Spaces:
Sleeping
Sleeping
| # Copyright 2023 The TensorFlow Authors. All Rights Reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """Mock task for testing.""" | |
| import dataclasses | |
| import numpy as np | |
| import tensorflow as tf, tf_keras | |
| from official.core import base_task | |
| from official.core import config_definitions as cfg | |
| from official.core import exp_factory | |
| from official.modeling.hyperparams import base_config | |
| class MockModel(tf_keras.Model): | |
| def __init__(self, network): | |
| super().__init__() | |
| self.network = network | |
| def call(self, inputs): # pytype: disable=signature-mismatch # overriding-parameter-count-checks | |
| outputs = self.network(inputs) | |
| self.add_loss(tf.reduce_mean(outputs)) | |
| return outputs | |
| class MockTaskConfig(cfg.TaskConfig): | |
| pass | |
| class MockTask(base_task.Task): | |
| """Mock task object for testing.""" | |
| def __init__(self, params=None, logging_dir=None, name=None): | |
| super().__init__(params=params, logging_dir=logging_dir, name=name) | |
| def build_model(self, *arg, **kwargs): | |
| inputs = tf_keras.layers.Input(shape=(2,), name="random", dtype=tf.float32) | |
| outputs = tf_keras.layers.Dense( | |
| 1, bias_initializer=tf_keras.initializers.Ones(), name="dense_0")( | |
| inputs) | |
| network = tf_keras.Model(inputs=inputs, outputs=outputs) | |
| return MockModel(network) | |
| def build_metrics(self, training: bool = True): | |
| del training | |
| return [tf_keras.metrics.Accuracy(name="acc")] | |
| def validation_step(self, inputs, model: tf_keras.Model, metrics=None): | |
| logs = super().validation_step(inputs, model, metrics) | |
| logs["counter"] = tf.constant(1, dtype=tf.float32) | |
| return logs | |
| def build_inputs(self, params): | |
| def generate_data(_): | |
| x = tf.zeros(shape=(2,), dtype=tf.float32) | |
| label = tf.zeros([1], dtype=tf.int32) | |
| return x, label | |
| dataset = tf.data.Dataset.range(1) | |
| dataset = dataset.repeat() | |
| dataset = dataset.map( | |
| generate_data, num_parallel_calls=tf.data.experimental.AUTOTUNE) | |
| return dataset.prefetch(buffer_size=1).batch(2, drop_remainder=True) | |
| def aggregate_logs(self, state, step_outputs): | |
| if state is None: | |
| state = {} | |
| for key, value in step_outputs.items(): | |
| if key not in state: | |
| state[key] = [] | |
| state[key].append( | |
| np.concatenate([np.expand_dims(v.numpy(), axis=0) for v in value])) | |
| return state | |
| def reduce_aggregated_logs(self, aggregated_logs, global_step=None): | |
| for k, v in aggregated_logs.items(): | |
| aggregated_logs[k] = np.sum(np.stack(v, axis=0)) | |
| return aggregated_logs | |
| def mock_experiment() -> cfg.ExperimentConfig: | |
| config = cfg.ExperimentConfig( | |
| task=MockTaskConfig(), trainer=cfg.TrainerConfig()) | |
| return config | |