Spaces:
Running
Running
| # These HF deployment codes refer to https://huggingface.co/not-lain/BiRefNet/raw/main/handler.py. | |
| from typing import Dict, List, Any, Tuple | |
| import os | |
| import requests | |
| from io import BytesIO | |
| import cv2 | |
| import numpy as np | |
| from PIL import Image | |
| import torch | |
| from torchvision import transforms | |
| from transformers import AutoModelForImageSegmentation | |
| torch.set_float32_matmul_precision(["high", "highest"][0]) | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| ### image_proc.py | |
| def refine_foreground(image, mask, r=90): | |
| if mask.size != image.size: | |
| mask = mask.resize(image.size) | |
| image = np.array(image) / 255.0 | |
| mask = np.array(mask) / 255.0 | |
| estimated_foreground = FB_blur_fusion_foreground_estimator_2(image, mask, r=r) | |
| image_masked = Image.fromarray((estimated_foreground * 255.0).astype(np.uint8)) | |
| return image_masked | |
| def FB_blur_fusion_foreground_estimator_2(image, alpha, r=90): | |
| # Thanks to the source: https://github.com/Photoroom/fast-foreground-estimation | |
| alpha = alpha[:, :, None] | |
| F, blur_B = FB_blur_fusion_foreground_estimator(image, image, image, alpha, r) | |
| return FB_blur_fusion_foreground_estimator(image, F, blur_B, alpha, r=6)[0] | |
| def FB_blur_fusion_foreground_estimator(image, F, B, alpha, r=90): | |
| if isinstance(image, Image.Image): | |
| image = np.array(image) / 255.0 | |
| blurred_alpha = cv2.blur(alpha, (r, r))[:, :, None] | |
| blurred_FA = cv2.blur(F * alpha, (r, r)) | |
| blurred_F = blurred_FA / (blurred_alpha + 1e-5) | |
| blurred_B1A = cv2.blur(B * (1 - alpha), (r, r)) | |
| blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5) | |
| F = blurred_F + alpha * \ | |
| (image - alpha * blurred_F - (1 - alpha) * blurred_B) | |
| F = np.clip(F, 0, 1) | |
| return F, blurred_B | |
| class ImagePreprocessor(): | |
| def __init__(self, resolution: Tuple[int, int] = (1024, 1024)) -> None: | |
| self.transform_image = transforms.Compose([ | |
| transforms.Resize(resolution), | |
| transforms.ToTensor(), | |
| transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
| ]) | |
| def proc(self, image: Image.Image) -> torch.Tensor: | |
| image = self.transform_image(image) | |
| return image | |
| usage_to_weights_file = { | |
| 'General': 'BiRefNet', | |
| 'General-HR': 'BiRefNet_HR', | |
| 'General-Lite': 'BiRefNet_lite', | |
| 'General-Lite-2K': 'BiRefNet_lite-2K', | |
| 'General-reso_512': 'BiRefNet-reso_512', | |
| 'Matting': 'BiRefNet-matting', | |
| 'Portrait': 'BiRefNet-portrait', | |
| 'DIS': 'BiRefNet-DIS5K', | |
| 'HRSOD': 'BiRefNet-HRSOD', | |
| 'COD': 'BiRefNet-COD', | |
| 'DIS-TR_TEs': 'BiRefNet-DIS5K-TR_TEs', | |
| 'General-legacy': 'BiRefNet-legacy' | |
| } | |
| # Choose the version of BiRefNet here. | |
| usage = 'General-Lite' | |
| # Set resolution | |
| if usage in ['General-Lite-2K']: | |
| resolution = (2560, 1440) | |
| elif usage in ['General-reso_512']: | |
| resolution = (512, 512) | |
| elif usage in ['General-HR']: | |
| resolution = (2048, 2048) | |
| else: | |
| resolution = (1024, 1024) | |
| half_precision = True | |
| class EndpointHandler(): | |
| def __init__(self, path=''): | |
| self.birefnet = AutoModelForImageSegmentation.from_pretrained( | |
| '/'.join(('zhengpeng7', usage_to_weights_file[usage])), trust_remote_code=True | |
| ) | |
| self.birefnet.to(device) | |
| self.birefnet.eval() | |
| if half_precision: | |
| self.birefnet.half() | |
| def __call__(self, data: Dict[str, Any]): | |
| """ | |
| data args: | |
| inputs (:obj: `str`) | |
| date (:obj: `str`) | |
| Return: | |
| A :obj:`list` | `dict`: will be serialized and returned | |
| """ | |
| print('data["inputs"] = ', data["inputs"]) | |
| image_src = data["inputs"] | |
| if isinstance(image_src, str): | |
| if os.path.isfile(image_src): | |
| image_ori = Image.open(image_src) | |
| else: | |
| response = requests.get(image_src) | |
| image_data = BytesIO(response.content) | |
| image_ori = Image.open(image_data) | |
| else: | |
| image_ori = Image.fromarray(image_src) | |
| image = image_ori.convert('RGB') | |
| # Preprocess the image | |
| image_preprocessor = ImagePreprocessor(resolution=tuple(resolution)) | |
| image_proc = image_preprocessor.proc(image) | |
| image_proc = image_proc.unsqueeze(0) | |
| # Prediction | |
| with torch.no_grad(): | |
| preds = self.birefnet(image_proc.to(device).half() if half_precision else image_proc.to(device))[-1].sigmoid().cpu() | |
| pred = preds[0].squeeze() | |
| # Show Results | |
| pred_pil = transforms.ToPILImage()(pred) | |
| image_masked = refine_foreground(image, pred_pil) | |
| image_masked.putalpha(pred_pil.resize(image.size)) | |
| return image_masked | |