Update app_flash.py
Browse files- app_flash.py +23 -18
app_flash.py
CHANGED
|
@@ -1,52 +1,57 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import AutoTokenizer,
|
| 3 |
from flashpack.integrations.transformers import FlashPackTransformersModelMixin
|
|
|
|
| 4 |
|
| 5 |
# ============================================================
|
| 6 |
# 1️⃣ FlashPack-enabled model class
|
| 7 |
# ============================================================
|
| 8 |
class FlashPackGemmaModel(AutoModelForCausalLM, FlashPackTransformersModelMixin):
|
| 9 |
-
"""AutoModelForCausalLM extended with FlashPackMixin for
|
| 10 |
pass
|
| 11 |
|
| 12 |
-
MODEL_ID = "gokaygokay/prompt-enhancer-gemma-3-270m-it"
|
| 13 |
|
| 14 |
# ============================================================
|
| 15 |
-
# 2️⃣
|
| 16 |
# ============================================================
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
| 20 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
| 21 |
-
|
| 22 |
-
print("⚙️
|
| 23 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
| 24 |
-
# Load Hugging Face model and wrap into FlashPack class
|
| 25 |
model = FlashPackGemmaModel.from_pretrained(MODEL_ID)
|
| 26 |
-
# Save for
|
| 27 |
-
model.save_pretrained_flashpack(
|
| 28 |
-
print("✅ Model saved as FlashPack
|
|
|
|
| 29 |
|
| 30 |
# ============================================================
|
| 31 |
-
# 3️⃣
|
| 32 |
# ============================================================
|
| 33 |
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device_map="auto")
|
| 34 |
|
| 35 |
|
| 36 |
# ============================================================
|
| 37 |
-
# 4️⃣
|
| 38 |
# ============================================================
|
| 39 |
def enhance_prompt(user_prompt, temperature, max_tokens, chat_history):
|
| 40 |
chat_history = chat_history or []
|
| 41 |
|
|
|
|
| 42 |
messages = [
|
| 43 |
{"role": "system", "content": "Enhance and expand the following prompt with more details and context:"},
|
| 44 |
{"role": "user", "content": user_prompt},
|
| 45 |
]
|
| 46 |
|
| 47 |
-
#
|
| 48 |
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 49 |
|
|
|
|
| 50 |
outputs = pipe(
|
| 51 |
prompt,
|
| 52 |
max_new_tokens=int(max_tokens),
|
|
@@ -56,7 +61,7 @@ def enhance_prompt(user_prompt, temperature, max_tokens, chat_history):
|
|
| 56 |
|
| 57 |
enhanced = outputs[0]["generated_text"].strip()
|
| 58 |
|
| 59 |
-
# Append to chat
|
| 60 |
chat_history.append({"role": "user", "content": user_prompt})
|
| 61 |
chat_history.append({"role": "assistant", "content": enhanced})
|
| 62 |
|
|
@@ -64,7 +69,7 @@ def enhance_prompt(user_prompt, temperature, max_tokens, chat_history):
|
|
| 64 |
|
| 65 |
|
| 66 |
# ============================================================
|
| 67 |
-
# 5️⃣ Gradio
|
| 68 |
# ============================================================
|
| 69 |
with gr.Blocks(title="Prompt Enhancer – Gemma 3 270M", theme=gr.themes.Soft()) as demo:
|
| 70 |
gr.Markdown(
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import AutoTokenizer, pipeline, AutoModelForCausalLM
|
| 3 |
from flashpack.integrations.transformers import FlashPackTransformersModelMixin
|
| 4 |
+
import os
|
| 5 |
|
| 6 |
# ============================================================
|
| 7 |
# 1️⃣ FlashPack-enabled model class
|
| 8 |
# ============================================================
|
| 9 |
class FlashPackGemmaModel(AutoModelForCausalLM, FlashPackTransformersModelMixin):
|
| 10 |
+
"""AutoModelForCausalLM extended with FlashPackMixin for local save/load"""
|
| 11 |
pass
|
| 12 |
|
|
|
|
| 13 |
|
| 14 |
# ============================================================
|
| 15 |
+
# 2️⃣ Model and tokenizer setup
|
| 16 |
# ============================================================
|
| 17 |
+
MODEL_ID = "gokaygokay/prompt-enhancer-gemma-3-270m-it"
|
| 18 |
+
FLASHPACK_DIR = "model_flashpack"
|
| 19 |
+
|
| 20 |
+
if os.path.exists(FLASHPACK_DIR):
|
| 21 |
+
print("📂 Loading model from local FlashPack directory...")
|
| 22 |
+
model = FlashPackGemmaModel.from_pretrained_flashpack(FLASHPACK_DIR)
|
| 23 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
| 24 |
+
else:
|
| 25 |
+
print("⚙️ Loading model from Hugging Face Hub...")
|
| 26 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
|
|
|
| 27 |
model = FlashPackGemmaModel.from_pretrained(MODEL_ID)
|
| 28 |
+
# Save locally as FlashPack for next run
|
| 29 |
+
model.save_pretrained_flashpack(FLASHPACK_DIR, push_to_hub=False)
|
| 30 |
+
print("✅ Model saved locally as FlashPack!")
|
| 31 |
+
|
| 32 |
|
| 33 |
# ============================================================
|
| 34 |
+
# 3️⃣ Text-generation pipeline
|
| 35 |
# ============================================================
|
| 36 |
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device_map="auto")
|
| 37 |
|
| 38 |
|
| 39 |
# ============================================================
|
| 40 |
+
# 4️⃣ Prompt enhancement function
|
| 41 |
# ============================================================
|
| 42 |
def enhance_prompt(user_prompt, temperature, max_tokens, chat_history):
|
| 43 |
chat_history = chat_history or []
|
| 44 |
|
| 45 |
+
# Build chat-template messages
|
| 46 |
messages = [
|
| 47 |
{"role": "system", "content": "Enhance and expand the following prompt with more details and context:"},
|
| 48 |
{"role": "user", "content": user_prompt},
|
| 49 |
]
|
| 50 |
|
| 51 |
+
# Apply tokenizer chat-template
|
| 52 |
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 53 |
|
| 54 |
+
# Generate enhanced prompt
|
| 55 |
outputs = pipe(
|
| 56 |
prompt,
|
| 57 |
max_new_tokens=int(max_tokens),
|
|
|
|
| 61 |
|
| 62 |
enhanced = outputs[0]["generated_text"].strip()
|
| 63 |
|
| 64 |
+
# Append to chat history
|
| 65 |
chat_history.append({"role": "user", "content": user_prompt})
|
| 66 |
chat_history.append({"role": "assistant", "content": enhanced})
|
| 67 |
|
|
|
|
| 69 |
|
| 70 |
|
| 71 |
# ============================================================
|
| 72 |
+
# 5️⃣ Gradio UI
|
| 73 |
# ============================================================
|
| 74 |
with gr.Blocks(title="Prompt Enhancer – Gemma 3 270M", theme=gr.themes.Soft()) as demo:
|
| 75 |
gr.Markdown(
|