Spaces:
Sleeping
Sleeping
| import random | |
| from collections.abc import Mapping | |
| from uuid import uuid4 | |
| from openai import OpenAI | |
| import gradio as gr | |
| import base64 | |
| import mimetypes | |
| import copy | |
| import os | |
| # Workaround for PyCharm debugger + uvicorn compatibility error: | |
| # TypeError: _patch_asyncio.<locals>.run() got an unexpected keyword argument 'loop_factory' | |
| DEBUG = False | |
| if DEBUG is True: # or sys.gettrace() is not None: # Debugger is attached | |
| import asyncio | |
| _original_run = asyncio.run | |
| def _patched_run(main, **kwargs): | |
| kwargs.pop('loop_factory', None) # Remove unsupported arg | |
| return _original_run(main, **kwargs) | |
| asyncio.run = _patched_run | |
| from theme import apriel | |
| from utils import COMMUNITY_POSTFIX_URL, get_model_config, check_format, models_config, \ | |
| logged_event_handler, DEBUG_MODE, DEBUG_MODEL, log_debug, log_info, log_error, log_warning | |
| from log_chat import log_chat | |
| DEFAULT_MODEL_TEMPERATURE = 1.0 | |
| BUTTON_WIDTH = 160 | |
| DEFAULT_OPT_OUT_VALUE = DEBUG_MODE | |
| # If DEBUG_MODEL is True, use an alternative model (without reasoning) for testing | |
| # DEFAULT_MODEL_NAME = "Apriel-1.5-15B-thinker" if not DEBUG_MODEL else "Apriel-1.5-15B-thinker" | |
| DEFAULT_MODEL_NAME = "Apriel-1.6-15B-Thinker" | |
| SHOW_BANNER = False | |
| INFO_BANNER_MARKDOWN = """ | |
| <span class="banner-message-text">ℹ️ This app has been updated to use the recommended temperature of 0.6. We had set it to 0.8 earlier and expect 0.6 to be better. Please provide feedback using the model link.</span> | |
| """ | |
| NEW_MODEL_BANNER_MARKDOWN = """ | |
| <span class="banner-message-text"><span class="banner-message-emoji">🚀</span> Now running [Apriel-1.6-15B-Thinker](https://huggingface.co/ServiceNow-AI/Apriel-1.6-15b-Thinker) - 30% more efficient, frontier-class reasoning</span> | |
| """ | |
| BANNER_MARKDOWN = NEW_MODEL_BANNER_MARKDOWN | |
| BUTTON_ENABLED = gr.update(interactive=True) | |
| BUTTON_DISABLED = gr.update(interactive=False) | |
| INPUT_ENABLED = gr.update(interactive=True) | |
| INPUT_DISABLED = gr.update(interactive=False) | |
| DROPDOWN_ENABLED = gr.update(interactive=True) | |
| DROPDOWN_DISABLED = gr.update(interactive=False) | |
| SEND_BUTTON_ENABLED = gr.update(interactive=True, visible=True) | |
| SEND_BUTTON_DISABLED = gr.update(interactive=True, visible=False) | |
| STOP_BUTTON_ENABLED = gr.update(interactive=True, visible=True) | |
| STOP_BUTTON_DISABLED = gr.update(interactive=True, visible=False) | |
| chat_start_count = 0 | |
| model_config = {} | |
| openai_client = None | |
| USE_RANDOM_ENDPOINT = False | |
| endpoint_rotation_count = 0 | |
| # Maximum number of image messages allowed per request | |
| MAX_IMAGE_MESSAGES = 5 | |
| def app_loaded(state, request: gr.Request): | |
| message_html = setup_model(DEFAULT_MODEL_NAME, intial=False) | |
| state['session'] = request.session_hash if request else uuid4().hex | |
| log_debug(f"app_loaded() --> Session: {state['session']}") | |
| return state, message_html | |
| def update_model_and_clear_chat(model_name): | |
| actual_model_name = model_name.replace("Model: ", "") | |
| desc = setup_model(actual_model_name) | |
| return desc, [] | |
| def setup_model(model_key, intial=False): | |
| global model_config, openai_client, endpoint_rotation_count | |
| model_config = get_model_config(model_key) | |
| log_debug(f"update_model() --> Model config: {model_config}") | |
| # ENVIRONMENT VARIABLE CONFIGURATION | |
| base_url = os.environ.get("API_BASE_URL") | |
| api_key = os.environ.get("API_KEY") | |
| if not base_url: | |
| raise ValueError("API_BASE_URL environment variable not set") | |
| if not api_key: | |
| raise ValueError("API_KEY environment variable not set") | |
| openai_client = OpenAI( | |
| api_key=api_key, | |
| base_url=base_url | |
| ) | |
| model_config['base_url'] = base_url | |
| log_debug(f"Switched to model {model_key} using endpoint {base_url} (ENV VARS)") | |
| _model_hf_name = model_config.get("MODEL_HF_URL").split('https://huggingface.co/')[1] | |
| _link = f"<a href='{model_config.get('MODEL_HF_URL')}{COMMUNITY_POSTFIX_URL}' target='_blank'>{_model_hf_name}</a>" | |
| _description = f"We'd love to hear your thoughts on the model. Click here to provide feedback - {_link}" | |
| if intial: | |
| return | |
| else: | |
| return _description | |
| def chat_started(): | |
| # outputs: model_dropdown, user_input, send_btn, stop_btn, clear_btn, reasoning_effort | |
| return (DROPDOWN_DISABLED, gr.update(value="", interactive=False), | |
| SEND_BUTTON_DISABLED, STOP_BUTTON_ENABLED, BUTTON_DISABLED, gr.update(interactive=False)) | |
| def chat_finished(): | |
| # outputs: model_dropdown, user_input, send_btn, stop_btn, clear_btn, reasoning_effort | |
| return DROPDOWN_ENABLED, INPUT_ENABLED, SEND_BUTTON_ENABLED, STOP_BUTTON_DISABLED, BUTTON_ENABLED, gr.update(interactive=True) | |
| def stop_chat(state): | |
| state["stop_flag"] = True | |
| gr.Info("Chat stopped") | |
| return state | |
| def toggle_opt_out(state, checkbox): | |
| state["opt_out"] = checkbox | |
| return state | |
| def run_chat_inference(history, message, state, reasoning_effort="medium"): | |
| global chat_start_count | |
| state["is_streaming"] = True | |
| state["stop_flag"] = False | |
| error = None | |
| # ENVIRONMENT VARIABLE MODEL | |
| model_name = os.environ.get("API_MODEL") | |
| if not model_name: | |
| raise ValueError("API_MODEL environment variable not set") | |
| # model_name = model_config.get('MODEL_NAME') | |
| temperature = model_config.get('TEMPERATURE', DEFAULT_MODEL_TEMPERATURE) | |
| output_tag_start = model_config.get('OUTPUT_TAG_START', "[BEGIN FINAL RESPONSE]") | |
| output_tag_end = model_config.get('OUTPUT_TAG_END', "[END FINAL RESPONSE]") | |
| output_stop_token = model_config.get('OUTPUT_STOP_TOKEN', "<|end|>") | |
| # Reinitialize the OpenAI client with a random endpoint from the list | |
| setup_model(model_config.get('MODEL_KEY')) | |
| log_info(f"Using model {model_name} (temperature: {temperature}, reasoning_effort: {reasoning_effort}) with endpoint {model_config.get('base_url')}") | |
| if len(history) == 0: | |
| state["chat_id"] = uuid4().hex | |
| if openai_client is None: | |
| log_info("Client UI is stale, letting user know to refresh the page") | |
| gr.Warning("Client UI is stale, please refresh the page") | |
| return history, INPUT_ENABLED, SEND_BUTTON_ENABLED, STOP_BUTTON_DISABLED, BUTTON_ENABLED, state | |
| # files will be the newly added files from the user | |
| files = [] | |
| # outputs: model_dropdown, user_input, send_btn, stop_btn, clear_btn, session_state | |
| log_debug(f"{'-' * 80}") | |
| log_debug(f"chat_fn() --> Message: {message}") | |
| log_debug(f"chat_fn() --> History: {history}") | |
| # We have multimodal input in this case | |
| if isinstance(message, Mapping): | |
| files = message.get("files") or [] | |
| message = message.get("text") or "" | |
| log_debug(f"chat_fn() --> Message (text only): {message}") | |
| log_debug(f"chat_fn() --> Files: {files}") | |
| # Validate that any uploaded files are images | |
| if len(files) > 0: | |
| invalid_files = [] | |
| for path in files: | |
| try: | |
| mime, _ = mimetypes.guess_type(path) | |
| mime = mime or "" | |
| if not mime.startswith("image/"): | |
| invalid_files.append((os.path.basename(path), mime or "unknown")) | |
| except Exception as e: | |
| log_error(f"Failed to inspect file '{path}': {e}") | |
| invalid_files.append((os.path.basename(path), "unknown")) | |
| if invalid_files: | |
| msg = "Only image files are allowed. Invalid uploads: " + \ | |
| ", ".join([f"{p} (type: {m})" for p, m in invalid_files]) | |
| log_warning(msg) | |
| gr.Warning(msg) | |
| yield history, INPUT_ENABLED, SEND_BUTTON_ENABLED, STOP_BUTTON_DISABLED, BUTTON_ENABLED, state | |
| return history, INPUT_ENABLED, SEND_BUTTON_ENABLED, STOP_BUTTON_DISABLED, BUTTON_ENABLED, state | |
| # Enforce maximum number of files/images per request | |
| if len(files) > MAX_IMAGE_MESSAGES: | |
| gr.Warning(f"Too many images provided; keeping only the first {MAX_IMAGE_MESSAGES} file(s).") | |
| files = files[:MAX_IMAGE_MESSAGES] | |
| try: | |
| # Check if the message is empty | |
| if not message.strip() and len(files) == 0: | |
| gr.Info("Please enter a message before sending") | |
| yield history, INPUT_ENABLED, SEND_BUTTON_ENABLED, STOP_BUTTON_DISABLED, BUTTON_ENABLED, state | |
| return history, INPUT_ENABLED, SEND_BUTTON_ENABLED, STOP_BUTTON_DISABLED, BUTTON_ENABLED, state | |
| chat_start_count = chat_start_count + 1 | |
| user_messages_count = sum(1 for item in history if isinstance(item, dict) and item.get("role") == "user" | |
| and isinstance(item.get("content"), str)) | |
| log_info(f"chat_start_count: {chat_start_count}, turns: {user_messages_count + 1}, model: {model_name}") | |
| is_reasoning = model_config.get("REASONING") | |
| # Remove any assistant messages with metadata from history for multiple turns | |
| log_debug(f"Initial History: {history}") | |
| check_format(history, "messages") | |
| # Build UI history: add text (if any) and per-file image placeholders {"path": ...} | |
| # Build API parts separately later to avoid Gradio issues with arrays in content | |
| if len(files) == 0: | |
| history.append({"role": "user", "content": message}) | |
| else: | |
| if message.strip(): | |
| history.append({"role": "user", "content": message}) | |
| for path in files: | |
| history.append({"role": "user", "content": {"path": path}}) | |
| log_debug(f"History with user message: {history}") | |
| check_format(history, "messages") | |
| # Create the streaming response | |
| try: | |
| history_no_thoughts = [item for item in history if | |
| not (isinstance(item, dict) and | |
| item.get("role") == "assistant" and | |
| isinstance(item.get("metadata"), dict) and | |
| item.get("metadata", {}).get("title") is not None)] | |
| log_debug(f"Updated History: {history_no_thoughts}") | |
| check_format(history_no_thoughts, "messages") | |
| log_debug(f"history_no_thoughts with user message: {history_no_thoughts}") | |
| # Build API-specific messages: | |
| # - Convert any UI image placeholders {"path": ...} to image_url parts | |
| # - Convert any user string content that is a valid file path to image_url parts | |
| # - Coalesce consecutive image paths into a single image-only user message | |
| api_messages = [] | |
| image_parts_buffer = [] | |
| def flush_image_buffer(): | |
| if len(image_parts_buffer) > 0: | |
| api_messages.append({"role": "user", "content": list(image_parts_buffer)}) | |
| image_parts_buffer.clear() | |
| def to_image_part(path: str): | |
| try: | |
| mime, _ = mimetypes.guess_type(path) | |
| mime = mime or "application/octet-stream" | |
| with open(path, "rb") as f: | |
| b64 = base64.b64encode(f.read()).decode("utf-8") | |
| data_url = f"data:{mime};base64,{b64}" | |
| return {"type": "image_url", "image_url": {"url": data_url}} | |
| except Exception as e: | |
| log_error(f"Failed to load file '{path}': {e}") | |
| return None | |
| def normalize_msg(msg): | |
| # Returns (role, content, as_dict) where as_dict is a message dict suitable to pass through when unmodified | |
| if isinstance(msg, dict): | |
| return msg.get("role"), msg.get("content"), msg | |
| # Gradio ChatMessage-like object | |
| role = getattr(msg, "role", None) | |
| content = getattr(msg, "content", None) | |
| if role is not None: | |
| return role, content, {"role": role, "content": content} | |
| return None, None, msg | |
| for m in copy.deepcopy(history_no_thoughts): | |
| role, content, as_dict = normalize_msg(m) | |
| # Unknown structure: pass through | |
| if role is None: | |
| flush_image_buffer() | |
| api_messages.append(as_dict) | |
| continue | |
| # Assistant messages pass through as-is | |
| if role == "assistant": | |
| flush_image_buffer() | |
| api_messages.append(as_dict) | |
| continue | |
| # Only user messages have potential image paths to convert | |
| if role == "user": | |
| # Case A: {'path': ...} | |
| if isinstance(content, dict) and isinstance(content.get("path"), str): | |
| p = content["path"] | |
| part = to_image_part(p) if os.path.isfile(p) else None | |
| if part: | |
| image_parts_buffer.append(part) | |
| else: | |
| flush_image_buffer() | |
| api_messages.append({"role": "user", "content": str(content)}) | |
| continue | |
| # Case B: string or tuple content that may be a file path | |
| if isinstance(content, str): | |
| if os.path.isfile(content): | |
| part = to_image_part(content) | |
| if part: | |
| image_parts_buffer.append(part) | |
| continue | |
| # Not a file path: pass through as text | |
| flush_image_buffer() | |
| api_messages.append({"role": "user", "content": content}) | |
| continue | |
| if isinstance(content, tuple): | |
| # Common case: a single-element tuple containing a path string | |
| tuple_items = list(content) | |
| tmp_parts = [] | |
| text_accum = [] | |
| for item in tuple_items: | |
| if isinstance(item, str) and os.path.isfile(item): | |
| part = to_image_part(item) | |
| if part: | |
| tmp_parts.append(part) | |
| else: | |
| text_accum.append(item) | |
| else: | |
| text_accum.append(str(item)) | |
| if tmp_parts: | |
| flush_image_buffer() | |
| api_messages.append({"role": "user", "content": tmp_parts}) | |
| if not text_accum: | |
| continue | |
| if text_accum: | |
| flush_image_buffer() | |
| api_messages.append({"role": "user", "content": "\n".join(text_accum)}) | |
| continue | |
| # Case C: list content | |
| if isinstance(content, list): | |
| # If it's already a list of parts, let it pass through | |
| all_dicts = all(isinstance(c, dict) for c in content) | |
| if all_dicts: | |
| flush_image_buffer() | |
| api_messages.append({"role": "user", "content": content}) | |
| continue | |
| # It might be a list of strings (paths/text). Convert string paths to image parts, others to text parts | |
| tmp_parts = [] | |
| text_accum = [] | |
| def flush_text_accum(): | |
| if text_accum: | |
| api_messages.append({"role": "user", "content": "\n".join(text_accum)}) | |
| text_accum.clear() | |
| for item in content: | |
| if isinstance(item, str) and os.path.isfile(item): | |
| part = to_image_part(item) | |
| if part: | |
| tmp_parts.append(part) | |
| else: | |
| text_accum.append(item) | |
| else: | |
| text_accum.append(str(item)) | |
| if tmp_parts: | |
| flush_image_buffer() | |
| api_messages.append({"role": "user", "content": tmp_parts}) | |
| if text_accum: | |
| flush_text_accum() | |
| continue | |
| # Fallback: pass through | |
| flush_image_buffer() | |
| api_messages.append(as_dict) | |
| continue | |
| # Other roles | |
| flush_image_buffer() | |
| api_messages.append(as_dict) | |
| # Flush any trailing images | |
| flush_image_buffer() | |
| log_debug(f"sending api_messages to model {model_name}: {api_messages}") | |
| # Ensure we don't send too many images (count only messages whose content is a list of parts) | |
| image_msg_indices = [ | |
| i for i, msg in enumerate(api_messages) | |
| if isinstance(msg, dict) and isinstance(msg.get('content'), list) | |
| ] | |
| image_count = len(image_msg_indices) | |
| if image_count > MAX_IMAGE_MESSAGES: | |
| # Remove oldest image messages until we have MAX_IMAGE_MESSAGES or fewer | |
| to_remove = image_count - MAX_IMAGE_MESSAGES | |
| removed = 0 | |
| for idx in image_msg_indices: | |
| if removed >= to_remove: | |
| break | |
| # Pop considering prior removals shift indices | |
| api_messages.pop(idx - removed) | |
| removed += 1 | |
| gr.Warning(f"Too many images provided; keeping the latest {MAX_IMAGE_MESSAGES} and dropped {removed} older image message(s).") | |
| stream = openai_client.chat.completions.create( | |
| model=model_name, | |
| messages=api_messages, | |
| temperature=temperature, | |
| top_p=1.0, | |
| reasoning_effort=reasoning_effort, | |
| stream=True | |
| ) | |
| except Exception as e: | |
| log_error(f"Error:\n\t{e}\n\tInference failed for model {model_name} and endpoint {model_config['base_url']}") | |
| error = str(e) | |
| yield ([{"role": "assistant", | |
| "content": "😔 The model is unavailable at the moment. Please try again later."}], | |
| INPUT_ENABLED, SEND_BUTTON_ENABLED, STOP_BUTTON_DISABLED, BUTTON_ENABLED, state) | |
| if state["opt_out"] is not True: | |
| log_chat(chat_id=state["chat_id"], | |
| session_id=state["session"], | |
| model_name=model_name, | |
| prompt=message, | |
| history=history, | |
| info={"is_reasoning": model_config.get("REASONING"), "temperature": temperature, | |
| "stopped": True, "error": str(e)}, | |
| ) | |
| else: | |
| log_info(f"User opted out of chat history. Not logging chat. model: {model_name}") | |
| return history, INPUT_ENABLED, SEND_BUTTON_ENABLED, STOP_BUTTON_DISABLED, BUTTON_ENABLED, state | |
| if is_reasoning: | |
| history.append(gr.ChatMessage( | |
| role="assistant", | |
| content="Thinking...", | |
| metadata={"title": "🧠 Thought"} | |
| )) | |
| log_debug(f"History added thinking: {history}") | |
| check_format(history, "messages") | |
| else: | |
| history.append(gr.ChatMessage( | |
| role="assistant", | |
| content="", | |
| )) | |
| log_debug(f"History added empty assistant: {history}") | |
| check_format(history, "messages") | |
| output_reasoning = "" | |
| output_content = "" | |
| completion_started = False | |
| for chunk in stream: | |
| if state["stop_flag"]: | |
| log_debug(f"chat_fn() --> Stopping streaming...") | |
| break # Exit the loop if the stop flag is set | |
| delta = chunk.choices[0].delta | |
| new_reasoning = getattr(delta, "reasoning_content", "") or "" | |
| new_content = getattr(delta, "content", "") or "" | |
| output_reasoning += new_reasoning | |
| output_content += new_content | |
| if is_reasoning: | |
| # Update the reasoning bubble | |
| history[-1 if not completion_started else -2] = gr.ChatMessage( | |
| role="assistant", | |
| content=output_reasoning, | |
| metadata={"title": "🧠 Thought"} | |
| ) | |
| # Handle the content bubble | |
| # Check if we have actual content or if we should start the content bubble | |
| if new_content or (output_content and not completion_started): | |
| # Clean up stop tokens from the content if present | |
| if output_tag_end and output_content.endswith(output_tag_end): | |
| output_content = output_content.replace(output_tag_end, "") | |
| if output_stop_token and output_content.endswith(output_stop_token): | |
| output_content = output_content.replace(output_stop_token, "") | |
| if not completion_started: | |
| completion_started = True | |
| history.append(gr.ChatMessage( | |
| role="assistant", | |
| content=output_content | |
| )) | |
| else: | |
| history[-1] = gr.ChatMessage( | |
| role="assistant", | |
| content=output_content | |
| ) | |
| else: | |
| if output_content.endswith("<|end|>"): | |
| output_content = output_content.replace("<|end|>", "") | |
| if output_content.endswith("<|end|>\n"): | |
| output_content = output_content.replace("<|end|>\n", "") | |
| history[-1] = gr.ChatMessage( | |
| role="assistant", | |
| content=output_content | |
| ) | |
| # log_message(f"Yielding messages: {history}") | |
| yield history, INPUT_DISABLED, SEND_BUTTON_DISABLED, STOP_BUTTON_ENABLED, BUTTON_DISABLED, state | |
| log_debug(f"Final History: {history}") | |
| check_format(history, "messages") | |
| yield history, INPUT_ENABLED, SEND_BUTTON_ENABLED, STOP_BUTTON_DISABLED, BUTTON_ENABLED, state | |
| finally: | |
| if error is None: | |
| log_debug(f"chat_fn() --> Finished streaming. {chat_start_count} chats started.") | |
| if state["opt_out"] is not True: | |
| log_chat(chat_id=state["chat_id"], | |
| session_id=state["session"], | |
| model_name=model_name, | |
| prompt=message, | |
| history=history, | |
| info={"is_reasoning": model_config.get("REASONING"), "temperature": temperature, | |
| "stopped": state["stop_flag"]}, | |
| ) | |
| else: | |
| log_info(f"User opted out of chat history. Not logging chat. model: {model_name}") | |
| state["is_streaming"] = False | |
| state["stop_flag"] = False | |
| return history, INPUT_ENABLED, SEND_BUTTON_ENABLED, STOP_BUTTON_DISABLED, BUTTON_ENABLED, state | |
| log_info(f"Gradio version: {gr.__version__}") | |
| title = None | |
| description = None | |
| theme = apriel | |
| with open('styles.css', 'r') as f: | |
| custom_css = f.read() | |
| with gr.Blocks(theme=theme, css=custom_css) as demo: | |
| session_state = gr.State(value={ | |
| "is_streaming": False, | |
| "stop_flag": False, | |
| "chat_id": None, | |
| "session": None, | |
| "opt_out": DEFAULT_OPT_OUT_VALUE, | |
| "agreed": False, | |
| }) # Store session state as a dictionary | |
| gr.HTML(f""" | |
| <style> | |
| @media (min-width: 1024px) {{ | |
| .send-button-container, .clear-button-container {{ | |
| max-width: {BUTTON_WIDTH}px; | |
| }} | |
| }} | |
| </style> | |
| """, elem_classes="css-styles") | |
| if SHOW_BANNER: | |
| with gr.Row(variant="compact", elem_classes=["responsive-row", "no-padding"], ): | |
| with gr.Column(): | |
| gr.Markdown(BANNER_MARKDOWN, elem_classes="banner-message") | |
| with gr.Row(variant="panel", elem_classes="responsive-row", visible=False): | |
| with gr.Column(scale=1, min_width=400, elem_classes="model-dropdown-container"): | |
| model_dropdown = gr.Dropdown( | |
| choices=[f"Model: {model}" for model in models_config.keys()], | |
| value=f"Model: {DEFAULT_MODEL_NAME}", | |
| label=None, | |
| interactive=True, | |
| container=False, | |
| scale=0, | |
| min_width=400 | |
| ) | |
| with gr.Column(scale=4, min_width=0): | |
| feedback_message_html = gr.HTML(description, elem_classes="model-message") | |
| with gr.Column(visible=True, elem_classes="agreement-overlay") as agreement_overlay: | |
| with gr.Column(elem_classes="form"): | |
| gr.Markdown("## Privacy Agreement") | |
| gr.Markdown(""" | |
| By using this app, you agree to the following terms: | |
| We record all content you submit and all model outputs (“Data”), including text, images, files, and minimal request metadata (timestamp & technical logs). We do not store IP addresses, cookies, or account identifiers, so we cannot link any submission back to a particular person. However, the text you submit may itself contain personal information (e.g., names, Social Security numbers). Please do not include sensitive personal data in your prompts. Any such information will be subject to our redaction process before any public release. | |
| Data is used for research, safety evaluation, and to improve the Service. We reserve the right to publish, share, or redistribute redacted versions of the Data under a Creative Commons Attribution (CC‑BY) or similar open license. Before any public release, we apply automated and manual redaction to remove private keys, names, contact details, and other identifiers that may appear in the content. | |
| Because we do not track user identities, individual submissions cannot be deleted or withdrawn once made. If you do not want your content used or released, do not submit it. | |
| """) | |
| agree_btn = gr.Button("I Agree", variant="primary") | |
| with gr.Column(visible=True) as main_app_area: | |
| chatbot = gr.Chatbot( | |
| type="messages", | |
| height="calc(100svh - 320px)", | |
| max_height="calc(100svh - 320px)", | |
| elem_classes="chatbot", | |
| ) | |
| with gr.Row(): | |
| with gr.Column(scale=10, min_width=400, elem_classes="user-input-container"): | |
| with gr.Row(): | |
| # user_input = gr.MultimodalTextbox( | |
| # interactive=True, | |
| # container=False, | |
| # file_count="multiple", | |
| # placeholder="Type your message here and press Enter or upload file...", | |
| # show_label=False, | |
| # sources=["upload"], | |
| # max_plain_text_length=100000, | |
| # max_lines=10 | |
| # ) | |
| # Original text-only input | |
| user_input = gr.Textbox( | |
| show_label=False, | |
| placeholder="Type your message here and press Enter", | |
| container=False, | |
| max_lines=10 | |
| ) | |
| with gr.Column(scale=1, min_width=BUTTON_WIDTH * 2 + 20): | |
| with gr.Row(): | |
| with gr.Column(scale=1, min_width=BUTTON_WIDTH, elem_classes="send-button-container"): | |
| send_btn = gr.Button("Send", variant="primary", elem_classes="control-button") | |
| stop_btn = gr.Button("Stop", variant="cancel", elem_classes="control-button", visible=False) | |
| with gr.Column(scale=1, min_width=BUTTON_WIDTH, elem_classes="clear-button-container"): | |
| clear_btn = gr.ClearButton(chatbot, value="New Chat", variant="secondary", elem_classes="control-button") | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| reasoning_effort_radio = gr.Radio( | |
| choices=["low", "medium", "high"], | |
| value="medium", | |
| label="Reasoning Effort", | |
| interactive=True, | |
| container=True, | |
| elem_classes="reasoning-radio" | |
| ) | |
| def agree_to_terms(state): | |
| log_info("Privacy agreement accepted by user") | |
| state["agreed"] = True | |
| return gr.update(visible=False), state | |
| # Use JavaScript to directly hide the overlay - bypasses Gradio's state management | |
| # which can be unreliable on HuggingFace Spaces | |
| agree_btn.click( | |
| agree_to_terms, | |
| inputs=[session_state], | |
| outputs=[agreement_overlay, session_state], | |
| queue=False, | |
| js="() => { document.querySelector('.agreement-overlay').style.display = 'none'; }" | |
| ) | |
| gr.on( | |
| triggers=[send_btn.click, user_input.submit], | |
| fn=run_chat_inference, # this generator streams results. do not use logged_event_handler wrapper | |
| inputs=[chatbot, user_input, session_state, reasoning_effort_radio], | |
| outputs=[chatbot, user_input, send_btn, stop_btn, clear_btn, session_state], | |
| concurrency_limit=4, | |
| api_name=False | |
| ).then( | |
| fn=chat_finished, inputs=None, outputs=[model_dropdown, user_input, send_btn, stop_btn, clear_btn, reasoning_effort_radio], queue=False) | |
| # In parallel, disable or update the UI controls | |
| gr.on( | |
| triggers=[send_btn.click, user_input.submit], | |
| fn=chat_started, | |
| inputs=None, | |
| outputs=[model_dropdown, user_input, send_btn, stop_btn, clear_btn, reasoning_effort_radio], | |
| queue=False, | |
| show_progress='hidden', | |
| api_name=False | |
| ) | |
| stop_btn.click( | |
| fn=stop_chat, | |
| inputs=[session_state], | |
| outputs=[session_state], | |
| api_name=False | |
| ) | |
| # Ensure the model is reset to default on page reload | |
| demo.load( | |
| fn=logged_event_handler( | |
| log_msg="Browser session started", | |
| event_handler=app_loaded | |
| ), | |
| inputs=[session_state], | |
| outputs=[session_state, feedback_message_html], | |
| queue=True, | |
| api_name=False | |
| ) | |
| model_dropdown.change( | |
| fn=update_model_and_clear_chat, | |
| inputs=[model_dropdown], | |
| outputs=[feedback_message_html, chatbot], | |
| api_name=False | |
| ) | |
| demo.queue(default_concurrency_limit=2).launch(ssr_mode=False, show_api=False, max_file_size="10mb") | |
| log_info("Gradio app launched") | |