "                else:\n",
    "                    print(f\"field name {field_name} not found\")\n",
    "        dataset = fields\n",
    "        return dataset\n",
    "\n",
    "    def get_coords(self, index):\n",
    "        \"Gets coordinates of t, x, y for dataloader\"\n",
    "        file = self.files[index]\n",
    "        with h5py.File(file, mode=\"r\") as h5file:\n",
    "            data_file = h5file[\"tasks\"]\n",
    "            keys = list(data_file.keys())\n",
    "            dims = data_file[keys[0]].dims\n",
    "\n",
    "            ndims = len(dims)\n",
    "            t = dims[0][\"sim_time\"][:]\n",
    "            x = dims[ndims - 2][0][:]\n",
    "            y = dims[ndims - 1][0][:]\n",
    "        return t, x, y\n",
    "```\n",
    "\n",
    "And the dataloader which is sampled from during training.\n",
    "\n",
    "```python\n",
    "class MHDDataloaderVecPot(Dataset):\n",
    "    \"Dataloader for MHD Dataset with vector potential\"\n",
    "\n",
    "    def __init__(\n",
    "        self, dataset: Dedalus2DDataset, sub_x=1, sub_t=1, ind_x=None, ind_t=None\n",
    "    ):\n",
    "        self.dataset = dataset\n",
    "        self.sub_x = sub_x\n",
    "        self.sub_t = sub_t\n",
    "        self.ind_x = ind_x\n",
    "        self.ind_t = ind_t\n",
    "        t, x, y = dataset.get_coords(0)\n",
    "        self.x = x[:ind_x:sub_x]\n",
    "        self.y = y[:ind_x:sub_x]\n",
    "        self.t = t[:ind_t:sub_t]\n",
    "        self.nx = len(self.x)\n",
    "        self.ny = len(self.y)\n",
    "        self.nt = len(self.t)\n",
    "        self.num = num = len(self.dataset)\n",
    "        self.x_slice = slice(0, self.ind_x, self.sub_x)\n",
    "        self.t_slice = slice(0, self.ind_t, self.sub_t)\n",
    "\n",
    "    def __len__(self):\n",
    "        length = len(self.dataset)\n",
    "        return length\n",
    "\n",
    "    def __getitem__(self, index):\n",
    "        \"Gets input of dataloader, including data, t, x, and y\"\n",
    "        fields = self.dataset[index]\n",
    "\n",
    "        # Data includes velocity and vector potential\n",
    "        velocity = fields[\"velocity\"]\n",
    "        vector_potential = fields[\"vector potential\"]\n",
    "\n",
    "        u = torch.from_numpy(\n",
    "            velocity[\n",
    "                : self.ind_t : self.sub_t,\n",
    "                0,\n",
    "                : self.ind_x : self.sub_x,\n",
    "                : self.ind_x : self.sub_x,\n",
    "            ]\n",
    "        )\n",
    "        v = torch.from_numpy(\n",
    "            velocity[\n",
    "                : self.ind_t : self.sub_t,\n",
    "                1,\n",
    "                : self.ind_x : self.sub_x,\n",
    "                : self.ind_x : self.sub_x,\n",
    "            ]\n",
    "        )\n",
    "        A = torch.from_numpy(\n",
    "            vector_potential[\n",
    "                : self.ind_t : self.sub_t,\n",
    "                : self.ind_x : self.sub_x,\n",
    "                : self.ind_x : self.sub_x,\n",
    "            ]\n",
    "        )\n",
    "\n",
    "        # shape is now (self.nt, self.nx, self.ny, nfields)\n",
    "        data = torch.stack([u, v, A], dim=-1)\n",
    "        data0 = data[0].reshape(1, self.nx, self.ny, -1).repeat(self.nt, 1, 1, 1)\n",
    "\n",
    "        grid_t = (\n",
    "            torch.from_numpy(self.t)\n",
    "            .reshape(self.nt, 1, 1, 1)\n",
    "            .repeat(1, self.nx, self.ny, 1)\n",
    "        )\n",
    "        grid_x = (\n",
    "            torch.from_numpy(self.x)\n",
    "            .reshape(1, self.nx, 1, 1)\n",
    "            .repeat(self.nt, 1, self.ny, 1)\n",
    "        )\n",
    "        grid_y = (\n",
    "            torch.from_numpy(self.y)\n",
    "            .reshape(1, 1, self.ny, 1)\n",
    "            .repeat(self.nt, self.nx, 1, 1)\n",
    "        )\n",
    "\n",
    "        inputs = torch.cat([grid_t, grid_x, grid_y, data0], dim=-1)\n",
    "        outputs = data\n",
    "\n",
    "        return inputs, outputs\n",
    "    \n",
    "    def create_dataloader(\n",
    "        self,\n",
    "        batch_size=1,\n",
    "        shuffle=False,\n",
    "        num_workers=0,\n",
    "        pin_memory=False,\n",
    "        distributed=False,\n",
    "    ):\n",
    "        \"Creates dataloader and sampler based on whether distributed training is on\"\n",
    "        if distributed:\n",
    "            sampler = torch.utils.data.DistributedSampler(self)\n",
    "            dataloader = DataLoader(\n",
    "                self,\n",
    "                batch_size=batch_size,\n",
    "                shuffle=False,\n",
    "                sampler=sampler,\n",
    "                num_workers=num_workers,\n",
    "                pin_memory=pin_memory,\n",
    "            )\n",
    "        else:\n",
    "            sampler = None\n",
    "            dataloader = DataLoader(\n",
    "                self,\n",
    "                batch_size=batch_size,\n",
    "                shuffle=shuffle,\n",
    "                num_workers=num_workers,\n",
    "                pin_memory=pin_memory,\n",
    "            )\n",
    "\n",
    "        return dataloader, sampler\n",
    "```"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "bf33d763",
   "metadata": {},
   "source": [
    "## Model Architecture\n",
    "<div style=\"display: flex; justify-content: center; gap: 10px;\">\n",
    "  <figure style=\"text-align: center;\">\n",
    "    <img src=\"https://raw.githubusercontent.com/openhackathons-org/End-to-End-AI-for-Science/main/workspace/python/jupyter_notebook/MagnetoHydrodynamics/images/model_arch.png\" style=\"width: 100%; height: auto;\">\n",
    "    <figcaption>Model architecture overview.</figcaption>\n",
    "  </figure>\n",
    "</div>\n",
    "\n",
    "<!-- ![model_arch](images/model_arch.png) -->\n",
    "\n",
    "Our PINO model is composed of Tensor Factorized Neural Operators as the core component. Input fields are fed in as the input, which are composed of $u$, $v$, and $A$ initial conditions. The data is first lifted into a higher dimension representation by the neural network, P1. The data then enters the Fourier layers ($F_1$,...,$F_n$). Each Fourier layer consists of a sequence of non-logical integral operators, and nonlinear activation functions. $T_1$ represents a linear transform that employs CP decomposed tensors as weights, and $T_2$ represents a local linear transform. $\\sigma$ is the activation function, and $\\mathcal{F}$, $\\mathcal{F}^{-1}$ represent the Fourier transfrom and inverse Fourier transform respectively. At the end, $P_2$ projects back down into the input space, producing the output shown on the right which describe the\n",
    "time evolution of the system. \n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "5dacfbfb",
   "metadata": {},
   "source": [
    "## Training our Model\n",
    "\n",
    "PhysicsNeMo has two distinct styles, namely Core and Sym. PhysicsNeMo Sym is a framework providing pythonic APIs, algorithms and utilities to be used with PhysicsNeMo Core, while PhysicsNeMo Core interoperates with PyTorch directly. Working with PhysicsNeMo Core looks and feels more like a PyTorch workflow with some key utils like models, utils, and datapipes imported directly from `physicsnemo` itself. While some components of this workflow so far have borrowed from PhysicsNeMo Sym (`MHD_PDE`), the training workflow for this problem will be build primarily using the Core style. This will provide more flexibility over our training loop, and allow for further customizations to our workflow. The training script follows the standard flow of training models using pytorch. \n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3339921a",
   "metadata": {},
   "source": [
    "## Hydra Config\n",
    "\n",
    "Training in PhysicsNeMo is facilitated by Hydra configs, which allow us to set and manager parameters from a single file, updating parameters for components such as our model, datasets, optimizer, logger, loss function, and dataloaders. The first step in getting set up for training is defining this yaml file and loading the config.\n",
    "\n",
    "\n",
    "```yaml \n",
    "## Training options\n",
    "# Reynolds number parameter\n",
    "reynolds_number: 100\n",
    "\n",
    "load_ckpt: False\n",
    "output_dir: './checkpoints/MHDVecPot_TFNO/MHDVecPot_TFNO_PINO_Re${reynolds_number}/figures/'\n",
    "\n",
    "###################\n",
    "## Model options\n",
    "model_params:\n",
    "  layers: 8\n",
    "  modes: 8\n",
    "  num_fno_layers: 4\n",
    "  fc_dim: 128\n",
    "  decoder_layers: 1\n",
    "  in_dim: 6 # 3 + in_fields\n",
    "  out_dim: 3\n",
    "  dimension: 3\n",
    "  activation: 'gelu'\n",
    "  pad_x: 5\n",
    "  pad_y: 0\n",
    "  pad_z: 0\n",
    "  input_norm: [1.0, 1.0, 1.0, 1.0, 1.0, 0.00025]\n",
    "  output_norm: [1.0, 1.0, 0.00025]\n",
    "\n",
    "  #TensorLy arguments\n",
    "  rank: 0.5\n",
    "  factorization: 'cp'\n",
    "  fixed_rank_modes: null\n",
    "  decomposition_kwargs: {}\n",
    "\n",
    "###################\n",
    "## Dataset options\n",
    "dataset_params:\n",
    "  data_dir: '/Datasets/mhd_data/simulation_outputs_Re${reynolds_number}'\n",
    "  field_names: ['velocity', 'vector potential']\n",
    "  output_names: 'output-????'\n",
    "  dataset_type: 'mhd'\n",
    "  name: 'MHDVecPot_TFNO_Re${reynolds_number}'\n",
    "  num: -1  # -1 means use full dataset, otherwise specify total number\n",
    "  num_train: 0.8  # percentage of dataset for training\n",
    "  num_test: 0.2   # percentage of dataset for testing\n",
    "  sub_x: 1\n",
    "  sub_t: 1\n",
    "  ind_x: null\n",
    "  ind_t: null\n",
    "  nin: 3\n",
    "  nout: 3\n",
    "  fields: ['u', 'v', 'A']\n",
    "\n",
    "###################\n",
    "## Dataloader options\n",
    "train_loader_params:\n",
    "  batch_size: 1\n",
    "  shuffle: True\n",
    "  num_workers: 4\n",
    "  pin_memory: True\n",
    "\n",
    "val_loader_params:\n",
    "  batch_size: 1\n",
    "  shuffle: False\n",
    "  num_workers: 4\n",
    "  pin_memory: True\n",
    "\n",
    "test_loader_params:\n",
    "  batch_size: 1\n",
    "  shuffle: False\n",
    "  num_workers: 4\n",
    "  pin_memory: True\n",
    "\n",
    "###################\n",
    "## Loss options\n",
    "loss_params:\n",
    "  nu: 0.004\n",
    "  eta: 0.004\n",
    "  rho0: 1.0\n",
    "\n",
    "  data_weight: 5.0\n",
    "  ic_weight: 1.0\n",
    "  pde_weight: 1.0\n",
    "  constraint_weight: 10.0\n",
    "\n",
    "  use_data_loss: True\n",
    "  use_ic_loss: True\n",
    "  use_pde_loss: True\n",
    "  use_constraint_loss: True\n",
    "\n",
    "  u_weight: 1.0\n",
    "  v_weight: 1.0\n",
    "  A_weight: 1.0\n",
    "\n",
    "  Du_weight: 1.0\n",
    "  Dv_weight: 1.0\n",
    "  DA_weight: 1_000_000\n",
    "\n",
    "  div_B_weight: 1.0\n",
    "  div_vel_weight: 1.0\n",
    "\n",
    "  Lx: 1.0\n",
    "  Ly: 1.0\n",
    "  tend: 1.0\n",
    "\n",
    "  use_weighted_mean: False\n",
    "\n",
    "###################\n",
    "## Optimizer options\n",
    "optimizer_params:\n",
    "  betas: [0.9, 0.999]\n",
    "  lr: 5.0e-4\n",
    "  milestones: [20, 40, 60, 80, 100]\n",
    "  gamma: 0.5\n",
    "\n",
    "\n",
    "###################\n",
    "## Train params\n",
    "train_params:\n",
    "  epochs: 100\n",
    "  ckpt_freq: 10\n",
    "  ckpt_path: 'checkpoints/MHDVecPot_TFNO/MHDVecPot_TFNO_PINO_Re${reynolds_number}/'\n",
    "\n",
    "###################\n",
    "## log params\n",
    "log_params:\n",
    "  log_dir: 'logs'\n",
    "  log_project: 'MHD_PINO'\n",
    "  log_group: 'MHDVecPot_TFNO_Re${reynolds_number}'\n",
    "  log_num_plots: 1\n",
    "  log_plot_freq: 5\n",
    "  log_plot_types: ['ic', 'pred', 'true', 'error']\n",
    "\n",
    "test:\n",
    "  batchsize: 1\n",
    "  ckpt_path: 'checkpoints/MHDVecPot_TFNO/MHDVecPot_TFNO_PINO_Re${reynolds_number}/'\n",
    "\n",
    "```"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c9c370fa",
   "metadata": {},
   "source": [
    "## Training Setup\n",
    "\n",
    "We begin with importing the required modules, capturing our hydra config, and initializing some utilities to facilitate the model training. Most of this initial setup is \n",
    "\n",
    "```python\n",
    "import os\n",
    "\n",
    "import hydra\n",
    "from omegaconf import ListConfig, OmegaConf\n",
    "import torch\n",
    "from omegaconf import DictConfig\n",
    "from physicsnemo.distributed import DistributedManager\n",
    "from physicsnemo.launch.logging import LaunchLogger, PythonLogger\n",
    "from physicsnemo.launch.utils import load_checkpoint, save_checkpoint\n",
    "from physicsnemo.sym.hydra import to_absolute_path\n",
    "from torch.nn.parallel import DistributedDataParallel\n",
    "from torch.optim import AdamW\n",
    "\n",
    "from dataloaders import Dedalus2DDataset, MHDDataloaderVecPot\n",
    "from losses import LossMHDVecPot_PhysicsNeMo\n",
    "from tfno import TFNO\n",
    "from utils.plot_utils import plot_predictions_mhd, plot_predictions_mhd_plotly\n",
    "\n",
    "dtype = torch.float\n",
    "torch.set_default_dtype(dtype)\n",
    "\n",
    "\n",
    "@hydra.main(\n",
    "    version_base=\"1.3\", config_path=\"config\", config_name=\"train_mhd_vec_pot_tfno.yaml\"\n",
    ")\n",
    "def main(cfg: DictConfig) -> None:\n",
    "    DistributedManager.initialize()  # Only call this once in the entire script!\n",
    "    dist = DistributedManager()  # call if required elsewhere\n",
    "    cfg = OmegaConf.to_container(cfg, resolve=True)\n",
    "\n",
    "    # initialize monitoring\n",
    "    log = PythonLogger(name=\"mhd_pino\")\n",
    "    log.file_logging()\n",
    "\n",
    "    log_params = cfg[\"log_params\"]\n",
    "\n",
    "    # Load config file parameters\n",
    "    model_params = cfg[\"model_params\"]\n",
    "    dataset_params = cfg[\"dataset_params\"]\n",
    "    train_loader_params = cfg[\"train_loader_params\"]\n",
    "    val_loader_params = cfg[\"val_loader_params\"]\n",
    "    loss_params = cfg[\"loss_params\"]\n",
    "    optimizer_params = cfg[\"optimizer_params\"]\n",
    "    train_params = cfg[\"train_params\"]\n",
    "\n",
    "    load_ckpt = cfg[\"load_ckpt\"]\n",
    "    output_dir = cfg[\"output_dir\"]\n",
    "\n",
    "    output_dir = to_absolute_path(output_dir)\n",
    "    os.makedirs(output_dir, exist_ok=True)\n",
    "\n",
    "    data_dir = dataset_params[\"data_dir\"]\n",
    "    ckpt_path = train_params[\"ckpt_path\"]\n",
    "```\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "bacc38c7",
   "metadata": {},
   "source": [
    "## Datasets and Dataloaders\n",
    "\n",
    "Datasets and dataloaders are initialized using parameters from the hydra config.\n",
    "\n",
    "```python\n",
    "# Construct dataloaders\n",
    "dataset_train = Dedalus2DDataset(\n",
    "    dataset_params[\"data_dir\"],\n",
    "    output_names=dataset_params[\"output_names\"],\n",
    "    field_names=dataset_params[\"field_names\"],\n",
    "    num_train=dataset_params[\"num_train\"],\n",
    "    num_test=dataset_params[\"num_test\"],\n",
    "    num=dataset_params[\"num\"],\n",
    "    use_train=True,\n",
    ")\n",
    "dataset_val = Dedalus2DDataset(\n",
    "    data_dir,\n",
    "    output_names=dataset_params[\"output_names\"],\n",
    "    field_names=dataset_params[\"field_names\"],\n",
    "    num_train=dataset_params[\"num_train\"],\n",
    "    num_test=dataset_params[\"num_test\"],\n",
    "    num=dataset_params[\"num\"],\n",
    "    use_train=False,\n",
    ")\n",
    "\n",
    "mhd_dataloader_train = MHDDataloaderVecPot(\n",
    "    dataset_train,\n",
    "    sub_x=dataset_params[\"sub_x\"],\n",
    "    sub_t=dataset_params[\"sub_t\"],\n",
    "    ind_x=dataset_params[\"ind_x\"],\n",
    "    ind_t=dataset_params[\"ind_t\"],\n",
    ")\n",
    "mhd_dataloader_val = MHDDataloaderVecPot(\n",
    "    dataset_val,\n",
    "    sub_x=dataset_params[\"sub_x\"],\n",
    "    sub_t=dataset_params[\"sub_t\"],\n",
    "    ind_x=dataset_params[\"ind_x\"],\n",
    "    ind_t=dataset_params[\"ind_t\"],\n",
    ")\n",
    "\n",
    "dataloader_train, sampler_train = mhd_dataloader_train.create_dataloader(\n",
    "    batch_size=train_loader_params[\"batch_size\"],\n",
    "    shuffle=train_loader_params[\"shuffle\"],\n",
    "    num_workers=train_loader_params[\"num_workers\"],\n",
    "    pin_memory=train_loader_params[\"pin_memory\"],\n",
    "    distributed=dist.distributed,\n",
    ")\n",
    "dataloader_val, sampler_val = mhd_dataloader_val.create_dataloader(\n",
    "    batch_size=val_loader_params[\"batch_size\"],\n",
    "    shuffle=val_loader_params[\"shuffle\"],\n",
    "    num_workers=val_loader_params[\"num_workers\"],\n",
    "    pin_memory=val_loader_params[\"pin_memory\"],\n",
    "    distributed=dist.distributed,\n",
    ")\n",
    "```"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4826da07",
   "metadata": {},
   "source": [
    "## Model Construction\n",
    "For a relatively simple model such as `FNO`, we can directly use an architecture pre-defined by PhysicsNeMo. Hyper-parameters are set directly from the hydra config, and makes it straight forward to configure hyper parameter optimization if necessary. For a more complex model such as `tFNO`, we can leverage a combination of PhysicsNeMo primitives and third party packages to build a model in pytorch. \n",
    "\n",
    "```python\n",
    "# Define the model\n",
    "model = TFNO(\n",
    "    in_channels=model_params[\"in_dim\"],\n",
    "    out_channels=model_params[\"out_dim\"],\n",
    "    decoder_layers=model_params[\"decoder_layers\"],\n",
    "    decoder_layer_size=model_params[\"fc_dim\"],\n",
    "    dimension=model_params[\"dimension\"],\n",
    "    latent_channels=model_params[\"layers\"],\n",
    "    num_fno_layers=model_params[\"num_fno_layers\"],\n",
    "    num_fno_modes=model_params[\"modes\"],\n",
    "    padding=[model_params[\"pad_z\"], model_params[\"pad_y\"], model_params[\"pad_x\"]],\n",
    "    rank=model_params[\"rank\"],\n",
    "    factorization=model_params[\"factorization\"],\n",
    "    fixed_rank_modes=model_params[\"fixed_rank_modes\"],\n",
    "    decomposition_kwargs=model_params[\"decomposition_kwargs\"],\n",
    ").to(dist.device)\n",
    "# Set up DistributedDataParallel if using more than a single process.\n",
    "# The `distributed` property of DistributedManager can be used to\n",
    "# check this.\n",
    "if dist.distributed:\n",
    "    ddps = torch.cuda.Stream()\n",
    "    with torch.cuda.stream(ddps):\n",
    "        model = DistributedDataParallel(\n",
    "            model,\n",
    "            device_ids=[dist.local_rank],  # Set the device_id to be\n",
    "            # the local rank of this process on\n",
    "            # this node\n",
    "            output_device=dist.device,\n",
    "            broadcast_buffers=dist.broadcast_buffers,\n",
    "            find_unused_parameters=dist.find_unused_parameters,\n",
    "        )\n",
    "    torch.cuda.current_stream().wait_stream(ddps)\n",
    "\n",
    "```"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "99604fbc",
   "metadata": {},
   "source": [
    "## Optimizer, Scheduler, Loss Functions and Check-pointing\n",
    "\n",
    "\n",
    "```python\n",
    "# Construct optimizer and scheduler\n",
    "optimizer = AdamW(\n",
    "    model.parameters(),\n",
    "    betas=optimizer_params[\"betas\"],\n",
    "    lr=optimizer_params[\"lr\"],\n",
    "    weight_decay=0.1,\n",
    ")\n",
    "\n",
    "scheduler = torch.optim.lr_scheduler.MultiStepLR(\n",
    "    optimizer,\n",
    "    milestones=optimizer_params[\"milestones\"],\n",
    "    gamma=optimizer_params[\"gamma\"],\n",
    ")\n",
    "\n",
    "# Construct Loss class\n",
    "mhd_loss = LossMHDVecPot_PhysicsNeMo(**loss_params)\n",
    "\n",
    "# Load model from checkpoint (if exists)\n",
    "loaded_epoch = 0\n",
    "if load_ckpt:\n",
    "    loaded_epoch = load_checkpoint(\n",
    "        ckpt_path, model, optimizer, scheduler, device=dist.device\n",
    "    )\n",
    "```\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a775b128",
   "metadata": {},
   "source": [
    "## Training Loop\n",
    "Finally, the main training loop iterates through the dataset for our defined number of epochs, saving checkpoints and visualizations of our training along the way.\n",
    "\n",
    "```python\n",
    "# Training Loop\n",
    "epochs = train_params[\"epochs\"]\n",
    "ckpt_freq = train_params[\"ckpt_freq\"]\n",
    "names = dataset_params[\"fields\"]\n",
    "input_norm = torch.tensor(model_params[\"input_norm\"]).to(dist.device)\n",
    "output_norm = torch.tensor(model_params[\"output_norm\"]).to(dist.device)\n",
    "for epoch in range(max(1, loaded_epoch + 1), epochs + 1):\n",
    "    with LaunchLogger(\n",
    "        \"train\",\n",
    "        epoch=epoch,\n",
    "        num_mini_batch=len(dataloader_train),\n",
    "        epoch_alert_freq=1,\n",
    "    ) as log:\n",
    "        if dist.distributed:\n",
    "            sampler_train.set_epoch(epoch)\n",
    "\n",
    "        # Train Loop\n",
    "        model.train()\n",
    "\n",
    "        for i, (inputs, outputs) in enumerate(dataloader_train):\n",
    "            inputs = inputs.type(torch.FloatTensor).to(dist.device)\n",
    "            outputs = outputs.type(torch.FloatTensor).to(dist.device)\n",
    "            # Zero Gradients\n",
    "            optimizer.zero_grad()\n",
    "            # Compute Predictions\n",
    "            pred = (\n",
    "                model((inputs / input_norm).permute(0, 4, 1, 2, 3)).permute(\n",
    "                    0, 2, 3, 4, 1\n",
    "                )\n",
    "                * output_norm\n",
    "            )\n",
    "            # Compute Loss\n",
    "            loss, loss_dict = mhd_loss(pred, outputs, inputs, return_loss_dict=True)\n",
    "            # Compute Gradients for Back Propagation\n",
    "            loss.backward()\n",
    "            # Update Weights\n",
    "            optimizer.step()\n",
    "\n",
    "            log.log_minibatch(loss_dict)\n",
    "\n",
    "        log.log_epoch({\"Learning Rate\": optimizer.param_groups[0][\"lr\"]})\n",
    "        scheduler.step()\n",
    "\n",
    "    with LaunchLogger(\"valid\", epoch=epoch) as log:\n",
    "        # Val loop\n",
    "        model.eval()\n",
    "        plot_count = 0\n",
    "        with torch.no_grad():\n",
    "            for i, (inputs, outputs) in enumerate(dataloader_val):\n",
    "                inputs = inputs.type(dtype).to(dist.device)\n",
    "                outputs = outputs.type(dtype).to(dist.device)\n",
    "\n",
    "                # Compute Predictions\n",
    "                pred = (\n",
    "                    model((inputs / input_norm).permute(0, 4, 1, 2, 3)).permute(\n",
    "                        0, 2, 3, 4, 1\n",
    "                    )\n",
    "                    * output_norm\n",
    "                )\n",
    "                # Compute Loss\n",
    "                loss, loss_dict = mhd_loss(\n",
    "                    pred, outputs, inputs, return_loss_dict=True\n",
    "                )\n",
    "\n",
    "                log.log_minibatch(loss_dict)\n",
    "\n",
    "                # Get prediction plots to log\n",
    "                # Do for number of batches specified in the config file\n",
    "                if (i < log_params[\"log_num_plots\"]) and (\n",
    "                    epoch % log_params[\"log_plot_freq\"] == 0\n",
    "                ):\n",
    "                    # Add all predictions in batch\n",
    "                    for j, _ in enumerate(pred):\n",
    "                        # Make plots for each field\n",
    "                        for index, name in enumerate(names):\n",
    "                            # Generate figure\n",
    "                            _ = plot_predictions_mhd_plotly(\n",
    "                                pred[j].cpu(),\n",
    "                                outputs[j].cpu(),\n",
    "                                inputs[j].cpu(),\n",
    "                                index=index,\n",
    "                                name=name,\n",
    "                            )\n",
    "                        plot_count += 1\n",
    "\n",
    "                # Get prediction plots and save images locally\n",
    "                if (i < 2) and (epoch % log_params[\"log_plot_freq\"] == 0):\n",
    "                    # Add all predictions in batch\n",
    "                    for j, _ in enumerate(pred):\n",
    "                        # Generate figure\n",
    "                        plot_predictions_mhd(\n",
    "                            pred[j].cpu(),\n",
    "                            outputs[j].cpu(),\n",
    "                            inputs[j].cpu(),\n",
    "                            names=names,\n",
    "                            save_path=os.path.join(\n",
    "                                output_dir,\n",
    "                                \"MHD_physicsnemo\" + \"_\" + str(dist.rank),\n",
    "                            ),\n",
    "                            save_suffix=i,\n",
    "                        )\n",
    "\n",
    "        if epoch % ckpt_freq == 0 and dist.rank == 0:\n",
    "            save_checkpoint(ckpt_path, model, optimizer, scheduler, epoch=epoch)\n",
    "\n",
    "```"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ca49a425",
   "metadata": {},
   "source": [
    "## Running the Training Script\n",
    "\n",
    "The full set of python code to start training is available in the folder `./mhd`. Configs, data generation, dataloaders, loss functions, model architectures, and training scripts are all available here. If utilizing the scripts outside of this HuggingFace Space, you can launch training with:\n",
    "\n",
    "```bash\n",
    "torchrun --standalone --nnodes=1 --nproc_per_node=1 train_mhd_vec_pot_tfno.py\n",
    "```\n",
    "\n",
    "With the default set of parameters, the model will take up around 5.2GB of GPU memory, and a full training run up to 100 epochs will take around 1.5 hours."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "39c969ce",
   "metadata": {},
   "source": [
    "## End-to-End Training\n",
    "\n",
    "All of the code that was detailed above is available to explore in the \"./mhd\" folder. There are also two scripts that execute the end-to-end workflow for training and evaluation. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "6013cf5d-8232-45bf-8e79-1757bb29d3fe",
   "metadata": {},
   "outputs": [],
   "source": [
    "!python mhd/train_mhd_vec_pot_tfno.py"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "daf003ec",
   "metadata": {},
   "source": [
    "## Transfer Learning to New Reynolds Number\n",
    "In practice, our system may not follow smooth, laminar flows described with low Reynolds numbers. In MHD systems, much of the magnetic field energy is stored at high wave numbers, which occur at smaller scales. Models must then be able to characterize high frequency features in order to successfully reproduce the trajectories of the system. These turbulent flows at higher Reynolds number are simulated, which will in turn produce higher frequency features that a model trained on smooth flows may not be able to resolve with good accuracy. To this end, transfer learning can be used to take a base model and adapt it to the new data domain by using a pre-trained checkpoint as the starting point of a new iteration of model training. \n",
    "\n",
    "To run transfer learning, we need a dataset of points from our new domain. For example, our default model is trained on data using $Re=100$, so we can use the model checkpoint from this domain to start off transferlerning to a new dataset with $Re=250$. In the Hydra config, we can update the following parameters:\n",
    "\n",
    "```yaml\n",
    "load_ckpt: True\n",
    "output_dir: \"/path/to/new/output_dir\"\n",
    "\n",
    "dataset_params:\n",
    "  data_dir: \"/path/to/new/dataset\"\n",
    "  name: 'Dataset Name'\n",
    "\n",
    "train_params:\n",
    "    ckpt_path: \"/path/to/starting_checkpoint\"\n",
    "```\n",
    "\n",
    "<div style=\"display: flex; justify-content: center; gap: 10px;\">\n",
    "  <figure style=\"text-align: center;\">\n",
    "    <img src=\"https://raw.githubusercontent.com/openhackathons-org/End-to-End-AI-for-Science/main/workspace/python/jupyter_notebook/MagnetoHydrodynamics/images/high_frequency.png\" style=\"width: 100%; height: auto;\">\n",
    "    <figcaption>Predictions with a large Reynolds Number.</figcaption>\n",
    "  </figure>\n",
    "</div>"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "93c7d926",
   "metadata": {},
   "source": [
    "## Evaluation\n",
    "When solving the MHD equations with `dedalus`, the average time per simulation is about 37 seconds. On the other hand, our physics informed model has an average inference time of 0.15 seconds, a 246x speedup. This comes at the cost of decreased accuracy in our solution, as it is an approximation to the system equations. Furthermore, our models performance will vary, depending on the Reynolds number. \n",
    "\n",
    "Evaluation can be run a few different ways. If there are many systems to evaluate, we can load them into a dataloader and do batch processing. In this example, we will use a standalone script, which is a stripped down version of the training script that will run our model with a single sample. \n",
    "\n",
    "To run evaluation we can use the following command, which pulls in a config that points to a specific pre-trained checkpoint and dataset. The  config is found in `eval_mhd_vec_pot_tfno.yaml`\n",
    "\n",
    "\n",
    "```bash\n",
    "torchrun --standalone --nnodes=1 --nproc_per_node=1 evaluate_mhd_vec_pot_tfno.py\n",
    "```\n",
    "\n",
    "In evaluations, our model is able to accurately simulate flows at $Re<250$. Specifically, for $Re=100$, our surrogate model has less than 4% error at $t=1$ for all fields. At $Re=250$, the velocity field and vector potential potential are accurately described, with MSEs <7% and <10%, respectively. At higher Reynolds numbers, our model starts to break down. An example for $Re=100$ is shown below, as well as some plots showing $MSE$ vs $Re$.\n",
    "\n",
    "<div style=\"display: flex; justify-content: center; gap: 10px;\">\n",
    "  <figure style=\"text-align: center;\">\n",
    "    <img src=\"https://raw.githubusercontent.com/openhackathons-org/End-to-End-AI-for-Science/main/workspace/python/jupyter_notebook/MagnetoHydrodynamics/images/re100.png\" style=\"width: 100%; height: auto;\">\n",
    "    <figcaption>Predictions with a low Reynolds Number.</figcaption>\n",
    "  </figure>\n",
    "</div>\n",
    "<div style=\"display: flex; justify-content: center; gap: 10px;\">\n",
    "  <figure style=\"text-align: center;\">\n",
    "    <img src=\"https://raw.githubusercontent.com/openhackathons-org/End-to-End-AI-for-Science/main/workspace/python/jupyter_notebook/MagnetoHydrodynamics/images/mse_vs_re.png\" style=\"width: 100%; height: auto;\">\n",
    "    <figcaption>Error vs. Reynolds Number.</figcaption>\n",
    "  </figure>\n",
    "</div>"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9fec5e93",
   "metadata": {},
   "source": [
    "## End-to-End Evaluation\n",
    "To run evaluation, use the following script:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b44a1bfd",
   "metadata": {},
   "outputs": [],
   "source": [
    "!python mhd/evaluate_mhd_vec_pot_tfno.py"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "26acf9de",
   "metadata": {},
   "source": [
    "## Shortcomings and areas for improvement\n",
    "\n",
    "Physics informed machine learning shows promising results when applied to certain regions of parameter space as governed by the Reynolds number. While models such as tFNOs are able to accurately capture and simulate systems, they do not always perform well when the underlying physics begin to shift into regions of high frequency features. A tradeoff is present in accuracy and throughput, where these AI surrogate models accelerate simulations over 200x, however they remain accuracy for only the low Reynolds number parameter space. To this end, applying physics informed ML to the MHD equations shows both promise and room for improvement. For example, increased model size, additional physical loss functions from energy spectra, and higher resolution datasets may be a few areas in which the development and application of these models may be improved. In conclusion, the efficacy of physics informed machine learning has been shown to the modeling of magnetohydrodynamics, and researchers, scientists, and engineers are encouraged to build on this foundation to enhance these techniques further. "
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}