wrkspace-backup-ttl / lora_utils /safetensors_utils.py
agreeupon's picture
Add files using upload-large-folder tool
72a5beb verified
from typing import Dict
import json
import struct
import torch
class MemoryEfficientSafeOpen:
"""
A class to read tensors from a .safetensors file in a memory-efficient way.
"""
# does not support metadata loading
def __init__(self, filename):
self.filename = filename
self.file = open(filename, "rb")
self.header, self.header_size = self._read_header()
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
self.file.close()
def keys(self):
return [k for k in self.header.keys() if k != "__metadata__"]
def metadata(self) -> Dict[str, str]:
return self.header.get("__metadata__", {})
def get_tensor(self, key):
if key not in self.header:
raise KeyError(f"Tensor '{key}' not found in the file")
metadata = self.header[key]
offset_start, offset_end = metadata["data_offsets"]
if offset_start == offset_end:
tensor_bytes = None
else:
# adjust offset by header size
self.file.seek(self.header_size + 8 + offset_start)
tensor_bytes = self.file.read(offset_end - offset_start)
return self._deserialize_tensor(tensor_bytes, metadata)
def _read_header(self):
header_size = struct.unpack("<Q", self.file.read(8))[0]
header_json = self.file.read(header_size).decode("utf-8")
return json.loads(header_json), header_size
def _deserialize_tensor(self, tensor_bytes, metadata):
dtype = self._get_torch_dtype(metadata["dtype"])
shape = metadata["shape"]
if tensor_bytes is None:
byte_tensor = torch.empty(0, dtype=torch.uint8)
else:
tensor_bytes = bytearray(tensor_bytes) # make it writable
byte_tensor = torch.frombuffer(tensor_bytes, dtype=torch.uint8)
# process float8 types
if metadata["dtype"] in ["F8_E5M2", "F8_E4M3"]:
return self._convert_float8(byte_tensor, metadata["dtype"], shape)
# convert to the target dtype and reshape
return byte_tensor.view(dtype).reshape(shape)
@staticmethod
def _get_torch_dtype(dtype_str):
dtype_map = {
"F64": torch.float64,
"F32": torch.float32,
"F16": torch.float16,
"BF16": torch.bfloat16,
"I64": torch.int64,
"I32": torch.int32,
"I16": torch.int16,
"I8": torch.int8,
"U8": torch.uint8,
"BOOL": torch.bool,
}
# add float8 types if available
if hasattr(torch, "float8_e5m2"):
dtype_map["F8_E5M2"] = torch.float8_e5m2
if hasattr(torch, "float8_e4m3fn"):
dtype_map["F8_E4M3"] = torch.float8_e4m3fn
return dtype_map.get(dtype_str)
@staticmethod
def _convert_float8(byte_tensor, dtype_str, shape):
if dtype_str == "F8_E5M2" and hasattr(torch, "float8_e5m2"):
return byte_tensor.view(torch.float8_e5m2).reshape(shape)
elif dtype_str == "F8_E4M3" and hasattr(torch, "float8_e4m3fn"):
return byte_tensor.view(torch.float8_e4m3fn).reshape(shape)
else:
# convert to float16 if float8 is not supported
# return byte_tensor.view(torch.uint8).to(torch.float16).reshape(shape)
raise ValueError(f"Unsupported float8 type: {dtype_str} (upgrade PyTorch to support float8 types)")