Create a web app called 'AI Phenomenology Tester' using Python backend with Streamlit. Include: - User input for selecting an HF model (e.g., Llama-2 via Transformers). - An agentic workflow: Use a simple AI agent (like LangChain or HF Agents) to plan and run tests. - Phenomenology test: Prompt the model with scenarios (e.g., 'What is consciousness?') and analyze emergent behaviors (e.g., entropy or pattern matching). - Eigenmode test: Extract activations, compute eigenvalues/eigenvectors with SciPy, visualize dominant modes (e.g., for physical signals like vibrations). - Dashboard to display results, charts (Matplotlib), and export options. - Integrate Hugging Face API for model loading. Make it deployable on HF Spaces.
b59fe0b
verified
| document.addEventListener('DOMContentLoaded', function() { | |
| // Initialize any global functionality here | |
| // Example: Dark mode toggle (if not using Tailwind's built-in dark mode) | |
| const darkModeToggle = document.getElementById('darkModeToggle'); | |
| if (darkModeToggle) { | |
| darkModeToggle.addEventListener('click', function() { | |
| document.documentElement.classList.toggle('dark'); | |
| localStorage.setItem('darkMode', document.documentElement.classList.contains('dark')); | |
| }); | |
| } | |
| // Check for saved dark mode preference | |
| if (localStorage.getItem('darkMode') === 'true') { | |
| document.documentElement.classList.add('dark'); | |
| } | |
| // Any other global JavaScript functionality | |
| }); |