|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
|
from transformers.modeling_rope_utils import rope_config_validation |
|
|
from transformers.utils import logging |
|
|
|
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
|
class MiMoV2FlashConfig(PretrainedConfig): |
|
|
|
|
|
model_type = "" |
|
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
|
|
|
|
|
base_model_tp_plan = { |
|
|
"layers.*.self_attn.q_proj": "colwise", |
|
|
"layers.*.self_attn.k_proj": "colwise", |
|
|
"layers.*.self_attn.v_proj": "colwise", |
|
|
"layers.*.self_attn.o_proj": "rowwise", |
|
|
"layers.*.mlp.gate_proj": "colwise", |
|
|
"layers.*.mlp.up_proj": "colwise", |
|
|
"layers.*.mlp.down_proj": "rowwise", |
|
|
} |
|
|
base_model_pp_plan = { |
|
|
"embed_tokens": (["input_ids"], ["inputs_embeds"]), |
|
|
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]), |
|
|
"norm": (["hidden_states"], ["hidden_states"]), |
|
|
} |
|
|
|
|
|
attribute_map = { |
|
|
"num_local_experts": "n_routed_experts", |
|
|
} |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
vocab_size=151936, |
|
|
hidden_size=4096, |
|
|
intermediate_size=22016, |
|
|
num_hidden_layers=32, |
|
|
num_attention_heads=32, |
|
|
num_key_value_heads=32, |
|
|
hidden_act="silu", |
|
|
max_position_embeddings=32768, |
|
|
initializer_range=0.02, |
|
|
layernorm_epsilon=1e-6, |
|
|
use_cache=True, |
|
|
tie_word_embeddings=False, |
|
|
rope_theta=10000.0, |
|
|
rope_scaling=None, |
|
|
attention_dropout=0.0, |
|
|
hybrid_block_size=None, |
|
|
hybrid_layer_pattern=None, |
|
|
partial_rotary_factor=1.0, |
|
|
**kwargs, |
|
|
): |
|
|
self.vocab_size = vocab_size |
|
|
self.max_position_embeddings = max_position_embeddings |
|
|
self.hidden_size = hidden_size |
|
|
self.intermediate_size = intermediate_size |
|
|
self.num_hidden_layers = num_hidden_layers |
|
|
self.num_attention_heads = num_attention_heads |
|
|
|
|
|
|
|
|
if num_key_value_heads is None: |
|
|
num_key_value_heads = num_attention_heads |
|
|
|
|
|
self.num_key_value_heads = num_key_value_heads |
|
|
self.hidden_act = hidden_act |
|
|
self.initializer_range = initializer_range |
|
|
self.layernorm_epsilon = layernorm_epsilon |
|
|
self.use_cache = use_cache |
|
|
self.rope_theta = rope_theta |
|
|
self.rope_scaling = rope_scaling |
|
|
self.attention_dropout = attention_dropout |
|
|
|
|
|
if hybrid_block_size is not None and hybrid_layer_pattern is None: |
|
|
hybrid_layer_pattern = [0 if ((i + 1) % hybrid_block_size == 0) else 1 for i in range(num_hidden_layers)] |
|
|
self.hybrid_block_size = hybrid_block_size |
|
|
self.hybrid_layer_pattern = hybrid_layer_pattern |
|
|
|
|
|
self.partial_rotary_factor = partial_rotary_factor |
|
|
|
|
|
|
|
|
|
|
|
if self.rope_scaling is not None and "type" in self.rope_scaling: |
|
|
self.rope_scaling["rope_type"] = self.rope_scaling["type"] |
|
|
rope_config_validation(self) |
|
|
|
|
|
super().__init__( |
|
|
tie_word_embeddings=tie_word_embeddings, |
|
|
**kwargs, |
|
|
) |
|
|
|