Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
Paper
•
1908.10084
•
Published
•
10
This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-m-v2.0 on the train dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False, 'architecture': 'GteModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("BjarneNPO/finetune_21_08_2025_17_18_28")
# Run inference
queries = [
"fragt wie der Stand zu dem aktuellen Problem ist",
]
documents = [
'In Klärung mit der Kollegin - Das Problem liegt leider an deren Betreiber. Die sind aber informiert und arbeiten bereits daran',
'findet diese in der Übersicht der Gruppen.',
'Userin muss sich an die Bistums IT wenden.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 768] [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[0.3229, 0.0208, 0.0018]])
Snowflake/snowflake-arctic-embed-m-v2.0scripts.InformationRetrievalEvaluatorCustom.InformationRetrievalEvaluatorCustom with these parameters:{
"query_prompt_name": "query",
"corpus_prompt_name": "document"
}
| Metric | Value |
|---|---|
| cosine_accuracy@1 | 0.3285 |
| cosine_accuracy@3 | 0.5255 |
| cosine_accuracy@5 | 0.5912 |
| cosine_accuracy@10 | 0.6788 |
| cosine_precision@1 | 0.3285 |
| cosine_precision@3 | 0.2822 |
| cosine_precision@5 | 0.2672 |
| cosine_precision@10 | 0.2482 |
| cosine_recall@1 | 0.0111 |
| cosine_recall@3 | 0.0375 |
| cosine_recall@5 | 0.0654 |
| cosine_recall@10 | 0.109 |
| cosine_ndcg@10 | 0.2705 |
| cosine_mrr@10 | 0.4461 |
| cosine_map@100 | 0.1168 |
query and answer| query | answer | |
|---|---|---|
| type | string | string |
| details |
|
|
| query | answer |
|---|---|
Wie kann man die Jahresurlaubsübersicht exportieren? |
über das 3 Punkte Menü rechts oben. Mitarbeiter auswählen und exportieren |
1. Vertragsabschlüsse werden nicht übertragen |
|
2. Kinder kommen nicht von nach |
|
3. Absage kann bei Portalstatus nicht erstellt werden. |
Ticket |
Userin gebeten sich an den Support zu wenden, da der Fehler liegt. |
|
Wird im Anmeldeportal nicht gefunden. |
Die Schnittstelle war noch nicht aktiviert und Profil ebenfalls nicht. |
MultipleNegativesRankingLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "cos_sim",
"gather_across_devices": false
}
eval_strategy: epochper_device_train_batch_size: 64per_device_eval_batch_size: 32gradient_accumulation_steps: 4learning_rate: 2e-05num_train_epochs: 30lr_scheduler_type: cosinewarmup_ratio: 0.1bf16: Truetf32: Trueload_best_model_at_end: Truebatch_sampler: no_duplicatesoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: epochprediction_loss_only: Trueper_device_train_batch_size: 64per_device_eval_batch_size: 32per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 4eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 30max_steps: -1lr_scheduler_type: cosinelr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Truefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Truelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportionalrouter_mapping: {}learning_rate_mapping: {}| Epoch | Step | Training Loss | Snowflake/snowflake-arctic-embed-m-v2.0_cosine_ndcg@10 |
|---|---|---|---|
| 0.1282 | 10 | 3.4959 | - |
| 0.2564 | 20 | 3.4292 | - |
| 0.3846 | 30 | 3.4574 | - |
| 0.5128 | 40 | 3.2452 | - |
| 0.6410 | 50 | 3.138 | - |
| 0.7692 | 60 | 3.0415 | - |
| 0.8974 | 70 | 2.927 | - |
| 1.0 | 78 | - | 0.2437 |
| 1.0256 | 80 | 2.7918 | - |
| 1.1538 | 90 | 2.7491 | - |
| 1.2821 | 100 | 2.6212 | - |
| 1.4103 | 110 | 2.5664 | - |
| 1.5385 | 120 | 2.4249 | - |
| 1.6667 | 130 | 2.3568 | - |
| 1.7949 | 140 | 2.2513 | - |
| 1.9231 | 150 | 2.2262 | - |
| 2.0 | 156 | - | 0.2782 |
| 2.0513 | 160 | 2.0465 | - |
| 2.1795 | 170 | 2.0932 | - |
| 2.3077 | 180 | 2.0553 | - |
| 2.4359 | 190 | 1.9922 | - |
| 2.5641 | 200 | 1.9537 | - |
| 2.6923 | 210 | 1.8484 | - |
| 2.8205 | 220 | 1.8762 | - |
| 2.9487 | 230 | 1.755 | - |
| 3.0 | 234 | - | 0.2676 |
| 3.0769 | 240 | 1.6551 | - |
| 3.2051 | 250 | 1.7135 | - |
| 3.3333 | 260 | 1.6684 | - |
| 3.4615 | 270 | 1.6556 | - |
| 3.5897 | 280 | 1.5677 | - |
| 3.7179 | 290 | 1.5067 | - |
| 3.8462 | 300 | 1.5204 | - |
| 3.9744 | 310 | 1.4643 | - |
| 4.0 | 312 | - | 0.2541 |
| 4.1026 | 320 | 1.3292 | - |
| 4.2308 | 330 | 1.4336 | - |
| 4.3590 | 340 | 1.4306 | - |
| 4.4872 | 350 | 1.3455 | - |
| 4.6154 | 360 | 1.3079 | - |
| 4.7436 | 370 | 1.2589 | - |
| 4.8718 | 380 | 1.2851 | - |
| 5.0 | 390 | 1.201 | 0.2543 |
| 5.1282 | 400 | 1.1415 | - |
| 5.2564 | 410 | 1.219 | - |
| 5.3846 | 420 | 1.215 | - |
| 5.5128 | 430 | 1.1423 | - |
| 5.6410 | 440 | 1.0829 | - |
| 5.7692 | 450 | 1.0705 | - |
| 5.8974 | 460 | 1.0877 | - |
| 6.0 | 468 | - | 0.2564 |
| 6.0256 | 470 | 0.9736 | - |
| 6.1538 | 480 | 1.0314 | - |
| 6.2821 | 490 | 1.0072 | - |
| 6.4103 | 500 | 1.0214 | - |
| 6.5385 | 510 | 0.9747 | - |
| 6.6667 | 520 | 0.9298 | - |
| 6.7949 | 530 | 0.9426 | - |
| 6.9231 | 540 | 0.9166 | - |
| 7.0 | 546 | - | 0.2428 |
| 7.0513 | 550 | 0.8048 | - |
| 7.1795 | 560 | 0.873 | - |
| 7.3077 | 570 | 0.9017 | - |
| 7.4359 | 580 | 0.8477 | - |
| 7.5641 | 590 | 0.8457 | - |
| 7.6923 | 600 | 0.7475 | - |
| 7.8205 | 610 | 0.8235 | - |
| 7.9487 | 620 | 0.7519 | - |
| 8.0 | 624 | - | 0.2388 |
| 8.0769 | 630 | 0.7188 | - |
| 8.2051 | 640 | 0.7541 | - |
| 8.3333 | 650 | 0.7432 | - |
| 8.4615 | 660 | 0.7417 | - |
| 8.5897 | 670 | 0.6693 | - |
| 8.7179 | 680 | 0.6548 | - |
| 8.8462 | 690 | 0.6818 | - |
| 8.9744 | 700 | 0.6426 | - |
| 9.0 | 702 | - | 0.2495 |
| 9.1026 | 710 | 0.5831 | - |
| 9.2308 | 720 | 0.6503 | - |
| 9.3590 | 730 | 0.6576 | - |
| 9.4872 | 740 | 0.6282 | - |
| 9.6154 | 750 | 0.584 | - |
| 9.7436 | 760 | 0.5744 | - |
| 9.8718 | 770 | 0.5818 | - |
| 10.0 | 780 | 0.5429 | 0.2499 |
| 10.1282 | 790 | 0.508 | - |
| 10.2564 | 800 | 0.5671 | - |
| 10.3846 | 810 | 0.5556 | - |
| 10.5128 | 820 | 0.5316 | - |
| 10.6410 | 830 | 0.4881 | - |
| 10.7692 | 840 | 0.5073 | - |
| 10.8974 | 850 | 0.5264 | - |
| 11.0 | 858 | - | 0.2541 |
| 11.0256 | 860 | 0.4445 | - |
| 11.1538 | 870 | 0.4855 | - |
| 11.2821 | 880 | 0.476 | - |
| 11.4103 | 890 | 0.4762 | - |
| 11.5385 | 900 | 0.45 | - |
| 11.6667 | 910 | 0.4386 | - |
| 11.7949 | 920 | 0.4436 | - |
| 11.9231 | 930 | 0.4321 | - |
| 12.0 | 936 | - | 0.2598 |
| 12.0513 | 940 | 0.3659 | - |
| 12.1795 | 950 | 0.4196 | - |
| 12.3077 | 960 | 0.4285 | - |
| 12.4359 | 970 | 0.4094 | - |
| 12.5641 | 980 | 0.4123 | - |
| 12.6923 | 990 | 0.3555 | - |
| 12.8205 | 1000 | 0.3994 | - |
| 12.9487 | 1010 | 0.3584 | - |
| 13.0 | 1014 | - | 0.2551 |
| 13.0769 | 1020 | 0.3332 | - |
| 13.2051 | 1030 | 0.3718 | - |
| 13.3333 | 1040 | 0.3695 | - |
| 13.4615 | 1050 | 0.3601 | - |
| 13.5897 | 1060 | 0.326 | - |
| 13.7179 | 1070 | 0.3334 | - |
| 13.8462 | 1080 | 0.3481 | - |
| 13.9744 | 1090 | 0.3161 | - |
| 14.0 | 1092 | - | 0.2626 |
| 14.1026 | 1100 | 0.2976 | - |
| 14.2308 | 1110 | 0.3257 | - |
| 14.3590 | 1120 | 0.3343 | - |
| 14.4872 | 1130 | 0.3177 | - |
| 14.6154 | 1140 | 0.2942 | - |
| 14.7436 | 1150 | 0.3015 | - |
| 14.8718 | 1160 | 0.2829 | - |
| 15.0 | 1170 | 0.2731 | 0.2543 |
| 15.1282 | 1180 | 0.2593 | - |
| 15.2564 | 1190 | 0.2993 | - |
| 15.3846 | 1200 | 0.2846 | - |
| 15.5128 | 1210 | 0.2849 | - |
| 15.6410 | 1220 | 0.2562 | - |
| 15.7692 | 1230 | 0.2804 | - |
| 15.8974 | 1240 | 0.2737 | - |
| 16.0 | 1248 | - | 0.2585 |
| 16.0256 | 1250 | 0.2295 | - |
| 16.1538 | 1260 | 0.2562 | - |
| 16.2821 | 1270 | 0.2749 | - |
| 16.4103 | 1280 | 0.2727 | - |
| 16.5385 | 1290 | 0.2513 | - |
| 16.6667 | 1300 | 0.2445 | - |
| 16.7949 | 1310 | 0.2358 | - |
| 16.9231 | 1320 | 0.2432 | - |
| 17.0 | 1326 | - | 0.2659 |
| 17.0513 | 1330 | 0.1989 | - |
| 17.1795 | 1340 | 0.2347 | - |
| 17.3077 | 1350 | 0.242 | - |
| 17.4359 | 1360 | 0.2293 | - |
| 17.5641 | 1370 | 0.2325 | - |
| 17.6923 | 1380 | 0.203 | - |
| 17.8205 | 1390 | 0.2378 | - |
| 17.9487 | 1400 | 0.2018 | - |
| 18.0 | 1404 | - | 0.2628 |
| 18.0769 | 1410 | 0.1847 | - |
| 18.2051 | 1420 | 0.2154 | - |
| 18.3333 | 1430 | 0.216 | - |
| 18.4615 | 1440 | 0.2201 | - |
| 18.5897 | 1450 | 0.1929 | - |
| 18.7179 | 1460 | 0.1962 | - |
| 18.8462 | 1470 | 0.2039 | - |
| 18.9744 | 1480 | 0.193 | - |
| 19.0 | 1482 | - | 0.2552 |
| 19.1026 | 1490 | 0.1802 | - |
| 19.2308 | 1500 | 0.1998 | - |
| 19.3590 | 1510 | 0.2019 | - |
| 19.4872 | 1520 | 0.1979 | - |
| 19.6154 | 1530 | 0.1852 | - |
| 19.7436 | 1540 | 0.1765 | - |
| 19.8718 | 1550 | 0.1881 | - |
| 20.0 | 1560 | 0.1738 | 0.2681 |
| 20.1282 | 1570 | 0.166 | - |
| 20.2564 | 1580 | 0.187 | - |
| 20.3846 | 1590 | 0.1902 | - |
| 20.5128 | 1600 | 0.1843 | - |
| 20.6410 | 1610 | 0.1673 | - |
| 20.7692 | 1620 | 0.1773 | - |
| 20.8974 | 1630 | 0.1803 | - |
| 21.0 | 1638 | - | 0.2686 |
| 21.0256 | 1640 | 0.1485 | - |
| 21.1538 | 1650 | 0.1734 | - |
| 21.2821 | 1660 | 0.1736 | - |
| 21.4103 | 1670 | 0.1806 | - |
| 21.5385 | 1680 | 0.1711 | - |
| 21.6667 | 1690 | 0.1644 | - |
| 21.7949 | 1700 | 0.17 | - |
| 21.9231 | 1710 | 0.1619 | - |
| 22.0 | 1716 | - | 0.2683 |
| 22.0513 | 1720 | 0.136 | - |
| 22.1795 | 1730 | 0.1663 | - |
| 22.3077 | 1740 | 0.1738 | - |
| 22.4359 | 1750 | 0.1664 | - |
| 22.5641 | 1760 | 0.1618 | - |
| 22.6923 | 1770 | 0.1473 | - |
| 22.8205 | 1780 | 0.1695 | - |
| 22.9487 | 1790 | 0.1464 | - |
| 23.0 | 1794 | - | 0.2723 |
| 23.0769 | 1800 | 0.1385 | - |
| 23.2051 | 1810 | 0.1608 | - |
| 23.3333 | 1820 | 0.1616 | - |
| 23.4615 | 1830 | 0.1683 | - |
| 23.5897 | 1840 | 0.1467 | - |
| 23.7179 | 1850 | 0.1504 | - |
| 23.8462 | 1860 | 0.1595 | - |
| 23.9744 | 1870 | 0.1449 | - |
| 24.0 | 1872 | - | 0.2764 |
| 24.1026 | 1880 | 0.1364 | - |
| 24.2308 | 1890 | 0.1656 | - |
| 24.3590 | 1900 | 0.158 | - |
| 24.4872 | 1910 | 0.1572 | - |
| 24.6154 | 1920 | 0.1468 | - |
| 24.7436 | 1930 | 0.1479 | - |
| 24.8718 | 1940 | 0.1478 | - |
| 25.0 | 1950 | 0.1383 | 0.2674 |
| 25.1282 | 1960 | 0.1387 | - |
| 25.2564 | 1970 | 0.1581 | - |
| 25.3846 | 1980 | 0.1494 | - |
| 25.5128 | 1990 | 0.151 | - |
| 25.6410 | 2000 | 0.1383 | - |
| 25.7692 | 2010 | 0.1513 | - |
| 25.8974 | 2020 | 0.1488 | - |
| 26.0 | 2028 | - | 0.2727 |
| 26.0256 | 2030 | 0.1274 | - |
| 26.1538 | 2040 | 0.1454 | - |
| 26.2821 | 2050 | 0.146 | - |
| 26.4103 | 2060 | 0.1551 | - |
| 26.5385 | 2070 | 0.14 | - |
| 26.6667 | 2080 | 0.1442 | - |
| 26.7949 | 2090 | 0.1469 | - |
| 26.9231 | 2100 | 0.1437 | - |
| 27.0 | 2106 | - | 0.2721 |
| 27.0513 | 2110 | 0.1241 | - |
| 27.1795 | 2120 | 0.1438 | - |
| 27.3077 | 2130 | 0.1534 | - |
| 27.4359 | 2140 | 0.1438 | - |
| 27.5641 | 2150 | 0.1485 | - |
| 27.6923 | 2160 | 0.1335 | - |
| 27.8205 | 2170 | 0.1508 | - |
| 27.9487 | 2180 | 0.1374 | - |
| 28.0 | 2184 | - | 0.2712 |
| 28.0769 | 2190 | 0.1304 | - |
| 28.2051 | 2200 | 0.1438 | - |
| 28.3333 | 2210 | 0.1471 | - |
| 28.4615 | 2220 | 0.154 | - |
| 28.5897 | 2230 | 0.1377 | - |
| 28.7179 | 2240 | 0.1352 | - |
| 28.8462 | 2250 | 0.1517 | - |
| 28.9744 | 2260 | 0.139 | - |
| 29.0 | 2262 | - | 0.2710 |
| 29.1026 | 2270 | 0.1263 | - |
| 29.2308 | 2280 | 0.1468 | - |
| 29.3590 | 2290 | 0.1464 | - |
| 29.4872 | 2300 | 0.1456 | - |
| 29.6154 | 2310 | 0.1385 | - |
| 29.7436 | 2320 | 0.1422 | - |
| 29.8718 | 2330 | 0.1446 | - |
| 30.0 | 2340 | 0.1359 | 0.2705 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Base model
Snowflake/snowflake-arctic-embed-m-v2.0