Spaces:
Sleeping
Sleeping
| # Copyright 2023 The Orbit Authors. All Rights Reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """Tests for orbit.standard_runner.""" | |
| from absl.testing import parameterized | |
| from orbit import standard_runner | |
| from orbit import utils | |
| import tensorflow as tf, tf_keras | |
| def dataset_fn(input_context=None): | |
| del input_context | |
| def dummy_data(_): | |
| return tf.zeros((1, 1), dtype=tf.float32) | |
| dataset = tf.data.Dataset.range(1) | |
| dataset = dataset.repeat() | |
| dataset = dataset.map( | |
| dummy_data, num_parallel_calls=tf.data.experimental.AUTOTUNE) | |
| return dataset | |
| class TestTrainer(standard_runner.StandardTrainer): | |
| """A StandardTrainer subclass for tests.""" | |
| def __init__(self, options=None): | |
| self.strategy = tf.distribute.get_strategy() | |
| self.global_step = utils.create_global_step() | |
| dataset = self.strategy.distribute_datasets_from_function(dataset_fn) | |
| super().__init__(train_dataset=dataset, options=options) | |
| def train_loop_begin(self): | |
| self.global_step.assign(0) | |
| def train_step(self, iterator): | |
| def replica_step(_): | |
| self.global_step.assign_add(1) | |
| self.strategy.run(replica_step, args=(next(iterator),)) | |
| def train_loop_end(self): | |
| return self.global_step.numpy() | |
| class TestEvaluator(standard_runner.StandardEvaluator): | |
| """A StandardEvaluator subclass for tests.""" | |
| def __init__(self, options=None): | |
| self.strategy = tf.distribute.get_strategy() | |
| self.global_step = utils.create_global_step() | |
| dataset = self.strategy.distribute_datasets_from_function(dataset_fn) | |
| super().__init__(eval_dataset=dataset, options=options) | |
| def eval_begin(self): | |
| self.global_step.assign(0) | |
| def eval_step(self, iterator): | |
| def replica_step(_): | |
| self.global_step.assign_add(1) | |
| self.strategy.run(replica_step, args=(next(iterator),)) | |
| def eval_end(self): | |
| return self.global_step.numpy() | |
| class TestEvaluatorWithOutputsAggregation(standard_runner.StandardEvaluator): | |
| """A StandardEvaluator subclass for tests.""" | |
| def __init__(self, options=None): | |
| self.strategy = tf.distribute.get_strategy() | |
| dataset = self.strategy.distribute_datasets_from_function( | |
| lambda _: tf.data.Dataset.range(10)) | |
| super().__init__(eval_dataset=dataset, options=options) | |
| def eval_begin(self): | |
| return {"logits": tf.constant((0.0,))} | |
| def eval_reduce(self, state, step_outputs): | |
| state["logits"] = tf.concat([state["logits"], step_outputs], 0) | |
| return state | |
| def eval_step(self, iterator): | |
| def replica_step(x): | |
| x = tf.cast(x, tf.float32) | |
| return tf.reduce_sum(x) | |
| return self.strategy.experimental_local_results( | |
| self.strategy.run(replica_step, args=(next(iterator),))) | |
| def eval_end(self, outputs): | |
| return tf.reduce_sum(outputs["logits"]) | |
| class StandardRunnerTest(parameterized.TestCase): | |
| def test_default_trainer(self): | |
| trainer = TestTrainer() | |
| self.assertEqual(trainer.train(tf.constant(10)), 10) | |
| def test_trainer_with_tpu_summary_optimization(self): | |
| options = standard_runner.StandardTrainerOptions( | |
| use_tpu_summary_optimization=True) | |
| trainer = TestTrainer(options) | |
| self.assertEqual(trainer.train(tf.constant(10)), 10) | |
| def test_default_evaluator(self, use_tf_while_loop): | |
| options = standard_runner.StandardEvaluatorOptions( | |
| use_tf_while_loop=use_tf_while_loop) | |
| evaluator = TestEvaluator(options) | |
| self.assertEqual(evaluator.evaluate(tf.constant(10)), 10) | |
| def test_evaluator_with_outputs_aggregation(self, use_tf_while_loop): | |
| options = standard_runner.StandardEvaluatorOptions( | |
| use_tf_while_loop=use_tf_while_loop) | |
| evaluator = TestEvaluatorWithOutputsAggregation(options) | |
| self.assertEqual(evaluator.evaluate(tf.constant(10)), 45) | |
| def test_evaluator_with_repeat_dataset(self, recreate_iterator_for_each_eval, | |
| sum_for_1st_time, sum_for_2nd_time): | |
| options = standard_runner.StandardEvaluatorOptions( | |
| recreate_iterator_for_each_eval=recreate_iterator_for_each_eval) | |
| evaluator = TestEvaluatorWithOutputsAggregation(options) | |
| self.assertEqual(evaluator.evaluate(tf.constant(5)), sum_for_1st_time) | |
| self.assertEqual(evaluator.evaluate(tf.constant(5)), sum_for_2nd_time) | |
| if __name__ == "__main__": | |
| tf.test.main() | |