MagpieTTS_Internal_Demo / tests /collections /llm /megatron_t5_finetuning.py
subhankarg's picture
Upload folder using huggingface_hub
0558aa4 verified
# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
## NOTE: This script is present for github-actions testing only.
## There are no guarantees that this script is up-to-date with latest NeMo.
import argparse
import torch
from lightning.pytorch.loggers import WandbLogger
from megatron.core.optimizer import OptimizerConfig
from nemo import lightning as nl
from nemo.collections import llm
from nemo.collections.llm.api import finetune
from nemo.collections.llm.t5.data import SquadDataModule
from nemo.collections.nlp.modules.common.tokenizer_utils import get_nmt_tokenizer
from nemo.lightning import NeMoLogger
from nemo.lightning.pytorch.callbacks import ModelCheckpoint
from nemo.lightning.pytorch.optim.megatron import MegatronOptimizerModule
def get_args():
parser = argparse.ArgumentParser(description='Train a small T5 model using NeMo 2.0')
parser.add_argument('--devices', type=int, help="Number of devices to use for training")
parser.add_argument('--max-steps', type=int, help="Number of steps to train for")
parser.add_argument('--peft', type=str, default='none', help="none | lora")
parser.add_argument('--data-dir', type=str, default=None, help="directory to finetuning data")
parser.add_argument('--experiment-dir', type=str, help="directory to write results and checkpoints to")
parser.add_argument('--experiment-name', type=str, help="name of experiment")
parser.add_argument('--wandb-project', type=str, default=None, help="wandb project name")
parser.add_argument('--checkpoint-path', type=str, help="Path to checkpoint dir")
parser.add_argument('--index-mapping-dir', type=str, help="directory to write index mappings to")
return parser.parse_args()
if __name__ == '__main__':
args = get_args()
special_tokens = {}
special_tokens['additional_special_tokens'] = [f'<extra_id_{i}>' for i in range(100)]
tokenizer = get_nmt_tokenizer(
"megatron",
"BertWordPieceCase",
special_tokens=special_tokens,
)
data = SquadDataModule(
dataset_root=args.data_dir,
seq_length=512,
seq_length_dec=128,
micro_batch_size=16,
global_batch_size=128,
tokenizer=tokenizer,
num_workers=4,
)
t5_config = llm.t5.model.t5.T5Config(
num_layers=12,
encoder_num_layers=12,
hidden_size=768,
ffn_hidden_size=3072,
num_attention_heads=12,
kv_channels=64,
init_method_std=0.015,
hidden_dropout=0.1,
attention_dropout=0.1,
layernorm_epsilon=1e-5,
make_vocab_size_divisible_by=128,
max_position_embeddings=512,
)
model = llm.t5.model.t5.T5Model(t5_config, tokenizer=data.tokenizer)
strategy = nl.MegatronStrategy(
tensor_model_parallel_size=1,
pipeline_model_parallel_size=1,
pipeline_dtype=torch.float32,
ckpt_load_optimizer=False,
ckpt_load_strictness="log_all", # Only for CI tests to use older versions of checkpoint
)
checkpoint_callback = ModelCheckpoint(
every_n_train_steps=5000,
)
callbacks = [checkpoint_callback]
resume = nl.AutoResume(
resume_if_exists=True,
resume_ignore_no_checkpoint=True,
resume_from_path=args.checkpoint_path,
)
opt_config = OptimizerConfig(
optimizer='adam',
lr=2.0e-5,
use_distributed_optimizer=False,
bf16=True,
weight_decay=0.1,
)
opt = MegatronOptimizerModule(
config=opt_config,
)
if args.peft == 'lora':
peft = llm.peft.LoRA()
else:
peft = None
trainer = nl.Trainer(
devices=args.devices,
max_steps=args.max_steps,
accelerator="gpu",
strategy=strategy,
callbacks=callbacks,
log_every_n_steps=1,
limit_val_batches=2,
val_check_interval=50,
plugins=nl.MegatronMixedPrecision(precision="bf16-mixed"),
)
if args.wandb_project is not None:
wandb_logger = WandbLogger(
name=args.experiment_name,
project=args.wandb_project,
log_model="all",
)
else:
wandb_logger = None
nemo_logger = NeMoLogger(
name=args.experiment_name,
use_datetime_version=False,
log_dir=args.experiment_dir,
wandb=wandb_logger,
)
finetune(
model=model,
resume=resume,
data=data,
trainer=trainer,
peft=peft,
log=nemo_logger,
optim=opt,
)