Spaces:
Sleeping
Sleeping
| import torch | |
| import gradio as gr | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| from peft import PeftModel | |
| import json | |
| from typing import Tuple | |
| MODEL_ID = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" | |
| ADAPTER_REPO = "riccardomusmeci/SentimentProfAI" | |
| SYSTEM_PROMPT = """<|system|> | |
| Analyze the sentiment of the following movie review and label it as positive or negative. | |
| Provide ONLY an output in JSON format with two fields: | |
| - "label": "positive" or "negative" | |
| - "reasoning": a brief explanation of your classification | |
| Do not add any other text after the JSON.</s>""" | |
| device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" | |
| base_model = AutoModelForCausalLM.from_pretrained( | |
| MODEL_ID, | |
| torch_dtype=torch.float16 if device in ["cuda", "mps"] else torch.float32, | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained(ADAPTER_REPO) | |
| model = PeftModel.from_pretrained(base_model, ADAPTER_REPO) | |
| model.to(device) | |
| model.eval() | |
| def sentiment_analysis(review_text: str) -> Tuple[str, str]: | |
| """Analyze the sentiment of a movie review and return the label and reasoning. | |
| Args: | |
| review_text (str): The movie review text to analyze. | |
| Returns: | |
| Tuple[str, str]: A tuple containing the sentiment label ("positive" or "negative") and the reasoning for the classification. | |
| """ | |
| prompt = f"{SYSTEM_PROMPT}<|user|>\n{review_text}</s>\n<|assistant|>\n" | |
| inputs = tokenizer(prompt, return_tensors="pt").to(device) | |
| with torch.no_grad(): | |
| output = model.generate( | |
| **inputs, | |
| max_new_tokens=256, | |
| do_sample=False, | |
| pad_token_id=tokenizer.eos_token_id | |
| ) | |
| response = tokenizer.decode(output[0], skip_special_tokens=True) | |
| # Estrai solo la parte JSON dalla risposta | |
| try: | |
| start = response.index('{') | |
| end = response.rindex('}') + 1 | |
| json_str = response[start:end] | |
| sentiment_json = json.loads(json_str) | |
| label = sentiment_json.get("label", "") | |
| reasoning = sentiment_json.get("reasoning", "") | |
| except Exception: | |
| label = "Errore" | |
| reasoning = f"Impossibile estrarre il JSON. Output grezzo: {response}" | |
| return label, reasoning | |
| iface = gr.Interface( | |
| fn=sentiment_analysis, | |
| inputs=gr.Textbox(label="Movie Review"), | |
| outputs=[ | |
| gr.Textbox(label="Label"), | |
| gr.Textbox(label="Reasoning") | |
| ], | |
| title="Sentiment Analysis ProfAI", | |
| description="Analizza il testo e restituisce il sentiment (positivo/negativo) e la motivazione." | |
| ) | |
| if __name__ == "__main__": | |
| iface.launch() |