Spaces:
Running
Running
Add visual_bge
Browse files- visual_bge/README.md +0 -181
- visual_bge/__init__.py +0 -1
- visual_bge/{visual_bge/eva_clip β eva_clip}/__init__.py +0 -0
- visual_bge/{visual_bge/eva_clip β eva_clip}/bpe_simple_vocab_16e6.txt.gz +0 -0
- visual_bge/{visual_bge/eva_clip β eva_clip}/constants.py +0 -0
- visual_bge/{visual_bge/eva_clip β eva_clip}/eva_vit_model.py +0 -0
- visual_bge/{visual_bge/eva_clip β eva_clip}/factory.py +0 -0
- visual_bge/{visual_bge/eva_clip β eva_clip}/hf_configs.py +0 -0
- visual_bge/{visual_bge/eva_clip β eva_clip}/hf_model.py +0 -0
- visual_bge/{visual_bge/eva_clip β eva_clip}/loss.py +0 -0
- visual_bge/{visual_bge/eva_clip β eva_clip}/model.py +0 -0
- visual_bge/{visual_bge/eva_clip β eva_clip}/model_configs/EVA01-CLIP-B-16.json +0 -0
- visual_bge/{visual_bge/eva_clip β eva_clip}/model_configs/EVA01-CLIP-g-14-plus.json +0 -0
- visual_bge/{visual_bge/eva_clip β eva_clip}/model_configs/EVA01-CLIP-g-14.json +0 -0
- visual_bge/{visual_bge/eva_clip β eva_clip}/model_configs/EVA02-CLIP-B-16.json +0 -0
- visual_bge/{visual_bge/eva_clip β eva_clip}/model_configs/EVA02-CLIP-L-14-336.json +0 -0
- visual_bge/{visual_bge/eva_clip β eva_clip}/model_configs/EVA02-CLIP-L-14.json +0 -0
- visual_bge/{visual_bge/eva_clip β eva_clip}/model_configs/EVA02-CLIP-bigE-14-plus.json +0 -0
- visual_bge/{visual_bge/eva_clip β eva_clip}/model_configs/EVA02-CLIP-bigE-14.json +0 -0
- visual_bge/{visual_bge/eva_clip β eva_clip}/modified_resnet.py +0 -0
- visual_bge/{visual_bge/eva_clip β eva_clip}/openai.py +0 -0
- visual_bge/{visual_bge/eva_clip β eva_clip}/pretrained.py +0 -0
- visual_bge/{visual_bge/eva_clip β eva_clip}/rope.py +0 -0
- visual_bge/{visual_bge/eva_clip β eva_clip}/timm_model.py +0 -0
- visual_bge/{visual_bge/eva_clip β eva_clip}/tokenizer.py +0 -0
- visual_bge/{visual_bge/eva_clip β eva_clip}/transform.py +0 -0
- visual_bge/{visual_bge/eva_clip β eva_clip}/transformer.py +0 -0
- visual_bge/{visual_bge/eva_clip β eva_clip}/utils.py +0 -0
- visual_bge/{visual_bge/modeling.py β modeling.py} +0 -0
- visual_bge/setup.py +0 -18
visual_bge/README.md
DELETED
|
@@ -1,181 +0,0 @@
|
|
| 1 |
-
<h1 align="center">Visualized BGE</h1>
|
| 2 |
-
|
| 3 |
-
<p align="center">
|
| 4 |
-
<a href="https://arxiv.org/abs/2406.04292">
|
| 5 |
-
<img alt="Build" src="http://img.shields.io/badge/cs.CV-arXiv%3A2406.04292-B31B1B.svg">
|
| 6 |
-
</a>
|
| 7 |
-
<a href="https://github.com/FlagOpen/FlagEmbedding/tree/master/research/visual_bge">
|
| 8 |
-
<img alt="Build" src="https://img.shields.io/badge/Github-VISTA Code-blue">
|
| 9 |
-
</a>
|
| 10 |
-
<a href="https://huggingface.co/BAAI/bge-visualized">
|
| 11 |
-
<img alt="Build" src="https://img.shields.io/badge/π€ Model-VISTA Model-yellow">
|
| 12 |
-
</p>
|
| 13 |
-
|
| 14 |
-
<p align="center">
|
| 15 |
-
</a>
|
| 16 |
-
<a href="https://huggingface.co/datasets/JUNJIE99/VISTA_S2">
|
| 17 |
-
<img alt="Build" src="https://img.shields.io/badge/π€ Dataset-VISTA S2 Training Dataset-yellow">
|
| 18 |
-
</a>
|
| 19 |
-
<a href="https://huggingface.co/datasets/JUNJIE99/VISTA_Evaluation">
|
| 20 |
-
<img alt="Build" src="https://img.shields.io/badge/π€ Dataset-Zero_Shot Multimodal Retrieval Dataset-yellow">
|
| 21 |
-
</a>
|
| 22 |
-
</p>
|
| 23 |
-
|
| 24 |
-
## π News
|
| 25 |
-
**[2024.8.27] The core code for the evaluation and fine-tuning of VISTA can be obtained from [this link](https://github.com/JUNJIE99/VISTA_Evaluation_FineTuning). This includes Stage2 training, downstream task fine-tuning, as well as the datasets we used for evaluation.**
|
| 26 |
-
|
| 27 |
-
**[2024.6.13] We have released [VISTA-S2 dataset](https://huggingface.co/datasets/JUNJIE99/VISTA_S2), a hybrid multi-modal dataset consisting of over 500,000 instances for multi-modal training (Stage-2 training in our paper).**
|
| 28 |
-
|
| 29 |
-
**[2024.6.7] We have released our paper. [Arxiv Link](https://arxiv.org/abs/2406.04292)**
|
| 30 |
-
|
| 31 |
-
**[2024.3.18] We have released our code and model.**
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
## Introduction
|
| 37 |
-
In this project, we introduce Visualized-BGE, a universal multi-modal embedding model. By incorporating image token embedding into the BGE Text Embedding framework, Visualized-BGE gains the flexibility to process multi-modal data that goes beyond just text. Visualized-BGE is mainly used for hybrid modal retrieval tasks, including but not limited to:
|
| 38 |
-
|
| 39 |
-
- Multi-Modal Knowledge Retrieval (query: text; candidate: image-text pairs, text, or image) e.g. [WebQA](https://github.com/WebQnA/WebQA)
|
| 40 |
-
- Composed Image Retrieval (query: image-text pair; candidate: images) e.g. [CIRR](https://github.com/Cuberick-Orion/CIRR), [FashionIQ](https://github.com/XiaoxiaoGuo/fashion-iq)
|
| 41 |
-
- Knowledge Retrieval with Multi-Modal Queries (query: image-text pair; candidate: texts) e.g. [ReMuQ](https://github.com/luomancs/ReMuQ)
|
| 42 |
-
|
| 43 |
-
Moreover, Visualized BGE fully preserves the strong text embedding capabilities of the original BGE model : )
|
| 44 |
-
|
| 45 |
-
## Specs
|
| 46 |
-
### Model
|
| 47 |
-
| **Model Name** | **Dimension** | **Text Embedding Model** | **Language** | **Weight** |
|
| 48 |
-
| --- | --- | --- | --- | --- |
|
| 49 |
-
| BAAI/bge-visualized-base-en-v1.5 | 768 | [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | English | [π€ HF link](https://huggingface.co/BAAI/bge-visualized/blob/main/Visualized_base_en_v1.5.pth) |
|
| 50 |
-
| BAAI/bge-visualized-m3 | 1024 | [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) | Multilingual | [π€ HF link](https://huggingface.co/BAAI/bge-visualized/blob/main/Visualized_m3.pth) |
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
### Data
|
| 54 |
-
We have generated a hybrid multi-modal dataset consisting of over 500,000 instances for multi-modal training (Stage-2 training in our paper). You can download our dataset from this [π€ HF Link](https://huggingface.co/datasets/JUNJIE99/VISTA_S2).
|
| 55 |
-
Process the image compression package with the following commands:
|
| 56 |
-
|
| 57 |
-
```bash
|
| 58 |
-
cat images.tar.part* > images.tar
|
| 59 |
-
tar -xvf images.tar
|
| 60 |
-
```
|
| 61 |
-
If you obtain the following directory structure. You can then use the annotation information (json files) for your own training:
|
| 62 |
-
```
|
| 63 |
-
images
|
| 64 |
-
|__coco
|
| 65 |
-
|__edit_image
|
| 66 |
-
```
|
| 67 |
-
|
| 68 |
-
## Usage
|
| 69 |
-
### Installation:
|
| 70 |
-
#### Install FlagEmbedding:
|
| 71 |
-
```
|
| 72 |
-
git clone https://github.com/FlagOpen/FlagEmbedding.git
|
| 73 |
-
cd FlagEmbedding/research/visual_bge
|
| 74 |
-
pip install -e .
|
| 75 |
-
```
|
| 76 |
-
#### Another Core Packages:
|
| 77 |
-
```
|
| 78 |
-
pip install torchvision timm einops ftfy
|
| 79 |
-
```
|
| 80 |
-
You don't need to install `xformer` and `apex`. They are not essential for inference and can often cause issues.
|
| 81 |
-
|
| 82 |
-
### Generate Embedding for Multi-Modal Data:
|
| 83 |
-
Visualized-BGE provides the versatility to encode multi-modal data in a variety of formats, whether it's purely text, solely image-based, or a combination of both.
|
| 84 |
-
|
| 85 |
-
> **Note:** Please download the model weight file ([bge-visualized-base-en-v1.5](https://huggingface.co/BAAI/bge-visualized/resolve/main/Visualized_base_en_v1.5.pth?download=true), [bge-visualized-m3](https://huggingface.co/BAAI/bge-visualized/resolve/main/Visualized_m3.pth?download=true)) in advance and pass the path to the `model_weight` parameter.
|
| 86 |
-
|
| 87 |
-
- Composed Image Retrieval
|
| 88 |
-
``` python
|
| 89 |
-
####### Use Visualized BGE doing composed image retrieval
|
| 90 |
-
import torch
|
| 91 |
-
from visual_bge.modeling import Visualized_BGE
|
| 92 |
-
|
| 93 |
-
model = Visualized_BGE(model_name_bge = "BAAI/bge-base-en-v1.5", model_weight="path: Visualized_base_en_v1.5.pth")
|
| 94 |
-
model.eval()
|
| 95 |
-
with torch.no_grad():
|
| 96 |
-
query_emb = model.encode(image="./imgs/cir_query.png", text="Make the background dark, as if the camera has taken the photo at night")
|
| 97 |
-
candi_emb_1 = model.encode(image="./imgs/cir_candi_1.png")
|
| 98 |
-
candi_emb_2 = model.encode(image="./imgs/cir_candi_2.png")
|
| 99 |
-
|
| 100 |
-
sim_1 = query_emb @ candi_emb_1.T
|
| 101 |
-
sim_2 = query_emb @ candi_emb_2.T
|
| 102 |
-
print(sim_1, sim_2) # tensor([[0.8750]]) tensor([[0.7816]])
|
| 103 |
-
```
|
| 104 |
-
|
| 105 |
-
- Multi-Modal Knowledge Retrieval
|
| 106 |
-
``` python
|
| 107 |
-
####### Use Visualized BGE doing multi-modal knowledge retrieval
|
| 108 |
-
import torch
|
| 109 |
-
from visual_bge.modeling import Visualized_BGE
|
| 110 |
-
|
| 111 |
-
model = Visualized_BGE(model_name_bge = "BAAI/bge-base-en-v1.5", model_weight="path: Visualized_base_en_v1.5.pth")
|
| 112 |
-
model.eval()
|
| 113 |
-
with torch.no_grad():
|
| 114 |
-
query_emb = model.encode(text="Are there sidewalks on both sides of the Mid-Hudson Bridge?")
|
| 115 |
-
candi_emb_1 = model.encode(text="The Mid-Hudson Bridge, spanning the Hudson River between Poughkeepsie and Highland.", image="./imgs/wiki_candi_1.jpg")
|
| 116 |
-
candi_emb_2 = model.encode(text="Golden_Gate_Bridge", image="./imgs/wiki_candi_2.jpg")
|
| 117 |
-
candi_emb_3 = model.encode(text="The Mid-Hudson Bridge was designated as a New York State Historic Civil Engineering Landmark by the American Society of Civil Engineers in 1983. The bridge was renamed the \"Franklin Delano Roosevelt Mid-Hudson Bridge\" in 1994.")
|
| 118 |
-
|
| 119 |
-
sim_1 = query_emb @ candi_emb_1.T
|
| 120 |
-
sim_2 = query_emb @ candi_emb_2.T
|
| 121 |
-
sim_3 = query_emb @ candi_emb_3.T
|
| 122 |
-
print(sim_1, sim_2, sim_3) # tensor([[0.6932]]) tensor([[0.4441]]) tensor([[0.6415]])
|
| 123 |
-
```
|
| 124 |
-
- Multilingual Multi-Modal Retrieval
|
| 125 |
-
``` python
|
| 126 |
-
##### Use M3 doing Multilingual Multi-Modal Retrieval
|
| 127 |
-
import torch
|
| 128 |
-
from visual_bge.modeling import Visualized_BGE
|
| 129 |
-
|
| 130 |
-
model = Visualized_BGE(model_name_bge = "BAAI/bge-m3", model_weight="path: Visualized_m3.pth")
|
| 131 |
-
model.eval()
|
| 132 |
-
with torch.no_grad():
|
| 133 |
-
query_emb = model.encode(image="./imgs/cir_query.png", text="δΈεΉι©¬η΅ηθΏθΎθ½¦")
|
| 134 |
-
candi_emb_1 = model.encode(image="./imgs/cir_candi_1.png")
|
| 135 |
-
candi_emb_2 = model.encode(image="./imgs/cir_candi_2.png")
|
| 136 |
-
|
| 137 |
-
sim_1 = query_emb @ candi_emb_1.T
|
| 138 |
-
sim_2 = query_emb @ candi_emb_2.T
|
| 139 |
-
print(sim_1, sim_2) # tensor([[0.7026]]) tensor([[0.8075]])
|
| 140 |
-
```
|
| 141 |
-
## Downstream Application Cases
|
| 142 |
-
- [Huixiangdou](https://github.com/InternLM/HuixiangDou): Using Visualized BGE for the group chat assistant.
|
| 143 |
-
|
| 144 |
-
## Evaluation Result
|
| 145 |
-
Visualized BGE delivers outstanding zero-shot performance across multiple hybrid modal retrieval tasks. It can also serve as a base model for downstream fine-tuning for hybrid modal retrieval tasks.
|
| 146 |
-
#### Zero-shot Performance
|
| 147 |
-
- Statistical information of the zero-shot multi-modal retrieval benchmark datasets. During the zero-shot evaluation, we utilize the queries from the validation or test set of each dataset to perform retrieval assessments within the entire corpus of the respective dataset.
|
| 148 |
-

|
| 149 |
-
|
| 150 |
-
- Zero-shot evaluation results with Recall@5 on various hybrid multi-modal retrieval benchmarks. The -MM notation indicates baseline models that have undergone multi-modal training on our generated data.
|
| 151 |
-

|
| 152 |
-
|
| 153 |
-
#### Fine-tuning on Downstream Tasks
|
| 154 |
-
- Supervised fine-tuning performance on the WebQA dataset. All retrievals are performed on the entire deduplicated corpus.
|
| 155 |
-

|
| 156 |
-
- Supervised fine-tuning performance on the CIRR test set.
|
| 157 |
-

|
| 158 |
-
- Supervised fine-tuning performance on the ReMuQ test set.
|
| 159 |
-

|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
## FAQ
|
| 164 |
-
|
| 165 |
-
**Q1: Can Visualized BGE be used for cross-modal retrieval (text to image)?**
|
| 166 |
-
|
| 167 |
-
A1: While it is technically possible, it's not the recommended use case. Our model focus on augmenting hybrid modal retrieval tasks with visual capabilities.
|
| 168 |
-
|
| 169 |
-
## Acknowledgement
|
| 170 |
-
The image token embedding model in this project is built upon the foundations laid by [EVA-CLIP](https://github.com/baaivision/EVA/tree/master/EVA-CLIP).
|
| 171 |
-
|
| 172 |
-
## Citation
|
| 173 |
-
If you find this repository useful, please consider giving a star β and citation
|
| 174 |
-
```
|
| 175 |
-
@article{zhou2024vista,
|
| 176 |
-
title={VISTA: Visualized Text Embedding For Universal Multi-Modal Retrieval},
|
| 177 |
-
author={Zhou, Junjie and Liu, Zheng and Xiao, Shitao and Zhao, Bo and Xiong, Yongping},
|
| 178 |
-
journal={arXiv preprint arXiv:2406.04292},
|
| 179 |
-
year={2024}
|
| 180 |
-
}
|
| 181 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
visual_bge/__init__.py
DELETED
|
@@ -1 +0,0 @@
|
|
| 1 |
-
from .modeling import Visualized_BGE
|
|
|
|
|
|
visual_bge/{visual_bge/eva_clip β eva_clip}/__init__.py
RENAMED
|
File without changes
|
visual_bge/{visual_bge/eva_clip β eva_clip}/bpe_simple_vocab_16e6.txt.gz
RENAMED
|
File without changes
|
visual_bge/{visual_bge/eva_clip β eva_clip}/constants.py
RENAMED
|
File without changes
|
visual_bge/{visual_bge/eva_clip β eva_clip}/eva_vit_model.py
RENAMED
|
File without changes
|
visual_bge/{visual_bge/eva_clip β eva_clip}/factory.py
RENAMED
|
File without changes
|
visual_bge/{visual_bge/eva_clip β eva_clip}/hf_configs.py
RENAMED
|
File without changes
|
visual_bge/{visual_bge/eva_clip β eva_clip}/hf_model.py
RENAMED
|
File without changes
|
visual_bge/{visual_bge/eva_clip β eva_clip}/loss.py
RENAMED
|
File without changes
|
visual_bge/{visual_bge/eva_clip β eva_clip}/model.py
RENAMED
|
File without changes
|
visual_bge/{visual_bge/eva_clip β eva_clip}/model_configs/EVA01-CLIP-B-16.json
RENAMED
|
File without changes
|
visual_bge/{visual_bge/eva_clip β eva_clip}/model_configs/EVA01-CLIP-g-14-plus.json
RENAMED
|
File without changes
|
visual_bge/{visual_bge/eva_clip β eva_clip}/model_configs/EVA01-CLIP-g-14.json
RENAMED
|
File without changes
|
visual_bge/{visual_bge/eva_clip β eva_clip}/model_configs/EVA02-CLIP-B-16.json
RENAMED
|
File without changes
|
visual_bge/{visual_bge/eva_clip β eva_clip}/model_configs/EVA02-CLIP-L-14-336.json
RENAMED
|
File without changes
|
visual_bge/{visual_bge/eva_clip β eva_clip}/model_configs/EVA02-CLIP-L-14.json
RENAMED
|
File without changes
|
visual_bge/{visual_bge/eva_clip β eva_clip}/model_configs/EVA02-CLIP-bigE-14-plus.json
RENAMED
|
File without changes
|
visual_bge/{visual_bge/eva_clip β eva_clip}/model_configs/EVA02-CLIP-bigE-14.json
RENAMED
|
File without changes
|
visual_bge/{visual_bge/eva_clip β eva_clip}/modified_resnet.py
RENAMED
|
File without changes
|
visual_bge/{visual_bge/eva_clip β eva_clip}/openai.py
RENAMED
|
File without changes
|
visual_bge/{visual_bge/eva_clip β eva_clip}/pretrained.py
RENAMED
|
File without changes
|
visual_bge/{visual_bge/eva_clip β eva_clip}/rope.py
RENAMED
|
File without changes
|
visual_bge/{visual_bge/eva_clip β eva_clip}/timm_model.py
RENAMED
|
File without changes
|
visual_bge/{visual_bge/eva_clip β eva_clip}/tokenizer.py
RENAMED
|
File without changes
|
visual_bge/{visual_bge/eva_clip β eva_clip}/transform.py
RENAMED
|
File without changes
|
visual_bge/{visual_bge/eva_clip β eva_clip}/transformer.py
RENAMED
|
File without changes
|
visual_bge/{visual_bge/eva_clip β eva_clip}/utils.py
RENAMED
|
File without changes
|
visual_bge/{visual_bge/modeling.py β modeling.py}
RENAMED
|
File without changes
|
visual_bge/setup.py
DELETED
|
@@ -1,18 +0,0 @@
|
|
| 1 |
-
from setuptools import setup, find_packages
|
| 2 |
-
|
| 3 |
-
setup(
|
| 4 |
-
name="visual_bge",
|
| 5 |
-
version="0.1.0",
|
| 6 |
-
description='visual_bge',
|
| 7 |
-
long_description="./README.md",
|
| 8 |
-
long_description_content_type="text/markdown",
|
| 9 |
-
url='https://github.com/FlagOpen/FlagEmbedding/tree/master/research/visual_bge',
|
| 10 |
-
packages=find_packages(),
|
| 11 |
-
install_requires=[
|
| 12 |
-
'torchvision',
|
| 13 |
-
'timm',
|
| 14 |
-
'einops',
|
| 15 |
-
'ftfy'
|
| 16 |
-
],
|
| 17 |
-
python_requires='>=3.6',
|
| 18 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|