|
|
from typing import Dict |
|
|
import json |
|
|
import struct |
|
|
import torch |
|
|
|
|
|
class MemoryEfficientSafeOpen: |
|
|
""" |
|
|
A class to read tensors from a .safetensors file in a memory-efficient way. |
|
|
""" |
|
|
|
|
|
def __init__(self, filename): |
|
|
self.filename = filename |
|
|
self.file = open(filename, "rb") |
|
|
self.header, self.header_size = self._read_header() |
|
|
|
|
|
def __enter__(self): |
|
|
return self |
|
|
|
|
|
def __exit__(self, exc_type, exc_val, exc_tb): |
|
|
self.file.close() |
|
|
|
|
|
def keys(self): |
|
|
return [k for k in self.header.keys() if k != "__metadata__"] |
|
|
|
|
|
def metadata(self) -> Dict[str, str]: |
|
|
return self.header.get("__metadata__", {}) |
|
|
|
|
|
def get_tensor(self, key): |
|
|
if key not in self.header: |
|
|
raise KeyError(f"Tensor '{key}' not found in the file") |
|
|
|
|
|
metadata = self.header[key] |
|
|
offset_start, offset_end = metadata["data_offsets"] |
|
|
|
|
|
if offset_start == offset_end: |
|
|
tensor_bytes = None |
|
|
else: |
|
|
|
|
|
self.file.seek(self.header_size + 8 + offset_start) |
|
|
tensor_bytes = self.file.read(offset_end - offset_start) |
|
|
|
|
|
return self._deserialize_tensor(tensor_bytes, metadata) |
|
|
|
|
|
def _read_header(self): |
|
|
header_size = struct.unpack("<Q", self.file.read(8))[0] |
|
|
header_json = self.file.read(header_size).decode("utf-8") |
|
|
return json.loads(header_json), header_size |
|
|
|
|
|
def _deserialize_tensor(self, tensor_bytes, metadata): |
|
|
dtype = self._get_torch_dtype(metadata["dtype"]) |
|
|
shape = metadata["shape"] |
|
|
|
|
|
if tensor_bytes is None: |
|
|
byte_tensor = torch.empty(0, dtype=torch.uint8) |
|
|
else: |
|
|
tensor_bytes = bytearray(tensor_bytes) |
|
|
byte_tensor = torch.frombuffer(tensor_bytes, dtype=torch.uint8) |
|
|
|
|
|
|
|
|
if metadata["dtype"] in ["F8_E5M2", "F8_E4M3"]: |
|
|
return self._convert_float8(byte_tensor, metadata["dtype"], shape) |
|
|
|
|
|
|
|
|
return byte_tensor.view(dtype).reshape(shape) |
|
|
|
|
|
@staticmethod |
|
|
def _get_torch_dtype(dtype_str): |
|
|
dtype_map = { |
|
|
"F64": torch.float64, |
|
|
"F32": torch.float32, |
|
|
"F16": torch.float16, |
|
|
"BF16": torch.bfloat16, |
|
|
"I64": torch.int64, |
|
|
"I32": torch.int32, |
|
|
"I16": torch.int16, |
|
|
"I8": torch.int8, |
|
|
"U8": torch.uint8, |
|
|
"BOOL": torch.bool, |
|
|
} |
|
|
|
|
|
if hasattr(torch, "float8_e5m2"): |
|
|
dtype_map["F8_E5M2"] = torch.float8_e5m2 |
|
|
if hasattr(torch, "float8_e4m3fn"): |
|
|
dtype_map["F8_E4M3"] = torch.float8_e4m3fn |
|
|
return dtype_map.get(dtype_str) |
|
|
|
|
|
@staticmethod |
|
|
def _convert_float8(byte_tensor, dtype_str, shape): |
|
|
if dtype_str == "F8_E5M2" and hasattr(torch, "float8_e5m2"): |
|
|
return byte_tensor.view(torch.float8_e5m2).reshape(shape) |
|
|
elif dtype_str == "F8_E4M3" and hasattr(torch, "float8_e4m3fn"): |
|
|
return byte_tensor.view(torch.float8_e4m3fn).reshape(shape) |
|
|
else: |
|
|
|
|
|
|
|
|
raise ValueError(f"Unsupported float8 type: {dtype_str} (upgrade PyTorch to support float8 types)") |
|
|
|