import os import glob from pathlib import Path from typing import List import numpy as np from tqdm import tqdm from src.ingestion.readers import get_reader from src.ingestion.cleaner import clean_text from src.ingestion.chunkers import SlidingWindowChunker from src.embeddings.embedder import Embedder from src.indexer.bm25_index import BM25Index from src.indexer.faiss_index import FaissIndex DATA_DIR = "data" RAW_DIR = os.path.join(DATA_DIR, "raw") INDEX_DIR = os.path.join(DATA_DIR, "index") class IngestionPipeline: def __init__(self): self.chunker = SlidingWindowChunker() self.embedder = Embedder(model_name="all-MiniLM-L6-v2") self.bm25_index = BM25Index() # Dimension for all-MiniLM-L6-v2 is 384 self.faiss_index = FaissIndex(dimension=384) def run(self): print("Starting ingestion...") files = glob.glob(os.path.join(RAW_DIR, "*.*")) all_chunks = [] doc_map = [] # To map chunk index back to metadata/content if needed # 1. Read, Clean, Chunk print("Processing files...") for file_path in tqdm(files): path = Path(file_path) try: reader = get_reader(path) raw_text = reader.read(path) cleaned_text = clean_text(raw_text) chunks = self.chunker.chunk(cleaned_text) for chunk in chunks: all_chunks.append(chunk) doc_map.append({"source": str(path), "content": chunk}) except Exception as e: print(f"Error processing {path}: {e}") print(f"Total chunks generated: {len(all_chunks)}") # 2. Build BM25 Index print("Building BM25 Index...") self.bm25_index.build(all_chunks) os.makedirs(INDEX_DIR, exist_ok=True) self.bm25_index.save(os.path.join(INDEX_DIR, "bm25.pkl")) # 3. Embed and Build FAISS Index if not os.getenv("DISABLE_FAISS"): print("Embedding chunks and building FAISS Index...") batch_size = 32 for i in range(0, len(all_chunks), batch_size): batch = all_chunks[i : i + batch_size] embeddings = self.embedder.embed(batch) self.faiss_index.add(embeddings) self.faiss_index.save(os.path.join(INDEX_DIR, "faiss.index")) else: print("Skipping FAISS build due to DISABLE_FAISS environment variable.") # Create a dummy file to satisfy file existence checks if any (though lazy loaded) with open(os.path.join(INDEX_DIR, "faiss.index"), "w") as f: f.write("dummy") # Save doc_map (simple persistence for retrieval lookup) import pickle with open(os.path.join(INDEX_DIR, "doc_map.pkl"), "wb") as f: pickle.dump(doc_map, f) print("Ingestion complete.") if __name__ == "__main__": pipeline = IngestionPipeline() pipeline.run()