Spaces:
Sleeping
Sleeping
| # Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """Builder class for preparing tf.train.Example.""" | |
| # https://www.python.org/dev/peps/pep-0563/#enabling-the-future-behavior-in-python-3-7 | |
| from __future__ import annotations | |
| from typing import Mapping, Sequence, Union | |
| import numpy as np | |
| import tensorflow as tf, tf_keras | |
| BytesValueType = Union[bytes, Sequence[bytes], str, Sequence[str]] | |
| _to_array = lambda v: [v] if not isinstance(v, (list, np.ndarray)) else v | |
| _to_bytes = lambda v: v.encode() if isinstance(v, str) else v | |
| _to_bytes_array = lambda v: list(map(_to_bytes, _to_array(v))) | |
| class TfExampleBuilder(object): | |
| """Builder class for preparing tf.train.Example. | |
| Read API doc at https://www.tensorflow.org/api_docs/python/tf/train/Example. | |
| Example usage: | |
| >>> example_builder = TfExampleBuilder() | |
| >>> example = ( | |
| example_builder.add_bytes_feature('feature_a', 'foobarbaz') | |
| .add_ints_feature('feature_b', [1, 2, 3]) | |
| .example) | |
| """ | |
| def __init__(self) -> None: | |
| self._example = tf.train.Example() | |
| def example(self) -> tf.train.Example: | |
| """Returns a copy of the generated tf.train.Example proto.""" | |
| return self._example | |
| def serialized_example(self) -> str: | |
| """Returns a serialized string of the generated tf.train.Example proto.""" | |
| return self._example.SerializeToString() | |
| def set(self, example: tf.train.Example) -> TfExampleBuilder: | |
| """Sets the example.""" | |
| self._example = example | |
| return self | |
| def reset(self) -> TfExampleBuilder: | |
| """Resets the example to an empty proto.""" | |
| self._example = tf.train.Example() | |
| return self | |
| ###### Basic APIs for primitive data types ###### | |
| def add_feature_dict( | |
| self, feature_dict: Mapping[str, tf.train.Feature]) -> TfExampleBuilder: | |
| """Adds the predefined `feature_dict` to the example. | |
| Note: Please prefer to using feature-type-specific methods. | |
| Args: | |
| feature_dict: A dictionary from tf.Example feature key to | |
| tf.train.Feature. | |
| Returns: | |
| The builder object for subsequent method calls. | |
| """ | |
| for k, v in feature_dict.items(): | |
| self._example.features.feature[k].CopyFrom(v) | |
| return self | |
| def add_feature(self, key: str, | |
| feature: tf.train.Feature) -> TfExampleBuilder: | |
| """Adds predefined `feature` with `key` to the example. | |
| Args: | |
| key: String key of the feature. | |
| feature: The feature to be added to the example. | |
| Returns: | |
| The builder object for subsequent method calls. | |
| """ | |
| self._example.features.feature[key].CopyFrom(feature) | |
| return self | |
| def add_bytes_feature(self, key: str, | |
| value: BytesValueType) -> TfExampleBuilder: | |
| """Adds byte(s) or string(s) with `key` to the example. | |
| Args: | |
| key: String key of the feature. | |
| value: The byte(s) or string(s) to be added to the example. | |
| Returns: | |
| The builder object for subsequent method calls. | |
| """ | |
| return self.add_feature( | |
| key, | |
| tf.train.Feature( | |
| bytes_list=tf.train.BytesList(value=_to_bytes_array(value)))) | |
| def add_ints_feature(self, key: str, | |
| value: Union[int, Sequence[int]]) -> TfExampleBuilder: | |
| """Adds integer(s) with `key` to the example. | |
| Args: | |
| key: String key of the feature. | |
| value: The integer(s) to be added to the example. | |
| Returns: | |
| The builder object for subsequent method calls. | |
| """ | |
| return self.add_feature( | |
| key, | |
| tf.train.Feature(int64_list=tf.train.Int64List(value=_to_array(value)))) | |
| def add_floats_feature( | |
| self, key: str, value: Union[float, Sequence[float]]) -> TfExampleBuilder: | |
| """Adds float(s) with `key` to the example. | |
| Args: | |
| key: String key of the feature. | |
| value: The float(s) to be added to the example. | |
| Returns: | |
| The builder object for subsequent method calls. | |
| """ | |
| return self.add_feature( | |
| key, | |
| tf.train.Feature(float_list=tf.train.FloatList(value=_to_array(value)))) | |