aeadfb43649802b24a3555edb9ca35c9
This model is a fine-tuned version of albert/albert-base-v1 on the contemmcm/cls_mmlu dataset. It achieves the following results on the evaluation set:
- Loss: 1.3867
- Data Size: 1.0
- Epoch Runtime: 16.5059
- Accuracy: 0.2487
- F1 Macro: 0.0996
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro |
|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 1.4468 | 0 | 1.1125 | 0.2653 | 0.1678 |
| No log | 1 | 438 | 1.4916 | 0.0078 | 1.4769 | 0.2527 | 0.1009 |
| No log | 2 | 876 | 1.4215 | 0.0156 | 1.2842 | 0.2407 | 0.1606 |
| No log | 3 | 1314 | 1.4247 | 0.0312 | 1.5613 | 0.2547 | 0.1742 |
| No log | 4 | 1752 | 1.3984 | 0.0625 | 2.0938 | 0.25 | 0.1072 |
| 0.0789 | 5 | 2190 | 1.4017 | 0.125 | 3.0534 | 0.2453 | 0.1533 |
| 0.1853 | 6 | 2628 | 1.4068 | 0.25 | 4.9502 | 0.2480 | 0.0994 |
| 1.3988 | 7 | 3066 | 1.3945 | 0.5 | 9.0203 | 0.2487 | 0.0996 |
| 1.3916 | 8.0 | 3504 | 1.3890 | 1.0 | 16.7455 | 0.2613 | 0.1741 |
| 1.3924 | 9.0 | 3942 | 1.3968 | 1.0 | 16.9773 | 0.2666 | 0.1764 |
| 1.3869 | 10.0 | 4380 | 1.3932 | 1.0 | 16.7330 | 0.2453 | 0.0985 |
| 1.3873 | 11.0 | 4818 | 1.3919 | 1.0 | 16.2979 | 0.2533 | 0.1011 |
| 1.3894 | 12.0 | 5256 | 1.3880 | 1.0 | 16.1788 | 0.2527 | 0.1008 |
| 1.3908 | 13.0 | 5694 | 1.3880 | 1.0 | 16.4328 | 0.2487 | 0.0996 |
| 1.3895 | 14.0 | 6132 | 1.3899 | 1.0 | 16.1813 | 0.2527 | 0.1008 |
| 1.3876 | 15.0 | 6570 | 1.3908 | 1.0 | 16.5012 | 0.2527 | 0.1008 |
| 1.3855 | 16.0 | 7008 | 1.3881 | 1.0 | 16.2502 | 0.2527 | 0.1008 |
| 1.3829 | 17.0 | 7446 | 1.3864 | 1.0 | 16.4477 | 0.2487 | 0.0996 |
| 1.3874 | 18.0 | 7884 | 1.3882 | 1.0 | 16.4588 | 0.2527 | 0.1008 |
| 1.3862 | 19.0 | 8322 | 1.3882 | 1.0 | 16.5452 | 0.2533 | 0.1011 |
| 1.3886 | 20.0 | 8760 | 1.3851 | 1.0 | 16.1889 | 0.2487 | 0.0996 |
| 1.387 | 21.0 | 9198 | 1.3880 | 1.0 | 16.1766 | 0.2527 | 0.1008 |
| 1.3877 | 22.0 | 9636 | 1.3866 | 1.0 | 16.2891 | 0.2493 | 0.1033 |
| 1.3865 | 23.0 | 10074 | 1.3863 | 1.0 | 16.0203 | 0.2533 | 0.1011 |
| 1.3853 | 24.0 | 10512 | 1.3867 | 1.0 | 16.5059 | 0.2487 | 0.0996 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.3.0
- Tokenizers 0.22.1
- Downloads last month
- 6
Model tree for contemmcm/aeadfb43649802b24a3555edb9ca35c9
Base model
albert/albert-base-v1