File size: 4,292 Bytes
cec6554
35e8939
 
cec6554
35e8939
 
 
 
 
 
 
f37436e
 
35e8939
 
 
 
 
cec6554
35e8939
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cec6554
 
 
 
35e8939
 
f37436e
cec6554
f37436e
 
cec6554
f37436e
 
 
 
 
cec6554
f37436e
cec6554
f37436e
 
cec6554
f37436e
 
 
 
 
cec6554
f37436e
cec6554
f37436e
 
cec6554
f37436e
 
 
 
 
cec6554
f37436e
cec6554
f37436e
 
 
 
 
cec6554
f37436e
 
 
 
 
cec6554
f37436e
cec6554
f37436e
 
 
 
 
 
 
cec6554
f37436e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
---
language: 
- code
tags:
- code-generation
- ai-assistant
- code-completion
- python
- machine-learning
- transformer
- gpt
license: mit
datasets:
- github-code
- stackoverflow
- synthetic-code
library_name: transformers
pipeline_tag: text-generation
model-index:
- name: Jaleah AI Code Generator
  results:
  - task: 
      type: text-generation
      name: Code Generation
    dataset:
      name: Multi-Source Python Code Corpus
      type: mixed
    metrics:
      - type: code-generation
        name: Code Generation Score
        value: experimental
      - type: syntax-correctness
        name: Syntax Correctness Rate
        value: high
      - type: contextual-relevance
        name: Contextual Relevance
        value: moderate
  parameters:
    max_length: 
      default: 200
      range: 
        - 50
        - 500
    temperature:
      default: 0.7
      range: 
        - 0.1
        - 1.0
    top_k:
      default: 50
      range: 
        - 1
        - 100
    top_p:
      default: 0.95
      range: 
        - 0.1
        - 1.0
model_type: causal
architectures:
- GPTNeoForCausalLM
training_config:
  base_model: microsoft/CodeGPT-small-py
  training_objective: causal-language-modeling
  compute_environment: 
    - gpu
    - cloud
  training_time: ~3 hours
  hardware: 
    - cuda
    - t4-gpu
---





# Jaleah AI Code Generation Model

## Model Description
Jaleah AI is a fine-tuned version of the Microsoft CodeGPT small Python model, specialized in generating high-quality Python code snippets across various domains.

### Model Details
- **Developed by:** TeckMill AI Research Team
- **Base Model:** microsoft/CodeGPT-small-py
- **Language:** Python
- **Version:** 1.0

# Jaleah AI Code Generation Model

## Model Description
Jaleah AI is a fine-tuned version of the Microsoft CodeGPT small Python model, specialized in generating high-quality Python code snippets across various domains.

### Model Details
- **Developed by:** TeckMill AI Research Team
- **Base Model:** microsoft/CodeGPT-small-py
- **Language:** Python
- **Version:** 1.0

# Jaleah AI Code Generation Model

## Model Description
Jaleah AI is a fine-tuned version of the Microsoft CodeGPT small Python model, specialized in generating high-quality Python code snippets across various domains.

### Model Details
- **Developed by:** TeckMill AI Research Team
- **Base Model:** microsoft/CodeGPT-small-py
- **Language:** Python
- **Version:** 1.0

## Intended Uses & Limitations

### Intended Uses
- Code snippet generation
- Assisting developers with Python programming
- Providing intelligent code suggestions
- Rapid prototyping of Python functions and classes

### Limitations
- May generate syntactically incorrect code
- Requires human review and validation
- Performance may vary across different coding domains
- Not suitable for complete project generation

## Training Data

### Data Sources
The model was trained on a diverse dataset including:
- GitHub trending repositories
- Stack Overflow top-rated code answers
- Open-source Python project codebases
- Synthetic code generation
- Complex algorithmic implementations

### Data Preprocessing
- Syntax validation
- Comment and docstring removal
- Length and complexity filtering

## Training Procedure

### Training Hyperparameters
- **Learning Rate:** 5e-05
- **Batch Size:** 4
- **Epochs:** 12
- **Optimizer:** AdamW
- **Learning Rate Scheduler:** Linear
- **Weight Decay:** 0.01

### Training Process
- Fine-tuning of pre-trained CodeGPT model
- Multi-source code collection
- Advanced synthetic code generation
- Rigorous code validation

## Evaluation
Detailed evaluation metrics to be added in future versions.

## Ethical Considerations
- Designed to assist, not replace, human developers
- Encourages learning and code understanding

## How to Use
```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("teckmill/jaleah-ai-model")
tokenizer = AutoTokenizer.from_pretrained("teckmill/jaleah-ai-model")

def generate_code(prompt, max_length=200):
    input_ids = tokenizer.encode(prompt, return_tensors="pt")
    output = model.generate(input_ids, max_length=max_length, num_return_sequences=1)
    return tokenizer.decode(output[0], skip_special_tokens=True)