# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ## NOTE: This script is present for github-actions testing only. ## There are no guarantees that this script is up-to-date with latest NeMo. import argparse import torch from lightning.pytorch.loggers import WandbLogger from megatron.core.optimizer import OptimizerConfig from nemo import lightning as nl from nemo.collections import llm from nemo.collections.llm.api import pretrain from nemo.collections.llm.t5.data import MockDataModule, PreTrainingDataModule from nemo.collections.nlp.modules.common.tokenizer_utils import get_nmt_tokenizer from nemo.lightning import NeMoLogger from nemo.lightning.pytorch.callbacks import ModelCheckpoint from nemo.lightning.pytorch.optim.lr_scheduler import WarmupAnnealingScheduler from nemo.lightning.pytorch.optim.megatron import MegatronOptimizerModule from tests.collections.llm.common import AssertOptimizerParamGroupsHaveAtLeastTwoWeightDecays def get_args(): parser = argparse.ArgumentParser(description='Train a small T5 model using NeMo 2.0') parser.add_argument('--devices', type=int, help="Number of devices to use for training") parser.add_argument('--max-steps', type=int, help="Number of steps to train for") parser.add_argument('--experiment-dir', type=str, help="directory to write results and checkpoints to") parser.add_argument('--experiment-name', type=str, help="name of experiment") parser.add_argument('--wandb-project', type=str, default=None, help="wandb project name") parser.add_argument('--data-path', type=str, help="Path to data file") parser.add_argument('--vocab-path', type=str, default=None, help="Path to vocab file") parser.add_argument('--index-mapping-dir', type=str, help="directory to write index mappings to") return parser.parse_args() if __name__ == '__main__': args = get_args() special_tokens = {} special_tokens['additional_special_tokens'] = [f'' for i in range(100)] tokenizer = get_nmt_tokenizer( "megatron", "BertWordPieceCase", vocab_file=args.vocab_path, special_tokens=special_tokens, ) if args.data_path == "mock": data = MockDataModule( seq_length=512, seq_length_dec=128, micro_batch_size=64, global_batch_size=512, tokenizer=tokenizer, num_train_samples=10_000, num_val_samples=10_000, num_test_samples=10_000, ) else: data = PreTrainingDataModule( paths=args.data_path, seq_length=512, seq_length_dec=128, micro_batch_size=64, global_batch_size=512, seed=1234, tokenizer=tokenizer, split="99982,9,9", index_mapping_dir=args.index_mapping_dir, ) t5_config = llm.t5.model.t5.T5Config( num_layers=12, encoder_num_layers=12, hidden_size=768, ffn_hidden_size=3072, num_attention_heads=12, kv_channels=64, init_method_std=0.015, hidden_dropout=0.1, attention_dropout=0.1, layernorm_epsilon=1e-5, make_vocab_size_divisible_by=128, max_position_embeddings=512, bf16=True, params_dtype=torch.bfloat16, pipeline_dtype=torch.bfloat16, ) model = llm.t5.model.t5.T5Model(t5_config, tokenizer=data.tokenizer) strategy = nl.MegatronStrategy( tensor_model_parallel_size=1, pipeline_model_parallel_size=1, pipeline_dtype=None, ) checkpoint_callback = ModelCheckpoint( every_n_train_steps=5000, save_optim_on_train_end=True, ) callbacks = [checkpoint_callback, AssertOptimizerParamGroupsHaveAtLeastTwoWeightDecays()] resume = nl.AutoResume( resume_if_exists=True, resume_ignore_no_checkpoint=True, ) opt_config = OptimizerConfig( optimizer='adam', lr=0.0001, use_distributed_optimizer=False, bf16=True, weight_decay=0.01, ) lr_scheduler = WarmupAnnealingScheduler( warmup_steps=None, warmup_ratio=0.01, max_steps=args.max_steps, min_lr=0.00001, ) opt = MegatronOptimizerModule( config=opt_config, lr_scheduler=lr_scheduler, ) trainer = nl.Trainer( devices=args.devices, max_steps=args.max_steps, accelerator="gpu", strategy=strategy, callbacks=callbacks, log_every_n_steps=1, limit_val_batches=2, val_check_interval=2, plugins=nl.MegatronMixedPrecision(precision="bf16-mixed"), ) if args.wandb_project is not None: wandb_logger = WandbLogger( name=args.experiment_name, project=args.wandb_project, log_model="all", ) else: wandb_logger = None nemo_logger = NeMoLogger( name=args.experiment_name, use_datetime_version=False, log_dir=args.experiment_dir, wandb=wandb_logger, ) pretrain( model=model, resume=resume, data=data, trainer=trainer, log=nemo_logger, optim=opt, )