Dataset Preview
Duplicate
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed
Error code:   DatasetGenerationError
Exception:    CastError
Message:      Couldn't cast
sim_id: string
time_id: int32
u: binary
v: binary
shape_t: int32
shape_h: int32
shape_w: int32
p: binary
-- schema metadata --
huggingface: '{"info": {"features": {"sim_id": {"dtype": "string", "_type' + 342
to
{'sim_id': Value('string'), 'time_id': Value('int32'), 'observed': Value('binary'), 'shape_t': Value('int32'), 'shape_h': Value('int32'), 'shape_w': Value('int32'), 'numerical': Value('binary'), 'numerical_channels': Value('int32')}
because column names don't match
Traceback:    Traceback (most recent call last):
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1815, in _prepare_split_single
                  for _, table in generator:
                                  ^^^^^^^^^
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 609, in wrapped
                  for item in generator(*args, **kwargs):
                              ^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/arrow/arrow.py", line 76, in _generate_tables
                  yield f"{file_idx}_{batch_idx}", self._cast_table(pa_table)
                                                   ^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/arrow/arrow.py", line 59, in _cast_table
                  pa_table = table_cast(pa_table, self.info.features.arrow_schema)
                             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2272, in table_cast
                  return cast_table_to_schema(table, schema)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2218, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              sim_id: string
              time_id: int32
              u: binary
              v: binary
              shape_t: int32
              shape_h: int32
              shape_w: int32
              p: binary
              -- schema metadata --
              huggingface: '{"info": {"features": {"sim_id": {"dtype": "string", "_type' + 342
              to
              {'sim_id': Value('string'), 'time_id': Value('int32'), 'observed': Value('binary'), 'shape_t': Value('int32'), 'shape_h': Value('int32'), 'shape_w': Value('int32'), 'numerical': Value('binary'), 'numerical_channels': Value('int32')}
              because column names don't match
              
              The above exception was the direct cause of the following exception:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1334, in compute_config_parquet_and_info_response
                  parquet_operations, partial, estimated_dataset_info = stream_convert_to_parquet(
                                                                        ^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 911, in stream_convert_to_parquet
                  builder._prepare_split(
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1702, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                                               ^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1858, in _prepare_split_single
                  raise DatasetGenerationError("An error occurred while generating the dataset") from e
              datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

sim_id
string
time_id
int32
observed
unknown
shape_t
int32
shape_h
int32
shape_w
int32
numerical
unknown
numerical_channels
int32
20NH3_1.1.h5
1,687
"Q/M7PM+WGDy4B887K53BO6pHnzsopXY7/HhUOzQDgTseb6I7YOusOzyAnzsYtpg7AuGMO9LjojsQ+5w78LCIOxY3nDuIcSY77Mh(...TRUNCATED)
40
64
64
"4SDHRwaEkEiIvtMycIXSPOeehD1nOEs+KJ8XMuR0FTPJec46nzAdRKhLCUXXmgA+ZPntQGyJnL9/QfFAzyDHR/lWgkcxuAkx2Zf(...TRUNCATED)
15
40NH3_0.85.h5
477
"GMpJuzB/NDoAeqk63OQfO9g35zuUwSM8YT7IO5A/9jqo3Vo7/mPEO4dB8Du8n1o7zGNOO1Jkjju0G3U79gmsO5ybiTsw+7Q6YJZ(...TRUNCATED)
40
64
64
"E/3FRxoNokdgWoolSfKHOgC1fz22f0A+ZS58Lm7SCSZkcSk7M5o0QulpAUUs6fw9a0wZPwe7akAvG29ALfzFR3DpBEhQS88n3D+(...TRUNCATED)
15
0NH3_0.85.h5
376
"oMvIuRCCSbtkfQe7ACluOZg7Fjt5xMc7SsKRO2BQCTvY5cY6UAVCO65Tmjssjkc7uNbIOtyZBjv4LlQ7r8zLO+Pe0zt6eII7zoa(...TRUNCATED)
40
64
64
"/drGRzB/tEdKFiKomkiOOmZpoD02uyA+cdpyLpsK3y4jCjA743z0Q6YJAkX5Kt4+U0IiP4kQFT7p5kg/KdvGRzBeqUfZqL8roI+(...TRUNCATED)
15
40NH3_1.1.h5
826
"0X4dPO5VFjyz78I7JI2NOwKZoDt3+7k7HIWWO+hzZjtkoFg73P18OzoHgztqlp076BGWO1gmNjt4f+06QH6SOgjvirrgHv65ANw(...TRUNCATED)
40
64
64
"oPvGR5AzxUceupGm6Y65PHRRXz07Ulo+GrA4MKbKvDCt3J46xI8KRGy0B0VZCFe+qsxWQKA5nkBgWb9ABfzGR8qCxkfDfHynkvq(...TRUNCATED)
15
20NH3_1.1.h5
1,056
"xeL7OyrCnjtrjME7eCXAOwDNiTusjnM7EIpWO+qolzsG44o7JDGHO9iIrzvmP887CXDkO3b8kjs0dDg7rFygO8xs3Tts7bQ7mAI(...TRUNCATED)
40
64
64
"jvjGR0D3WEdKWogvzdvvPCM2fj3pXUs+hUJeMsIufDMxt5o66AYJRM9cCEWDCmQ9EkhXQPWnmkAwdbxArfjGR2S0OEj6UAQwW4j(...TRUNCATED)
15
80NH3_1.25.h5
1,901
"eBf1Ot7/jjsIK6U7quKPO7AxjzqQf+Q6cO7MOpAXaTqY5YA6AE5vOpCk6TpYJ+86qE8WO4zLNztQU3o7kUC/OxzfAzzabwU8Ocf(...TRUNCATED)
40
64
64
"5rnFRysYeUjxc2469paYPNr2njxhq4E+atg9OqPzazz67rk5aGiywgF6/USZpA4/O0G1QHnCy0CBpQhBSLnFR9au+UjSeWs61+q(...TRUNCATED)
15
20NH3_0.9.h5
1,670
"gR7vO4nYzjtsL6Q76E5GO9igRTtku5c7ESvGO5uSsTsggkI74OCsOqCO6DnwcCs6EAaXOza1pjvAoxQ6GHuKOqziaTvy6oY7ynK(...TRUNCATED)
40
64
64
"UCnGR5CmvMYUt+Mqz1AqO6jPmD19qzg+XhpGMTPEPizh2FQ7caAFQ/nzBUWb0Kc+mUuzvwdB/r/3wh1AnirGR88MGUj7YQErHZc(...TRUNCATED)
15
0NH3_0.85.h5
36
"JCI3OyAOLztMMnc7/im8O8I/tDtonNo63JozOwZuwDviXZ07TiHHO7NU5TsVug48uqoEPLgTEjwQrok7WJTZOlzxKjt8tkQ7eDk(...TRUNCATED)
40
64
64
"sznFR0qwzUfUCmImR8DTOvRkpD12XiU+bz63LkdKHi/UH0s78syswzArBEUXgj0/51EOv/P9K0Dp2TVAgznFR2Xqu0ctKGAo7H/(...TRUNCATED)
15
80NH3_0.9.h5
1,426
"PWCxO6CvmjsiQII7WMOUO4gHczuQjS47HMNcO1CtHDsAwpg5AGjit9Dsyjr4Si47+K2yOvRYPzvQaII7kl6NO4xXlTvUB1Y75KF(...TRUNCATED)
40
64
64
"OZTFRzrfLEnGGUcuZpMLOn0x8Tx06HU+wysxNS/LwS8kuyU7c44kw9kO/0RyYQK+MSzXvpvgykBE3stA/JLFR6/8jUnpw5Qw85U(...TRUNCATED)
15
20NH3_1.25.h5
1,549
"GOdCu1ADljqUnnY7bJgaO8T7GDtAP+E6cCNkOoDOHrpoNZC6oEHFObCFnTpwiNw6oL4dO2ikiTogMf+5SH4Fu9A2RLu4nGq7oLZ(...TRUNCATED)
40
64
64
"tdPCR+VwAUhJNhszG0NFPTmhTj3ugUg+05YBNLPPgDWaU/s5qbLExJBOA0WPoZ0+h+A3QEYECz80QzxADNPCR1k+BUhGZ1w1i5p(...TRUNCATED)
15
End of preview.

RealPDEBench logo

RealPDEBench

HF Dataset arXiv Website & Docs Codebase License: CC BY-NC 4.0

RealPDEBench is a benchmark of paired real-world measurements and matched numerical simulations for complex physical systems. It is designed for spatiotemporal forecasting and sim-to-real transfer evaluation on real data.

This Hub repository (AI4Science-WestlakeU/RealPDEBench) is the release repo for RealPDEBench.

RealPDEBench overview figure

Figure 1. RealPDEBench provides paired real-world measurements and matched numerical simulations for sim-to-real evaluation.

What makes RealPDEBench different?

  • Paired real + simulated data: each scenario provides experimental measurements and corresponding CFD/LES simulations.
  • Real-world evaluation: models are evaluated on real trajectories to quantify the sim-to-real gap.
  • Multi-modal mismatch: simulations include additional unmeasured modalities (e.g., pressure, species fields), enabling modality-masking and transfer strategies.

Data sources (high level)

  • Fluid systems (cylinder, controlled_cylinder, fsi, foil):
    • Real: Particle Image Velocimetry (PIV) in a circulating water tunnel
    • Sim: CFD (2D finite-volume + immersed-boundary; 3D GPU solvers depending on scenario)
  • Combustion (combustion):
    • Real: OH* chemiluminescence imaging (high-speed)
    • Sim: Large Eddy Simulation (LES) with detailed chemistry (NH3/CH4/air co-firing)

Scenarios (5)

Scenario Real data (measured) Numerical data (simulated) Frames / trajectory Spatial grid (after sub-sampling) HDF5 trajectories (real / numerical)
cylinder velocity (u,v) (u,v,p) 3990 64×128 92 / 92
controlled_cylinder (u,v) (u,v,p) (+ control params in filenames) 3990 64×128 96 / 96
fsi (u,v) (u,v,p) 2173 64×64 51 / 51
foil (u,v) (u,v,p) 3990 64×128 98 / 99
combustion OH* chemiluminescence intensity (1 channel) intensity surrogate (1) + 15 simulated fields 2001 128×128 30 / 30

Total trajectories (HDF5 files): ~735 (≈367 real + ≈368 numerical).

Physical parameter ranges (real experiments)

Scenario Key parameters (real)
cylinder Reynolds number (Re): 1800–12000
controlled_cylinder (Re): 1781–9843; control frequency (f): 0.5–1.4 Hz
fsi (Re): 3272–9068; mass ratio (m^*): 18.2–20.8
foil angle of attack (\alpha): 0°–20°; (Re): 2968–17031
combustion CH4 ratio: 20–100%; equivalence ratio (\phi): 0.75–1.3

Data format on the Hub

Each split is stored as a Hugging Face datasets.Dataset saved with Dataset.save_to_disk(). Concretely, each split is a directory containing:

  • data-*.arrow (sharded Arrow files, float32 payloads stored as bytes)
  • dataset_info.json
  • state.json

test_mode metadata (JSON)

RealPDEBench supports test_mode evaluation splits (in_dist, out_dist, seen, unseen). The group definitions are shipped as JSON dicts per scenario:

  • in_dist_test_params_{type}.json
  • out_dist_test_params_{type}.json
  • remain_params_{type}.json

where {type} is real or numerical.

Temporal windowing (what an “example” means)

RealPDEBench is stored as sliding windows cut from longer trajectories. Each row corresponds to (sim_id, time_id):

  • sim_id: which trajectory (HDF5 file)
  • time_id: start index of the window

Typical window lengths (T):

  • 40 frames for cylinder, fsi, foil, combustion (often used as 20‑step input + 20‑step output)
  • 20 frames for controlled_cylinder (often 10 + 10)
  • 20 frames for combustion/surrogate_train (surrogate model training data)

Intended layout for the full release (mirrors the on-disk structure used by RealPDEBench loaders):

{repo_root}/
  cylinder/
    in_dist_test_params_real.json
    out_dist_test_params_real.json
    remain_params_real.json
    in_dist_test_params_numerical.json
    out_dist_test_params_numerical.json
    remain_params_numerical.json
    hf_dataset/
      real_train/  real_val/  real_test/
      numerical_train/  numerical_val/  numerical_test/
  fsi/
    in_dist_test_params_real.json
    out_dist_test_params_real.json
    remain_params_real.json
    in_dist_test_params_numerical.json
    out_dist_test_params_numerical.json
    remain_params_numerical.json
    hf_dataset/
      ...
  combustion/
    in_dist_test_params_real.json
    out_dist_test_params_real.json
    remain_params_real.json
    in_dist_test_params_numerical.json
    out_dist_test_params_numerical.json
    remain_params_numerical.json
    hf_dataset/
      real_train/  real_val/  real_test/
      numerical_train/              # (val/test intentionally empty)
      surrogate_train/              # combustion-only (surrogate model training)
      surrogate_train_sim_ids.txt
      surrogate_train_meta.json
  ...

How to download only what you need

For large data, use snapshot_download(..., allow_patterns=...) to avoid pulling the full repository.

import os
from huggingface_hub import snapshot_download
from datasets import load_from_disk

repo_id = "AI4Science-WestlakeU/RealPDEBench"
os.environ["HF_HUB_DISABLE_XET"] = "1"
local_dir = snapshot_download(
    repo_id=repo_id,
    repo_type="dataset",
    allow_patterns=["fsi/**"],  # example: download only the FSI folder
    endpoint="https://hf-mirror.com",
)

ds = load_from_disk(os.path.join(local_dir, "fsi", "hf_dataset", "numerical_val"))
row = ds[0]
print(row.keys())

Schema (columns)

Fluid datasets (cylinder, controlled_cylinder, fsi, foil)

  • Keys:
    • sim_id (string): trajectory file name (e.g., 10031.h5)
    • time_id (int): start frame index of the window
    • u, v (bytes): float32 arrays of shape (T, H, W)
    • p (bytes): float32 array (T, H, W) (numerical splits only)
    • shape_t, shape_h, shape_w (int): shapes for decoding

Combustion dataset (combustion)

  • Keys:
    • sim_id (string): e.g., 40NH3_1.1.h5
    • time_id (int): start frame index of the window
    • observed (bytes): float32 array (T, H, W) (real: measured intensity; numerical: surrogate intensity)
    • numerical (bytes): float32 array (T, H, W, 15) (numerical splits only)
    • numerical_channels (int): number of numerical channels (15)
    • shape_t, shape_h, shape_w (int): shapes for decoding

Combustion surrogate-train (combustion/surrogate_train)

Used to train a surrogate model mapping simulated modalities → real modality (combustion only).

  • Keys:
    • real (bytes): float32 array (T, H, W) (target intensity)
    • numerical (bytes): float32 array (T, H, W, C) (input fields)
    • plus shapes (*_shape_*) and numerical_channels

Current converted data size (local conversion; full release target)

These numbers refer to our current HF Arrow conversion outputs (not all uploaded to this test repo yet):

  • Total: ~954GB across all scenarios
  • Largest shard file: ~0.47GB (well below the Hub’s recommended <50GB per file)
  • Total file count: ~2.1k files (well below the Hub’s recommended <100k files per repo)

Per-scenario totals (HF Arrow):

Scenario Total size
combustion 622GB
cylinder 116GB
fsi 34GB
controlled_cylinder 61GB
foil 124GB

Recommended benchmark protocols

RealPDEBench supports three standard training paradigms (all evaluated on real-world data):

  • Simulated training (numerical only)
  • Real-world training (real only)
  • Simulated pretraining + real finetuning

License

This dataset is released under CC BY‑NC 4.0 (non‑commercial). Please credit the authors and the benchmark paper when using the dataset.

Citation

If you find our work and/or our code useful, please cite us via:

@misc{hu2026realpdebenchbenchmarkcomplexphysical,
      title={RealPDEBench: A Benchmark for Complex Physical Systems with Real-World Data}, 
      author={Peiyan Hu and Haodong Feng and Hongyuan Liu and Tongtong Yan and Wenhao Deng and Tianrun Gao and Rong Zheng and Haoren Zheng and Chenglei Yu and Chuanrui Wang and Kaiwen Li and Zhi-Ming Ma and Dezhi Zhou and Xingcai Lu and Dixia Fan and Tailin Wu},
      year={2026},
      eprint={2601.01829},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2601.01829}, 
}

Contact

AI for Scientific Simulation and Discovery Lab, Westlake University
Maintainer: westlake-ai4s (Hugging Face)
Org: AI4Science-WestlakeU

Downloads last month
161