Spaces:
Sleeping
Sleeping
| # Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """Miscellaneous functions that can be called by models.""" | |
| import numbers | |
| from absl import logging | |
| import tensorflow as tf, tf_keras | |
| from tensorflow.python.util import nest | |
| # pylint:disable=logging-format-interpolation | |
| def past_stop_threshold(stop_threshold, eval_metric): | |
| """Return a boolean representing whether a model should be stopped. | |
| Args: | |
| stop_threshold: float, the threshold above which a model should stop | |
| training. | |
| eval_metric: float, the current value of the relevant metric to check. | |
| Returns: | |
| True if training should stop, False otherwise. | |
| Raises: | |
| ValueError: if either stop_threshold or eval_metric is not a number | |
| """ | |
| if stop_threshold is None: | |
| return False | |
| if not isinstance(stop_threshold, numbers.Number): | |
| raise ValueError("Threshold for checking stop conditions must be a number.") | |
| if not isinstance(eval_metric, numbers.Number): | |
| raise ValueError("Eval metric being checked against stop conditions " | |
| "must be a number.") | |
| if eval_metric >= stop_threshold: | |
| logging.info("Stop threshold of {} was passed with metric value {}.".format( | |
| stop_threshold, eval_metric)) | |
| return True | |
| return False | |
| def generate_synthetic_data(input_shape, | |
| input_value=0, | |
| input_dtype=None, | |
| label_shape=None, | |
| label_value=0, | |
| label_dtype=None): | |
| """Create a repeating dataset with constant values. | |
| Args: | |
| input_shape: a tf.TensorShape object or nested tf.TensorShapes. The shape of | |
| the input data. | |
| input_value: Value of each input element. | |
| input_dtype: Input dtype. If None, will be inferred by the input value. | |
| label_shape: a tf.TensorShape object or nested tf.TensorShapes. The shape of | |
| the label data. | |
| label_value: Value of each input element. | |
| label_dtype: Input dtype. If None, will be inferred by the target value. | |
| Returns: | |
| Dataset of tensors or tuples of tensors (if label_shape is set). | |
| """ | |
| # TODO(kathywu): Replace with SyntheticDataset once it is in contrib. | |
| element = input_element = nest.map_structure( | |
| lambda s: tf.constant(input_value, input_dtype, s), input_shape) | |
| if label_shape: | |
| label_element = nest.map_structure( | |
| lambda s: tf.constant(label_value, label_dtype, s), label_shape) | |
| element = (input_element, label_element) | |
| return tf.data.Dataset.from_tensors(element).repeat() | |
| def apply_clean(flags_obj): | |
| if flags_obj.clean and tf.io.gfile.exists(flags_obj.model_dir): | |
| logging.info("--clean flag set. Removing existing model dir:" | |
| " {}".format(flags_obj.model_dir)) | |
| tf.io.gfile.rmtree(flags_obj.model_dir) | |