Spaces:
Running
Running
File size: 32,838 Bytes
066bdaa 40d8f07 066bdaa a7ffab7 4654ce0 2e6228c 066bdaa 4654ce0 066bdaa 0a251fe 4654ce0 0a251fe 066bdaa 4654ce0 066bdaa 0a251fe 8106b9b 2e6228c 0a251fe 066bdaa 40d8f07 066bdaa 0a251fe 4654ce0 2e6228c 0a251fe 4654ce0 066bdaa 2e6228c 066bdaa 0a251fe e8f7ea6 0a251fe a03699a a7ffab7 a03699a 066bdaa 40d8f07 a7ffab7 4654ce0 a7ffab7 a03699a 0a251fe 066bdaa 8106b9b 0a251fe 066bdaa 0a251fe 8106b9b 066bdaa 40d8f07 066bdaa 40d8f07 066bdaa 40d8f07 0a251fe 8106b9b 066bdaa 0a251fe 066bdaa 0a251fe 066bdaa 40d8f07 066bdaa 2e6228c 066bdaa ec96fb7 e8f7ea6 2e6228c 066bdaa e8f7ea6 066bdaa 0a251fe 8106b9b e8f7ea6 066bdaa 2e6228c 066bdaa 0a251fe 8106b9b 0a251fe 066bdaa 0a251fe 066bdaa 40d8f07 2e6228c 066bdaa 0a251fe 2e6228c 8106b9b 2e6228c 40d8f07 2e6228c 066bdaa 2e6228c 066bdaa 40d8f07 2e6228c 066bdaa 2e6228c 40d8f07 2e6228c 066bdaa 2e6228c 066bdaa 2e6228c 066bdaa 2e6228c 0a251fe 2e6228c 066bdaa 4654ce0 2e6228c 4654ce0 2e6228c 4654ce0 2e6228c 4654ce0 066bdaa 2e6228c 066bdaa 2e6228c 066bdaa 40d8f07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 |
import gradio as gr
from huggingface_hub import HfApi
import pandas as pd
from datetime import datetime, timedelta, timezone
from types import SimpleNamespace
import requests
import re
import json
# Initialize HuggingFace API
api = HfApi()
MODEL_CACHE_DURATION = timedelta(hours=1)
model_cache = {}
def _cache_key(sort: str, last: str | None, limit: int) -> tuple[str, str, int]:
return (sort, last or "all", limit)
def _store_cache(sort: str, last: str | None, limit: int, models):
model_cache[_cache_key(sort, last, limit)] = {
'models': models,
'timestamp': datetime.now()
}
def _get_cached(sort: str, last: str | None, limit: int):
entry = model_cache.get(_cache_key(sort, last, limit))
if not entry:
return None
if datetime.now() - entry['timestamp'] > MODEL_CACHE_DURATION:
return None
return entry['models']
def _convert_model_payload(payload: dict):
"""Convert raw REST payload to a SimpleNamespace matching ModelInfo attributes."""
data = payload.copy()
model_id = data.get('modelId') or data.get('id')
data['modelId'] = model_id
data.setdefault('tags', data.get('tags') or [])
data.setdefault('likes', data.get('likes', 0) or 0)
data.setdefault('downloads', data.get('downloads', 0) or 0)
data.setdefault('gated', data.get('gated', False))
data.setdefault('private', data.get('private', False))
return SimpleNamespace(**data)
def fetch_models(limit=500, sort="downloads", last: str | None = None):
"""Fetch models from HuggingFace Hub or REST API with caching."""
cached = _get_cached(sort, last, limit)
if cached is not None:
return cached
try:
if last is None:
models = list(api.list_models(
sort=sort,
direction=-1,
limit=limit,
full=True
))
else:
params = {
"sort": sort,
"direction": -1,
"limit": limit,
"last": last,
"full": "true"
}
response = requests.get(
"https://huggingface.co/api/models",
params=params,
timeout=30
)
response.raise_for_status()
raw_models = response.json()
models = [_convert_model_payload(payload) for payload in raw_models]
_store_cache(sort, last, limit, models)
return models
except Exception as e:
print(f"Error fetching models: {e}")
return []
def categorize_model(model) -> str:
"""Categorize a model as base, fine-tune, or quant."""
model_id = model.modelId.lower()
tags = [tag.lower() for tag in (model.tags or [])]
# Check for quant indicators
quant_patterns = [
'gguf', 'gptq', 'awq', 'ggml', 'exl2', 'exllamav2',
'quantized', 'quant', '-q4', '-q5', '-q6', '-q8',
'k-quant', 'k_m', 'k_s', 'k_l'
]
for pattern in quant_patterns:
if pattern in model_id or pattern in tags:
return "Quant"
# Check for fine-tune indicators
finetune_patterns = [
'finetune', 'fine-tune', 'ft', 'instruct', 'chat',
'dpo', 'rlhf', 'sft', 'lora', 'qlora'
]
# Check if model name suggests it's a fine-tune (has multiple parts with descriptive names)
parts = model_id.split('/')[-1].split('-')
if len(parts) > 2:
# Likely a fine-tune if it has descriptive suffixes
for pattern in finetune_patterns:
if pattern in model_id or pattern in tags:
return "Fine-Tune"
# Check for base model indicators
base_patterns = [
'base', 'pretrained', 'pre-trained', 'foundation'
]
for pattern in base_patterns:
if pattern in model_id or pattern in tags:
return "Base Model"
# Default heuristic: if it's from major organizations and doesn't have fine-tune indicators, likely base
major_orgs = ['meta-llama', 'mistralai', 'google', 'microsoft', 'openai', 'facebook', 'tiiuae']
org = model_id.split('/')[0]
if org in major_orgs and not any(pattern in model_id for pattern in finetune_patterns):
return "Base Model"
# Default to fine-tune for most other cases
return "Fine-Tune"
def extract_license(tags) -> str:
"""Extract primary license from model tags."""
if not tags:
return "Unknown"
for tag in tags:
if tag.startswith("license:"):
return tag.split(":", 1)[1].upper()
return "Unknown"
def extract_param_size(tags, model_id=None) -> str:
"""Extract parameter size from model tags or infer from model name."""
if not tags:
size = "Unknown"
else:
size = "Unknown"
for tag in tags:
if tag.startswith("params:"):
size = tag.split(":", 1)[1].upper()
break
if size == "Unknown" and model_id:
# Common patterns in model names (case-insensitive)
patterns = [
r'(\d+(?:\.\d+)?[BM])', # 7B, 70B, 1.5M, etc.
r'(\d+)B', # 7B, 70B
r'(\d+)M', # 1.5M
]
for pattern in patterns:
match = re.search(pattern, model_id, re.IGNORECASE)
if match:
num = match.group(1).upper()
# Normalize format
if 'B' in num:
size = num.replace('B', 'B').upper()
elif 'M' in num:
size = num.replace('M', 'M').upper()
break
return size
def search_models(models, search_query: str):
"""Filter models based on search query."""
if not search_query or search_query.strip() == "":
return models
query = search_query.strip().lower()
filtered_models = []
# Check if query looks like a regex pattern
is_regex = False
try:
if query.startswith('^') or query.endswith('$') or '\\' in query or '[' in query or ']' in query:
is_regex = True
pattern = re.compile(query)
except re.error:
is_regex = False
for model in models:
model_id = model.modelId.lower()
author = model_id.split('/')[0] if '/' in model_id else ''
name = model_id.split('/')[-1] if '/' in model_id else model_id
tags_str = ' '.join(model.tags or []).lower()
search_target = f"{model_id} {author} {name} {tags_str}"
if is_regex:
if pattern.search(search_target):
filtered_models.append(model)
else:
# Simple substring search
if query in search_target:
filtered_models.append(model)
return filtered_models
def get_model_details(model_id: str):
"""Fetch detailed information for a specific model."""
try:
model = api.model_info(model_id)
return model
except Exception as e:
print(f"Error fetching model details for {model_id}: {e}")
return None
def compare_models(model_ids: list):
"""Compare multiple models side-by-side."""
if not model_ids:
return "No models selected for comparison."
comparison_data = []
for model_id in model_ids:
model = get_model_details(model_id)
if model:
comparison_data.append({
'Model': model_id,
'Downloads': getattr(model, 'downloads', 'N/A'),
'Likes': getattr(model, 'likes', 'N/A'),
'Category': categorize_model(model),
'Family': detect_family(model_id, getattr(model, 'tags', [])),
'License': extract_license(getattr(model, 'tags', [])),
'Params': extract_param_size(getattr(model, 'tags', []), model_id),
'Created': getattr(model, 'createdAt', 'N/A'),
'Last Modified': getattr(model, 'lastModified', 'N/A'),
'Tags': ', '.join(getattr(model, 'tags', [])[:5]) # Top 5 tags
})
if not comparison_data:
return "Could not fetch details for selected models."
# Create comparison table
df = pd.DataFrame(comparison_data)
return df
def get_trending_models(period="7d", limit=50):
"""Get trending models based on recent activity."""
try:
# Fetch models sorted by downloads in the specified period
params = {
"sort": "downloads",
"direction": -1,
"limit": limit,
"last": period,
"full": "true"
}
response = requests.get(
"https://huggingface.co/api/models",
params=params,
timeout=30
)
response.raise_for_status()
raw_models = response.json()
models = [_convert_model_payload(payload) for payload in raw_models]
# Calculate growth metrics
trending_data = []
for model in models:
downloads = getattr(model, 'downloads', 0) or 0
likes = getattr(model, 'likes', 0) or 0
# Calculate a trending score (combination of downloads and likes)
# This is a simple heuristic - could be enhanced with more data
trending_score = downloads + (likes * 10) # Weight likes more heavily
trending_data.append({
'model': model,
'trending_score': trending_score,
'downloads': downloads,
'likes': likes
})
# Sort by trending score
trending_data.sort(key=lambda x: x['trending_score'], reverse=True)
# Format for display
result_data = []
for idx, item in enumerate(trending_data[:limit], 1):
model = item['model']
gem_badge = "💎 " if is_hidden_gem(item['downloads'], item['likes'], model.tags or []) else ""
display_label = f"{gem_badge}{model.modelId}"
link = f"https://huggingface.co/{model.modelId}"
result_data.append({
"Rank": idx,
"Model": f"[{display_label}]({link})",
"Downloads": format_number(item['downloads']),
"Likes": format_number(item['likes']),
"Trending Score": format_number(item['trending_score']),
"Category": categorize_model(model),
"Family": detect_family(model.modelId, model.tags or []),
"Created": getattr(model, 'createdAt', 'N/A')
})
return pd.DataFrame(result_data)
except Exception as e:
print(f"Error fetching trending models: {e}")
return pd.DataFrame()
def export_models_to_csv(models_data):
"""Export models data to CSV format."""
if not models_data or len(models_data) == 0:
return "No data to export."
try:
# Convert to DataFrame and then to CSV
df = pd.DataFrame(models_data)
csv_content = df.to_csv(index=False)
return csv_content
except Exception as e:
return f"Error exporting to CSV: {e}"
def export_models_to_json(models_data):
"""Export models data to JSON format."""
if not models_data or len(models_data) == 0:
return "No data to export."
try:
json_content = json.dumps(models_data, indent=2)
return json_content
except Exception as e:
return f"Error exporting to JSON: {e}"
FAMILY_KEYWORDS = {
"llama": "LLaMA",
"mistral": "Mistral",
"mixtral": "Mixtral",
"phi": "Phi",
"gemma": "Gemma",
"qwen": "Qwen",
"falcon": "Falcon",
"yi": "Yi",
"deepseek": "DeepSeek",
"openelm": "OpenELM",
"gpt-neox": "GPT-NeoX",
"opt": "OPT",
"command": "Command",
}
def detect_family(model_id: str, tags) -> str:
"""Heuristic to map model to a known family."""
lowered = model_id.lower()
tag_join = " ".join((tags or [])).lower()
for keyword, family in FAMILY_KEYWORDS.items():
if keyword in lowered or keyword in tag_join:
return family
return model_id.split("/")[-1].split("-")[0].title()
def determine_access(model) -> str:
"""Return access status string for model."""
if getattr(model, "gated", False) or getattr(model, "private", False):
return "Gated"
return "Open"
HIDDEN_GEM_DOWNLOAD_LIMIT = 2_000
HIDDEN_GEM_RATIO_THRESHOLD = 0.1 # likes per download
REPRO_TAG_KEYWORDS = [
"reproducibility",
"reproducible",
"replicate",
"benchmark",
"leaderboard",
"evaluation",
"arxiv:",
"paper",
"paperswithcode"
]
def has_reproducibility_signal(tags) -> bool:
if not tags:
return False
tags_lower = [tag.lower() for tag in tags]
for keyword in REPRO_TAG_KEYWORDS:
if any(keyword in tag for tag in tags_lower):
return True
return False
def is_hidden_gem(downloads: int, likes: int, tags) -> bool:
if downloads is None:
downloads = 0
if likes is None:
likes = 0
if downloads == 0:
ratio = likes
else:
ratio = likes / downloads
return (
downloads < HIDDEN_GEM_DOWNLOAD_LIMIT and
ratio >= HIDDEN_GEM_RATIO_THRESHOLD and
has_reproducibility_signal(tags)
)
def get_filter_options():
"""Return sorted unique families and licenses for UI controls."""
models = fetch_models()
families = set()
licenses = set()
for model in models:
families.add(detect_family(model.modelId, model.tags or []))
licenses.add(extract_license(model.tags or []))
families.discard("")
licenses.discard("")
return sorted(families), sorted(licenses)
def format_number(num):
"""Format large numbers for display."""
try:
num = int(num)
except Exception:
return "0"
if num >= 1_000_000:
return f"{num/1_000_000:.1f}M"
elif num >= 1_000:
return f"{num/1_000:.1f}K"
return str(num)
def process_models(category_filter="All", family_filter="All", license_filter="All",
access_filter="All", hidden_gems_only=False,
sort_by="downloads", max_results=50, timeframe="All Time",
active_only=False, activity_window="30d", param_size_min=None, param_size_max=None,
search_query=""):
"""Process and filter models based on category, metadata filters, and sort preference."""
fetch_limit = 1000 if hidden_gems_only or active_only else 500
last_param = activity_window if active_only else None
sort_param = "likes" if hidden_gems_only else sort_by
models = fetch_models(limit=fetch_limit, sort=sort_param, last=last_param)
# Apply search filter first
models = search_models(models, search_query)
if not models:
return pd.DataFrame(columns=[
"Rank", "Model", "Downloads", "Likes", "Category",
"Family", "License", "Access", "Created"
])
# Calculate timeframe cutoff
now = datetime.now(timezone.utc)
timeframe_cutoffs = {
"Last Day": now - timedelta(days=1),
"Last Week": now - timedelta(weeks=1),
"Last Month": now - timedelta(days=30),
"Last 3 Months": now - timedelta(days=90),
"All Time": None
}
cutoff_date = timeframe_cutoffs.get(timeframe)
# Process model data
model_data = []
for model in models:
# Determine model date
model_date = getattr(model, 'createdAt', None) or getattr(model, 'lastModified', None)
if model_date is not None:
if isinstance(model_date, datetime):
if model_date.tzinfo is None:
model_date = model_date.replace(tzinfo=timezone.utc)
else:
model_date = model_date.astimezone(timezone.utc)
else:
try:
iso_str = str(model_date)
if iso_str.endswith('Z'):
iso_str = iso_str[:-1] + '+00:00'
model_date = datetime.fromisoformat(iso_str)
if model_date.tzinfo is None:
model_date = model_date.replace(tzinfo=timezone.utc)
else:
model_date = model_date.astimezone(timezone.utc)
except Exception:
model_date = None
if cutoff_date is not None:
if model_date is None or model_date < cutoff_date:
continue
license_tag = extract_license(model.tags or [])
family = detect_family(model.modelId, model.tags or [])
access = determine_access(model)
hidden_gem = is_hidden_gem(getattr(model, 'downloads', 0), getattr(model, 'likes', 0), model.tags or [])
category = categorize_model(model)
param_size = extract_param_size(model.tags or [], model.modelId)
# Apply filters
if category_filter != "All" and category != category_filter:
continue
if family_filter != "All" and family != family_filter:
continue
if license_filter != "All" and license_tag != license_filter:
continue
if access_filter != "All" and access != access_filter:
continue
if hidden_gems_only and not hidden_gem:
continue
# Apply parameter size filter if specified
if param_size_min is not None and param_size_min > 0:
if param_size == "Unknown":
continue
try:
# Convert parameter size to billions for comparison
if param_size.endswith('B'):
size_b = float(param_size[:-1])
elif param_size.endswith('M'):
size_b = float(param_size[:-1]) / 1000
else:
continue
if size_b < param_size_min:
continue
except ValueError:
continue
if param_size_max is not None and param_size_max < 100:
if param_size == "Unknown":
continue
try:
# Convert parameter size to billions for comparison
if param_size.endswith('B'):
size_b = float(param_size[:-1])
elif param_size.endswith('M'):
size_b = float(param_size[:-1]) / 1000
else:
continue
if size_b > param_size_max:
continue
except ValueError:
continue
downloads = getattr(model, 'downloads', 0) or 0
likes = getattr(model, 'likes', 0) or 0
model_id = model.modelId
author = model_id.split('/')[0] if '/' in model_id else 'N/A'
name = model_id.split('/')[-1] if '/' in model_id else model_id
created_str = model_date.strftime("%Y-%m-%d") if model_date else "N/A"
model_data.append({
'model_id': model_id,
'downloads': downloads,
'likes': likes,
'category': category,
'author': author,
'name': name,
'created': created_str,
'license': license_tag,
'family': family,
'access': access,
'hidden_gem': hidden_gem,
'param_size': param_size,
})
# Sort models
if sort_by == "downloads":
model_data.sort(key=lambda x: x['downloads'], reverse=True)
elif sort_by == "likes":
model_data.sort(key=lambda x: x['likes'], reverse=True)
else:
model_data.sort(key=lambda x: x['downloads'], reverse=True)
# Limit results
model_data = model_data[:int(max_results) if max_results is not None else 50]
# Create DataFrame for display
df_data = []
export_data = [] # Raw data for export
for idx, model in enumerate(model_data, 1):
gem_badge = "💎 " if model['hidden_gem'] else ""
display_label = f"{gem_badge}{model['model_id']}"
link = f"https://huggingface.co/{model['model_id']}"
df_data.append({
"Rank": idx,
"Model": f"[{display_label}]({link})",
"Downloads": format_number(model['downloads']),
"Likes": format_number(model['likes']),
"Category": model['category'],
"Family": model['family'],
"License": model['license'],
"Access": model['access'],
"Params": model['param_size'],
"Created": model['created']
})
# Add raw data for export
export_data.append({
"rank": idx,
"model_id": model['model_id'],
"downloads": model['downloads'],
"likes": model['likes'],
"category": model['category'],
"family": model['family'],
"license": model['license'],
"access": model['access'],
"param_size": model['param_size'],
"created": model['created'],
"author": model['author'],
"name": model['name'],
"hidden_gem": model['hidden_gem']
})
df = pd.DataFrame(df_data, columns=[
"Rank", "Model", "Downloads", "Likes", "Category", "Family",
"License", "Access", "Params", "Created"
])
return df
def create_ui():
"""Create the Gradio interface."""
families, licenses = get_filter_options()
family_choices = ["All"] + families
license_choices = ["All"] + licenses
access_choices = ["All", "Open", "Gated"]
with gr.Blocks(theme=gr.themes.Soft(), title="Model Rank") as app:
gr.Markdown("# Model Rank")
with gr.Tabs():
with gr.Tab("Browse Models"):
# MODELS TABLE AT THE VERY TOP - Most prominent position
output = gr.Dataframe(
headers=["Rank", "Model", "Downloads", "Likes", "Category", "Family", "License", "Access", "Params", "Created"],
datatype=["number", "markdown", "str", "str", "str", "str", "str", "str", "str", "str"],
label="Models",
wrap=True,
interactive=False,
column_widths=["5%", "28%", "8%", "7%", "9%", "9%", "8%", "7%", "7%", "12%"]
)
# ALL FILTERS BELOW - In a clean row layout
with gr.Row():
with gr.Column(scale=1):
category = gr.Radio(
choices=["All", "Base Model", "Fine-Tune", "Quant"],
value="All",
label="Category Filter",
info="Filter models by category"
)
family = gr.Dropdown(
choices=family_choices,
value="All",
label="Model Family",
allow_custom_value=False
)
license_filter = gr.Dropdown(
choices=license_choices,
value="All",
label="License",
allow_custom_value=False
)
param_size_min = gr.Slider(
minimum=0,
maximum=100,
value=0,
step=0.1,
label="Min Parameter Size (B)",
info="Minimum parameter size in billions (0 = no minimum)"
)
param_size_max = gr.Slider(
minimum=0,
maximum=100,
value=100,
step=0.1,
label="Max Parameter Size (B)",
info="Maximum parameter size in billions (100 = no maximum)"
)
access = gr.Radio(
choices=access_choices,
value="All",
label="Access",
info="Filter by whether the model is open or gated"
)
hidden_gems = gr.Checkbox(
value=False,
label="Show Hidden Gems only",
info="Models with reproducibility tags, high likes/downloads ratio, and <2K downloads"
)
active_only = gr.Checkbox(
value=False,
label="Only Active Models",
info="Restrict to models with downloads in the selected recent window"
)
activity_window = gr.Radio(
choices=["7d", "14d", "30d", "90d"],
value="30d",
label="Activity Window",
info="Period for measuring recent downloads"
)
timeframe = gr.Radio(
choices=["Last Day", "Last Week", "Last Month", "Last 3 Months", "All Time"],
value="All Time",
label="Timeframe",
info="Filter by when model was created"
)
sort_by = gr.Radio(
choices=["downloads", "likes"],
value="downloads",
label="Sort By",
info="Sort models by downloads or likes"
)
max_results = gr.Slider(
minimum=10,
maximum=100,
value=50,
step=1,
label="Max Results",
info="Number of models to display"
)
search_query = gr.Textbox(
label="Search Models",
placeholder="Search by name, author, or tags...",
info="Supports regex patterns (e.g., 'llama.*70b')"
)
# Refresh button at the very bottom
with gr.Row():
refresh_btn = gr.Button("Refresh Data", variant="primary")
with gr.Tab("Trending Models"):
gr.Markdown("### Trending Models")
gr.Markdown("Discover models that are gaining popularity!")
trending_period = gr.Radio(
choices=["7d", "14d", "30d", "90d"],
value="7d",
label="Trending Period",
info="Time window for calculating trending models"
)
trending_limit = gr.Slider(
minimum=10,
maximum=100,
value=50,
step=1,
label="Number of Models",
info="How many trending models to display"
)
refresh_trending_btn = gr.Button("Refresh Trending Models", variant="primary")
trending_output = gr.Dataframe(
label="Trending Models",
datatype=["number", "markdown", "str", "str", "str", "str", "str", "str"],
interactive=False,
column_widths=["5%", "30%", "10%", "10%", "12%", "10%", "10%", "13%"]
)
trending_status = gr.Textbox(label="Status", visible=False)
def update_trending(period, limit):
df = get_trending_models(period, int(limit))
if df.empty:
return df, "No trending models found."
else:
return df, f"Showing top {limit} trending models for {period}"
def refresh_trending(period, limit):
# Clear cache for fresh data
model_cache.clear()
return update_trending(period, limit)
trending_period.change(fn=update_trending, inputs=[trending_period, trending_limit], outputs=[trending_output, trending_status])
trending_limit.change(fn=update_trending, inputs=[trending_period, trending_limit], outputs=[trending_output, trending_status])
refresh_trending_btn.click(fn=refresh_trending, inputs=[trending_period, trending_limit], outputs=[trending_output, trending_status])
with gr.Tab("Compare Models"):
gr.Markdown("### Model Comparison")
gr.Markdown("Enter model IDs to compare (one per line):")
models_to_compare = gr.Textbox(
label="Model IDs",
placeholder="meta-llama/Llama-2-70b-chat-hf\nmistralai/Mistral-7B-Instruct-v0.1",
lines=5
)
compare_btn = gr.Button("Compare Models", variant="primary")
comparison_output = gr.Dataframe(
label="Comparison Results",
interactive=False
)
comparison_status = gr.Textbox(label="Status", visible=False)
# Event handlers
def update_table(cat, fam, lic, acc, gems, active, window, time, sort, max_res, param_min, param_max, search_q):
df = process_models(cat, fam, lic, acc, gems, sort, int(max_res), time, active, window, param_min, param_max, search_q)
return df
def refresh_and_update(cat, fam, lic, acc, gems, active, window, time, sort, max_res, param_min, param_max, search_q):
# Clear cache to force refresh
model_cache.clear()
df = process_models(cat, fam, lic, acc, gems, sort, int(max_res), time, active, window, param_min, param_max, search_q)
return df
inputs = [category, family, license_filter, access, hidden_gems, active_only, activity_window, timeframe, sort_by, max_results, param_size_min, param_size_max, search_query]
# Update all outputs - viewing only, no export
category.change(fn=update_table, inputs=inputs, outputs=output)
family.change(fn=update_table, inputs=inputs, outputs=output)
license_filter.change(fn=update_table, inputs=inputs, outputs=output)
access.change(fn=update_table, inputs=inputs, outputs=output)
hidden_gems.change(fn=update_table, inputs=inputs, outputs=output)
active_only.change(fn=update_table, inputs=inputs, outputs=output)
activity_window.change(fn=update_table, inputs=inputs, outputs=output)
timeframe.change(fn=update_table, inputs=inputs, outputs=output)
sort_by.change(fn=update_table, inputs=inputs, outputs=output)
max_results.change(fn=update_table, inputs=inputs, outputs=output)
search_query.change(fn=update_table, inputs=inputs, outputs=output)
refresh_btn.click(fn=refresh_and_update, inputs=inputs, outputs=output)
def perform_comparison(model_ids_text):
model_ids = [mid.strip() for mid in model_ids_text.split('\n') if mid.strip()]
if not model_ids:
return pd.DataFrame(), "Please enter at least one model ID."
result = compare_models(model_ids)
if isinstance(result, str):
# Error message
return pd.DataFrame(), result
else:
return result, "Comparison completed successfully."
compare_btn.click(
fn=perform_comparison,
inputs=models_to_compare,
outputs=[comparison_output, comparison_status]
)
# Load initial data
app.load(fn=lambda: update_table(*[x.value for x in inputs[:-1]], ""), outputs=output)
return app
if __name__ == "__main__":
app = create_ui()
app.launch() |