instance_id
stringlengths
14
33
version
stringclasses
1 value
gold_patches
dict
test_patch
null
pre_patches
dict
pre_scripts
null
repo
stringclasses
11 values
base_commit
stringclasses
11 values
base_commit_timestamp
stringdate
2024-07-22 07:32:48-0400
2024-10-09 00:56:33-0400
hints_text
null
created_at
null
problem_statement
dict
environment_setup_commit
stringclasses
11 values
evaluation
dict
scikit-learn__scikit-learn-22
1.0
{ "code": "diff --git b/sklearn/compose/_column_transformer.py a/sklearn/compose/_column_transformer.py\nindex 1f7041765..73a0f5e2b 100644\n--- b/sklearn/compose/_column_transformer.py\n+++ a/sklearn/compose/_column_transformer.py\n@@ -951,6 +951,10 @@ class ColumnTransformer(TransformerMixin, _BaseComposition):\n self.fit_transform(X, y=y, **params)\n return self\n \n+ @_fit_context(\n+ # estimators in ColumnTransformer.transformers are not validated yet\n+ prefer_skip_nested_validation=False\n+ )\n def fit_transform(self, X, y=None, **params):\n \"\"\"Fit all transformers, transform the data and concatenate results.\n \n@@ -981,6 +985,54 @@ class ColumnTransformer(TransformerMixin, _BaseComposition):\n any result is a sparse matrix, everything will be converted to\n sparse matrices.\n \"\"\"\n+ _raise_for_params(params, self, \"fit_transform\")\n+ _check_feature_names(self, X, reset=True)\n+\n+ X = _check_X(X)\n+ # set n_features_in_ attribute\n+ _check_n_features(self, X, reset=True)\n+ self._validate_transformers()\n+ n_samples = _num_samples(X)\n+\n+ self._validate_column_callables(X)\n+ self._validate_remainder(X)\n+\n+ if _routing_enabled():\n+ routed_params = process_routing(self, \"fit_transform\", **params)\n+ else:\n+ routed_params = self._get_empty_routing()\n+\n+ result = self._call_func_on_transformers(\n+ X,\n+ y,\n+ _fit_transform_one,\n+ column_as_labels=False,\n+ routed_params=routed_params,\n+ )\n+\n+ if not result:\n+ self._update_fitted_transformers([])\n+ # All transformers are None\n+ return np.zeros((n_samples, 0))\n+\n+ Xs, transformers = zip(*result)\n+\n+ # determine if concatenated output will be sparse or not\n+ if any(sparse.issparse(X) for X in Xs):\n+ nnz = sum(X.nnz if sparse.issparse(X) else X.size for X in Xs)\n+ total = sum(\n+ X.shape[0] * X.shape[1] if sparse.issparse(X) else X.size for X in Xs\n+ )\n+ density = nnz / total\n+ self.sparse_output_ = density < self.sparse_threshold\n+ else:\n+ self.sparse_output_ = False\n+\n+ self._update_fitted_transformers(transformers)\n+ self._validate_output(Xs)\n+ self._record_output_indices(Xs)\n+\n+ return self._hstack(list(Xs), n_samples=n_samples)\n \n def transform(self, X, **params):\n \"\"\"Transform X separately by each transformer, concatenate results.\n", "test": null }
null
{ "code": "diff --git a/sklearn/compose/_column_transformer.py b/sklearn/compose/_column_transformer.py\nindex 73a0f5e2b..1f7041765 100644\n--- a/sklearn/compose/_column_transformer.py\n+++ b/sklearn/compose/_column_transformer.py\n@@ -951,10 +951,6 @@ class ColumnTransformer(TransformerMixin, _BaseComposition):\n self.fit_transform(X, y=y, **params)\n return self\n \n- @_fit_context(\n- # estimators in ColumnTransformer.transformers are not validated yet\n- prefer_skip_nested_validation=False\n- )\n def fit_transform(self, X, y=None, **params):\n \"\"\"Fit all transformers, transform the data and concatenate results.\n \n@@ -985,54 +981,6 @@ class ColumnTransformer(TransformerMixin, _BaseComposition):\n any result is a sparse matrix, everything will be converted to\n sparse matrices.\n \"\"\"\n- _raise_for_params(params, self, \"fit_transform\")\n- _check_feature_names(self, X, reset=True)\n-\n- X = _check_X(X)\n- # set n_features_in_ attribute\n- _check_n_features(self, X, reset=True)\n- self._validate_transformers()\n- n_samples = _num_samples(X)\n-\n- self._validate_column_callables(X)\n- self._validate_remainder(X)\n-\n- if _routing_enabled():\n- routed_params = process_routing(self, \"fit_transform\", **params)\n- else:\n- routed_params = self._get_empty_routing()\n-\n- result = self._call_func_on_transformers(\n- X,\n- y,\n- _fit_transform_one,\n- column_as_labels=False,\n- routed_params=routed_params,\n- )\n-\n- if not result:\n- self._update_fitted_transformers([])\n- # All transformers are None\n- return np.zeros((n_samples, 0))\n-\n- Xs, transformers = zip(*result)\n-\n- # determine if concatenated output will be sparse or not\n- if any(sparse.issparse(X) for X in Xs):\n- nnz = sum(X.nnz if sparse.issparse(X) else X.size for X in Xs)\n- total = sum(\n- X.shape[0] * X.shape[1] if sparse.issparse(X) else X.size for X in Xs\n- )\n- density = nnz / total\n- self.sparse_output_ = density < self.sparse_threshold\n- else:\n- self.sparse_output_ = False\n-\n- self._update_fitted_transformers(transformers)\n- self._validate_output(Xs)\n- self._record_output_indices(Xs)\n-\n- return self._hstack(list(Xs), n_samples=n_samples)\n \n def transform(self, X, **params):\n \"\"\"Transform X separately by each transformer, concatenate results.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/compose/_column_transformer.py.\nHere is the description for the function:\n def fit_transform(self, X, y=None, **params):\n \"\"\"Fit all transformers, transform the data and concatenate results.\n\n Parameters\n ----------\n X : {array-like, dataframe} of shape (n_samples, n_features)\n Input data, of which specified subsets are used to fit the\n transformers.\n\n y : array-like of shape (n_samples,), default=None\n Targets for supervised learning.\n\n **params : dict, default=None\n Parameters to be passed to the underlying transformers' ``fit`` and\n ``transform`` methods.\n\n You can only pass this if metadata routing is enabled, which you\n can enable using ``sklearn.set_config(enable_metadata_routing=True)``.\n\n .. versionadded:: 1.4\n\n Returns\n -------\n X_t : {array-like, sparse matrix} of \\\n shape (n_samples, sum_n_components)\n Horizontally stacked results of transformers. sum_n_components is the\n sum of n_components (output dimension) over transformers. If\n any result is a sparse matrix, everything will be converted to\n sparse matrices.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/compose/tests/test_column_transformer.py::test_column_transformer", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_tuple_transformers_parameter", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_dataframe[dataframe]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[False-list-pandas]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[False-list-numpy]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[False-bool-pandas]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[False-bool-numpy]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[False-bool_int-pandas]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[False-bool_int-numpy]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[True-list-pandas]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[True-list-numpy]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[True-bool-pandas]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[True-bool-numpy]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[True-bool_int-pandas]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[True-bool_int-numpy]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_output_indices", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_output_indices_df", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_sparse_array[csr_matrix]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_sparse_array[csr_array]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_list", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_sparse_stacking[csr_matrix]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_sparse_stacking[csr_array]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_mixed_cols_sparse", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_sparse_threshold", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_error_msg_1D", "sklearn/compose/tests/test_column_transformer.py::test_2D_transformer_output", "sklearn/compose/tests/test_column_transformer.py::test_2D_transformer_output_pandas", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_invalid_columns[drop]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_invalid_columns[passthrough]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_invalid_transformer", "sklearn/compose/tests/test_column_transformer.py::test_make_column_transformer_pandas", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_named_estimators", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_cloning", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_get_feature_names", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_special_strings", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_dtypes_ints[False-cols10-cols20]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_dtypes_ints[False-cols11-cols21]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_dtypes_ints[False-<lambda>-<lambda>]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_dtypes_ints[True-cols10-cols20]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_dtypes_ints[True-cols11-cols21]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_dtypes_ints[True-<lambda>-<lambda>]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_dtypes[True-cols10-cols20-expected_cols0]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_dtypes[False-cols11-cols21-expected_cols1]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_dtypes[True-cols12-cols22-expected_cols2]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_dtypes[False-cols13-cols23-expected_cols3]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_numpy[key0-expected_cols0]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_numpy[key1-expected_cols1]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_numpy[key2-expected_cols2]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_numpy[key3-expected_cols3]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_pandas[key0-expected_cols0]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_pandas[key1-expected_cols1]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_pandas[key2-expected_cols2]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_pandas[key3-expected_cols3]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_pandas[pd-index-expected_cols4]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_pandas[key5-expected_cols5]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_pandas[key6-expected_cols6]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_pandas[key7-expected_cols7]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_pandas[key8-expected_cols8]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_transformer[key0-expected_cols0]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_transformer[key1-expected_cols1]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_transformer[key2-expected_cols2]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_transformer[key3-expected_cols3]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_no_remaining_remainder_transformer", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_drops_all_remainder_transformer", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_sparse_remainder_transformer[csr_matrix]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_sparse_remainder_transformer[csr_array]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_drop_all_sparse_remainder_transformer[csr_matrix]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_drop_all_sparse_remainder_transformer[csr_array]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_no_estimators", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_verbose[fit-est0-\\\\[ColumnTransformer\\\\].*\\\\(1 of 3\\\\) Processing trans1.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(2 of 3\\\\) Processing trans2.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(3 of 3\\\\) Processing remainder.* total=.*\\\\n$]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_verbose[fit-est1-\\\\[ColumnTransformer\\\\].*\\\\(1 of 3\\\\) Processing trans1.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(2 of 3\\\\) Processing trans2.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(3 of 3\\\\) Processing remainder.* total=.*\\\\n$]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_verbose[fit-est2-\\\\[ColumnTransformer\\\\].*\\\\(1 of 2\\\\) Processing trans1.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(2 of 2\\\\) Processing remainder.* total=.*\\\\n$]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_verbose[fit-est3-\\\\[ColumnTransformer\\\\].*\\\\(1 of 3\\\\) Processing trans1.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(2 of 3\\\\) Processing trans2.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(3 of 3\\\\) Processing remainder.* total=.*\\\\n$]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_verbose[fit-est4-\\\\[ColumnTransformer\\\\].*\\\\(1 of 2\\\\) Processing trans1.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(2 of 2\\\\) Processing remainder.* total=.*\\\\n$]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_verbose[fit-est5-\\\\[ColumnTransformer\\\\].*\\\\(1 of 2\\\\) Processing trans1.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(2 of 2\\\\) Processing trans2.* total=.*\\\\n$]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_verbose[fit-est6-\\\\[ColumnTransformer\\\\].*\\\\(1 of 1\\\\) Processing trans1.* total=.*\\\\n$]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_verbose[fit_transform-est0-\\\\[ColumnTransformer\\\\].*\\\\(1 of 3\\\\) Processing trans1.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(2 of 3\\\\) Processing trans2.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(3 of 3\\\\) Processing remainder.* total=.*\\\\n$]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_verbose[fit_transform-est1-\\\\[ColumnTransformer\\\\].*\\\\(1 of 3\\\\) Processing trans1.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(2 of 3\\\\) Processing trans2.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(3 of 3\\\\) Processing remainder.* total=.*\\\\n$]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_verbose[fit_transform-est2-\\\\[ColumnTransformer\\\\].*\\\\(1 of 2\\\\) Processing trans1.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(2 of 2\\\\) Processing remainder.* total=.*\\\\n$]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_verbose[fit_transform-est3-\\\\[ColumnTransformer\\\\].*\\\\(1 of 3\\\\) Processing trans1.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(2 of 3\\\\) Processing trans2.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(3 of 3\\\\) Processing remainder.* total=.*\\\\n$]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_verbose[fit_transform-est4-\\\\[ColumnTransformer\\\\].*\\\\(1 of 2\\\\) Processing trans1.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(2 of 2\\\\) Processing remainder.* total=.*\\\\n$]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_verbose[fit_transform-est5-\\\\[ColumnTransformer\\\\].*\\\\(1 of 2\\\\) Processing trans1.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(2 of 2\\\\) Processing trans2.* total=.*\\\\n$]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_verbose[fit_transform-est6-\\\\[ColumnTransformer\\\\].*\\\\(1 of 1\\\\) Processing trans1.* total=.*\\\\n$]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_callable_specifier", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_callable_specifier_dataframe", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_negative_column_indexes", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_mask_indexing[asarray]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_mask_indexing[csr_matrix]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_mask_indexing[csr_array]", "sklearn/compose/tests/test_column_transformer.py::test_n_features_in", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_with_make_column_selector", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_empty_columns[list]", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_empty_columns[array]", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_empty_columns[callable]", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_out_pandas[selector0]", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_out_pandas[<lambda>0]", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_out_pandas[selector2]", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_out_pandas[<lambda>1]", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_out_pandas[selector4]", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_out_pandas[<lambda>2]", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_out_non_pandas[selector0]", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_out_non_pandas[<lambda>0]", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_out_non_pandas[selector2]", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_out_non_pandas[<lambda>1]", "sklearn/compose/tests/test_column_transformer.py::test_sk_visual_block_remainder_fitted_pandas[passthrough]", "sklearn/compose/tests/test_column_transformer.py::test_sk_visual_block_remainder_fitted_pandas[remainder1]", "sklearn/compose/tests/test_column_transformer.py::test_sk_visual_block_remainder_fitted_numpy[passthrough]", "sklearn/compose/tests/test_column_transformer.py::test_sk_visual_block_remainder_fitted_numpy[remainder1]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_reordered_column_names_remainder[remainder0-first]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_reordered_column_names_remainder[remainder0-second]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_reordered_column_names_remainder[remainder0-0]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_reordered_column_names_remainder[remainder0-1]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_reordered_column_names_remainder[passthrough-first]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_reordered_column_names_remainder[passthrough-second]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_reordered_column_names_remainder[passthrough-0]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_reordered_column_names_remainder[passthrough-1]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-integer-column-transformer-estimator-brute]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_reordered_column_names_remainder[drop-first]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-integer-column-transformer-estimator-recursion]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_reordered_column_names_remainder[drop-second]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_reordered_column_names_remainder[drop-0]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-integer-column-transformer-passthrough-estimator-brute]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_reordered_column_names_remainder[drop-1]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-integer-column-transformer-passthrough-estimator-recursion]", "sklearn/compose/tests/test_column_transformer.py::test_feature_name_validation_missing_columns_drop_passthough", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_in_", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_true[transformers0-passthrough-expected_names0]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_true[transformers1-drop-expected_names1]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_true[transformers2-passthrough-expected_names2]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_true[transformers3-passthrough-expected_names3]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_true[transformers4-drop-expected_names4]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_true[transformers5-passthrough-expected_names5]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-string-column-transformer-estimator-brute]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_true[transformers6-drop-expected_names6]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_true[transformers7-drop-expected_names7]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_true[transformers8-passthrough-expected_names8]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_true[transformers9-passthrough-expected_names9]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_true[transformers10-drop-expected_names10]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-string-column-transformer-estimator-recursion]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_true[transformers11-passthrough-expected_names11]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-string-column-transformer-passthrough-estimator-brute]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_true[transformers12-passthrough-expected_names12]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_callable_or_str[transformers0-passthrough-_feature_names_out_callable_name_clash-expected_names0]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-string-column-transformer-passthrough-estimator-recursion]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_callable_or_str[transformers1-drop-{feature_name}-{transformer_name}-expected_names1]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_feature_type[scalar-int]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_callable_or_str[transformers2-passthrough-_feature_names_out_callable_upper-expected_names2]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false[transformers0-passthrough-expected_names0]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_feature_type[scalar-str]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_feature_type[list-int]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_feature_type[list-str]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false[transformers1-drop-expected_names1]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false[transformers2-passthrough-expected_names2]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_feature_type[mask]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false[transformers3-passthrough-expected_names3]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false[transformers4-drop-expected_names4]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false[transformers5-passthrough-expected_names5]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false[transformers6-drop-expected_names6]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false[transformers7-passthrough-expected_names7]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false[transformers8-passthrough-expected_names8]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false[transformers9-drop-expected_names9]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false[transformers10-passthrough-expected_names10]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false[transformers11-passthrough-expected_names11]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false[transformers12-drop-expected_names12]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false[transformers13-drop-expected_names13]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false_errors[transformers0-drop-['b']]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false_errors[transformers1-drop-['c']]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false_errors[transformers2-passthrough-['a']]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false_errors[transformers3-passthrough-['a']]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false_errors[transformers4-drop-['b', 'c']]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false_errors[transformers5-passthrough-['a']]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false_errors[transformers6-passthrough-['a', 'b']]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false_errors[transformers7-passthrough-['pca0', 'pca1', 'pca2', 'pca3', 'pca4', ...]]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false_errors[transformers8-passthrough-['a', 'b']]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false_errors[transformers9-passthrough-['a', 'b']]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false_errors[transformers10-passthrough-['a', 'b']]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false_errors[transformers11-passthrough-['a', 'b']]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_set_output[drop-True]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_set_output[drop-False]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_set_output[passthrough-True]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_set_output[passthrough-False]", "sklearn/compose/tests/test_column_transformer.py::test_column_transform_set_output_mixed[True-drop]", "sklearn/compose/tests/test_column_transformer.py::test_column_transform_set_output_mixed[True-passthrough]", "sklearn/compose/tests/test_column_transformer.py::test_column_transform_set_output_mixed[False-drop]", "sklearn/compose/tests/test_column_transformer.py::test_column_transform_set_output_mixed[False-passthrough]", "sklearn/compose/tests/test_column_transformer.py::test_column_transform_set_output_after_fitting[drop]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[0-estimator0]", "sklearn/compose/tests/test_column_transformer.py::test_column_transform_set_output_after_fitting[passthrough]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[0-estimator1]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[0-estimator2]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[0-estimator3]", "sklearn/compose/tests/test_column_transformer.py::test_transformers_with_pandas_out_but_not_feature_names_out[trans_10-expected_verbose_names0-expected_non_verbose_names0]", "sklearn/compose/tests/test_column_transformer.py::test_transformers_with_pandas_out_but_not_feature_names_out[drop-expected_verbose_names1-expected_non_verbose_names1]", "sklearn/compose/tests/test_column_transformer.py::test_transformers_with_pandas_out_but_not_feature_names_out[passthrough-expected_verbose_names2-expected_non_verbose_names2]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[1-estimator0]", "sklearn/tests/test_common.py::test_estimators[ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])-check_fit_score_takes_y]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[1-estimator1]", "sklearn/compose/tests/test_column_transformer.py::test_empty_selection_pandas_output[list]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[1-estimator2]", "sklearn/compose/tests/test_column_transformer.py::test_empty_selection_pandas_output[bool]", "sklearn/compose/tests/test_column_transformer.py::test_empty_selection_pandas_output[bool_int]", "sklearn/compose/tests/test_column_transformer.py::test_raise_error_if_index_not_aligned", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[1-estimator3]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[-1-estimator0]", "sklearn/tests/test_common.py::test_estimators[ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])-check_estimators_overwrite_params]", "sklearn/compose/tests/test_column_transformer.py::test_remainder_set_output", "sklearn/tests/test_common.py::test_estimators[ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])-check_estimators_dtypes]", "sklearn/compose/tests/test_column_transformer.py::test_transform_pd_na", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer__getitem__", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[-1-estimator1]", "sklearn/tests/test_common.py::test_estimators[ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])-check_estimators_fit_returns_self]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[-1-estimator2]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_passthrough_naming_consistency[default]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_passthrough_naming_consistency[pandas]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_column_renaming[pandas]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[-1-estimator3]", "sklearn/tests/test_common.py::test_estimators[ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_error_with_duplicated_columns[pandas]", "sklearn/tests/test_common.py::test_estimators[ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])-check_pipeline_consistency]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_auto_memmap", "sklearn/tests/test_common.py::test_estimators[ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])-check_estimators_pickle]", "sklearn/compose/tests/test_column_transformer.py::test_routing_passed_metadata_not_supported[transform]", "sklearn/compose/tests/test_column_transformer.py::test_routing_passed_metadata_not_supported[fit_transform]", "sklearn/compose/tests/test_column_transformer.py::test_routing_passed_metadata_not_supported[fit]", "sklearn/tests/test_common.py::test_estimators[ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])-check_estimators_pickle(readonly_memmap=True)]", "sklearn/compose/tests/test_column_transformer.py::test_metadata_routing_for_column_transformer[transform]", "sklearn/compose/tests/test_column_transformer.py::test_metadata_routing_for_column_transformer[fit_transform]", "sklearn/tests/test_common.py::test_estimators[ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])-check_f_contiguous_array_estimator]", "sklearn/compose/tests/test_column_transformer.py::test_metadata_routing_for_column_transformer[fit]", "sklearn/tests/test_common.py::test_estimators[ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])-check_transformer_preserve_dtypes]", "sklearn/compose/tests/test_column_transformer.py::test_metadata_routing_no_fit_transform", "sklearn/compose/tests/test_column_transformer.py::test_metadata_routing_error_for_column_transformer[transform]", "sklearn/compose/tests/test_column_transformer.py::test_metadata_routing_error_for_column_transformer[fit_transform]", "sklearn/tests/test_common.py::test_estimators[ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])-check_transformer_general(readonly_memmap=True)]", "sklearn/compose/tests/test_column_transformer.py::test_metadata_routing_error_for_column_transformer[fit]", "sklearn/tests/test_common.py::test_estimators[ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])-check_n_features_in]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-True-HistGradientBoostingRegressor-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-True-HistGradientBoostingRegressor-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-True-HistGradientBoostingClassifier-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-True-HistGradientBoostingClassifier-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-False-HistGradientBoostingRegressor-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-False-HistGradientBoostingRegressor-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-False-HistGradientBoostingClassifier-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-False-HistGradientBoostingClassifier-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-True-HistGradientBoostingRegressor-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-True-HistGradientBoostingRegressor-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-True-HistGradientBoostingClassifier-False]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_with_categorical[categorical_features0-dataframe]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-True-HistGradientBoostingClassifier-True]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_with_categorical[categorical_features1-array]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-False-HistGradientBoostingRegressor-False]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_with_categorical[categorical_features2-array]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-False-HistGradientBoostingRegressor-True]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_legend", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-False-HistGradientBoostingClassifier-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-False-HistGradientBoostingClassifier-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_encoding_strategies", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_spec_errors[categorical_features4-monotonic_cst4-Categorical features cannot have monotonic constraints-HistGradientBoostingClassifier]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_spec_errors[categorical_features4-monotonic_cst4-Categorical features cannot have monotonic constraints-HistGradientBoostingRegressor]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_grid_resolution_with_categorical[categorical_features0-dataframe]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_bad_encoding_errors[False-at index 0-HistGradientBoostingClassifier]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_grid_resolution_with_categorical[categorical_features1-array]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_bad_encoding_errors[False-at index 0-HistGradientBoostingRegressor]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_grid_resolution_with_categorical[categorical_features2-array]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_bad_encoding_errors[True-'f0'-HistGradientBoostingClassifier]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_bad_encoding_errors[True-'f0'-HistGradientBoostingRegressor]", "sklearn/model_selection/tests/test_search.py::test_search_with_estimators_issue_29157", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_not_fitted_errors[DetCurveDisplay-clf2]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_not_fitted_errors[PrecisionRecallDisplay-clf2]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_not_fitted_errors[RocCurveDisplay-clf2]", "sklearn/utils/tests/test_estimator_html_repr.py::test_estimator_html_repr_fitted_icon[estimator2]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_category_that_are_negative", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_dataframe_categorical_results_same_as_ndarray[HistGradientBoostingClassifier-pandas]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_complex_pipeline[from_estimator-clf2]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_dataframe_categorical_results_same_as_ndarray[HistGradientBoostingRegressor-pandas]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_dataframe_categorical_errors[HistGradientBoostingClassifier-pandas]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_complex_pipeline[from_predictions-clf2]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_dataframe_categorical_errors[HistGradientBoostingRegressor-pandas]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_different_order_same_model[pandas]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_precision_recall_display_pipeline[clf1]", "sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_pipeline[pipeline-column_transformer-clf]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_monotonic_constraints.py::test_predictions[42-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_monotonic_constraints.py::test_predictions[42-False]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_mixed_types_pandas", "sklearn/compose/_column_transformer.py::sklearn.compose._column_transformer.ColumnTransformer", "sklearn/utils/tests/test_parallel.py::test_dispatch_config_parallel[1]", "sklearn/utils/tests/test_parallel.py::test_dispatch_config_parallel[2]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])]", "sklearn/tests/test_common.py::test_check_param_validation[ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])]", "sklearn/tests/test_common.py::test_set_output_transform[ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-23
1.0
{ "code": "diff --git b/sklearn/compose/_column_transformer.py a/sklearn/compose/_column_transformer.py\nindex 0abedee19..73a0f5e2b 100644\n--- b/sklearn/compose/_column_transformer.py\n+++ a/sklearn/compose/_column_transformer.py\n@@ -631,6 +631,31 @@ class ColumnTransformer(TransformerMixin, _BaseComposition):\n feature_names_out : ndarray of str objects\n Transformed feature names.\n \"\"\"\n+ check_is_fitted(self)\n+ input_features = _check_feature_names_in(self, input_features)\n+\n+ # List of tuples (name, feature_names_out)\n+ transformer_with_feature_names_out = []\n+ for name, trans, *_ in self._iter(\n+ fitted=True,\n+ column_as_labels=False,\n+ skip_empty_columns=True,\n+ skip_drop=True,\n+ ):\n+ feature_names_out = self._get_feature_name_out_for_transformer(\n+ name, trans, input_features\n+ )\n+ if feature_names_out is None:\n+ continue\n+ transformer_with_feature_names_out.append((name, feature_names_out))\n+\n+ if not transformer_with_feature_names_out:\n+ # No feature names\n+ return np.array([], dtype=object)\n+\n+ return self._add_prefix_for_feature_names_out(\n+ transformer_with_feature_names_out\n+ )\n \n def _add_prefix_for_feature_names_out(self, transformer_with_feature_names_out):\n \"\"\"Add prefix for feature names out that includes the transformer names.\n", "test": null }
null
{ "code": "diff --git a/sklearn/compose/_column_transformer.py b/sklearn/compose/_column_transformer.py\nindex 73a0f5e2b..0abedee19 100644\n--- a/sklearn/compose/_column_transformer.py\n+++ b/sklearn/compose/_column_transformer.py\n@@ -631,31 +631,6 @@ class ColumnTransformer(TransformerMixin, _BaseComposition):\n feature_names_out : ndarray of str objects\n Transformed feature names.\n \"\"\"\n- check_is_fitted(self)\n- input_features = _check_feature_names_in(self, input_features)\n-\n- # List of tuples (name, feature_names_out)\n- transformer_with_feature_names_out = []\n- for name, trans, *_ in self._iter(\n- fitted=True,\n- column_as_labels=False,\n- skip_empty_columns=True,\n- skip_drop=True,\n- ):\n- feature_names_out = self._get_feature_name_out_for_transformer(\n- name, trans, input_features\n- )\n- if feature_names_out is None:\n- continue\n- transformer_with_feature_names_out.append((name, feature_names_out))\n-\n- if not transformer_with_feature_names_out:\n- # No feature names\n- return np.array([], dtype=object)\n-\n- return self._add_prefix_for_feature_names_out(\n- transformer_with_feature_names_out\n- )\n \n def _add_prefix_for_feature_names_out(self, transformer_with_feature_names_out):\n \"\"\"Add prefix for feature names out that includes the transformer names.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/compose/_column_transformer.py.\nHere is the description for the function:\n def get_feature_names_out(self, input_features=None):\n \"\"\"Get output feature names for transformation.\n\n Parameters\n ----------\n input_features : array-like of str or None, default=None\n Input features.\n\n - If `input_features` is `None`, then `feature_names_in_` is\n used as feature names in. If `feature_names_in_` is not defined,\n then the following input feature names are generated:\n `[\"x0\", \"x1\", ..., \"x(n_features_in_ - 1)\"]`.\n - If `input_features` is an array-like, then `input_features` must\n match `feature_names_in_` if `feature_names_in_` is defined.\n\n Returns\n -------\n feature_names_out : ndarray of str objects\n Transformed feature names.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_get_feature_names", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_empty_columns[list]", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_empty_columns[array]", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_empty_columns[callable]", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_out_pandas[selector0]", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_out_pandas[<lambda>0]", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_out_pandas[selector2]", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_out_pandas[<lambda>1]", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_out_pandas[selector4]", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_out_pandas[<lambda>2]", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_out_non_pandas[selector0]", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_out_non_pandas[<lambda>0]", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_out_non_pandas[selector2]", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_out_non_pandas[<lambda>1]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_true[transformers0-passthrough-expected_names0]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_true[transformers1-drop-expected_names1]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_true[transformers2-passthrough-expected_names2]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_true[transformers3-passthrough-expected_names3]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_true[transformers4-drop-expected_names4]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_true[transformers5-passthrough-expected_names5]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_true[transformers6-drop-expected_names6]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_true[transformers7-drop-expected_names7]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_true[transformers8-passthrough-expected_names8]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_true[transformers9-passthrough-expected_names9]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_true[transformers10-drop-expected_names10]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_true[transformers11-passthrough-expected_names11]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_true[transformers12-passthrough-expected_names12]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_callable_or_str[transformers0-passthrough-_feature_names_out_callable_name_clash-expected_names0]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_callable_or_str[transformers1-drop-{feature_name}-{transformer_name}-expected_names1]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_callable_or_str[transformers2-passthrough-_feature_names_out_callable_upper-expected_names2]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false[transformers0-passthrough-expected_names0]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false[transformers1-drop-expected_names1]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false[transformers2-passthrough-expected_names2]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false[transformers3-passthrough-expected_names3]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false[transformers4-drop-expected_names4]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false[transformers5-passthrough-expected_names5]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false[transformers6-drop-expected_names6]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false[transformers7-passthrough-expected_names7]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false[transformers8-passthrough-expected_names8]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false[transformers9-drop-expected_names9]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false[transformers10-passthrough-expected_names10]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false[transformers11-passthrough-expected_names11]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false[transformers12-drop-expected_names12]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false[transformers13-drop-expected_names13]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false_errors[transformers0-drop-['b']]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false_errors[transformers1-drop-['c']]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false_errors[transformers2-passthrough-['a']]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false_errors[transformers3-passthrough-['a']]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false_errors[transformers4-drop-['b', 'c']]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false_errors[transformers5-passthrough-['a']]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false_errors[transformers6-passthrough-['a', 'b']]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false_errors[transformers7-passthrough-['pca0', 'pca1', 'pca2', 'pca3', 'pca4', ...]]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false_errors[transformers8-passthrough-['a', 'b']]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false_errors[transformers9-passthrough-['a', 'b']]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false_errors[transformers10-passthrough-['a', 'b']]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false_errors[transformers11-passthrough-['a', 'b']]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_set_output[drop-True]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_set_output[drop-False]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_set_output[passthrough-True]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_set_output[passthrough-False]", "sklearn/compose/tests/test_column_transformer.py::test_column_transform_set_output_mixed[True-drop]", "sklearn/compose/tests/test_column_transformer.py::test_column_transform_set_output_mixed[True-passthrough]", "sklearn/compose/tests/test_column_transformer.py::test_column_transform_set_output_mixed[False-drop]", "sklearn/compose/tests/test_column_transformer.py::test_column_transform_set_output_mixed[False-passthrough]", "sklearn/compose/tests/test_column_transformer.py::test_transformers_with_pandas_out_but_not_feature_names_out[trans_10-expected_verbose_names0-expected_non_verbose_names0]", "sklearn/compose/tests/test_column_transformer.py::test_transformers_with_pandas_out_but_not_feature_names_out[drop-expected_verbose_names1-expected_non_verbose_names1]", "sklearn/compose/tests/test_column_transformer.py::test_transformers_with_pandas_out_but_not_feature_names_out[passthrough-expected_verbose_names2-expected_non_verbose_names2]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_passthrough_naming_consistency[default]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_passthrough_naming_consistency[pandas]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])]", "sklearn/tests/test_common.py::test_estimators_get_feature_names_out_error[ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-24
1.0
{ "code": "diff --git b/sklearn/compose/_column_transformer.py a/sklearn/compose/_column_transformer.py\nindex 1ac6ded26..73a0f5e2b 100644\n--- b/sklearn/compose/_column_transformer.py\n+++ a/sklearn/compose/_column_transformer.py\n@@ -1294,6 +1294,31 @@ class ColumnTransformer(TransformerMixin, _BaseComposition):\n A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating\n routing information.\n \"\"\"\n+ router = MetadataRouter(owner=self.__class__.__name__)\n+ # Here we don't care about which columns are used for which\n+ # transformers, and whether or not a transformer is used at all, which\n+ # might happen if no columns are selected for that transformer. We\n+ # request all metadata requested by all transformers.\n+ transformers = chain(self.transformers, [(\"remainder\", self.remainder, None)])\n+ for name, step, _ in transformers:\n+ method_mapping = MethodMapping()\n+ if hasattr(step, \"fit_transform\"):\n+ (\n+ method_mapping.add(caller=\"fit\", callee=\"fit_transform\").add(\n+ caller=\"fit_transform\", callee=\"fit_transform\"\n+ )\n+ )\n+ else:\n+ (\n+ method_mapping.add(caller=\"fit\", callee=\"fit\")\n+ .add(caller=\"fit\", callee=\"transform\")\n+ .add(caller=\"fit_transform\", callee=\"fit\")\n+ .add(caller=\"fit_transform\", callee=\"transform\")\n+ )\n+ method_mapping.add(caller=\"transform\", callee=\"transform\")\n+ router.add(method_mapping=method_mapping, **{name: step})\n+\n+ return router\n \n def __sklearn_tags__(self):\n tags = super().__sklearn_tags__()\n", "test": null }
null
{ "code": "diff --git a/sklearn/compose/_column_transformer.py b/sklearn/compose/_column_transformer.py\nindex 73a0f5e2b..1ac6ded26 100644\n--- a/sklearn/compose/_column_transformer.py\n+++ b/sklearn/compose/_column_transformer.py\n@@ -1294,31 +1294,6 @@ class ColumnTransformer(TransformerMixin, _BaseComposition):\n A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating\n routing information.\n \"\"\"\n- router = MetadataRouter(owner=self.__class__.__name__)\n- # Here we don't care about which columns are used for which\n- # transformers, and whether or not a transformer is used at all, which\n- # might happen if no columns are selected for that transformer. We\n- # request all metadata requested by all transformers.\n- transformers = chain(self.transformers, [(\"remainder\", self.remainder, None)])\n- for name, step, _ in transformers:\n- method_mapping = MethodMapping()\n- if hasattr(step, \"fit_transform\"):\n- (\n- method_mapping.add(caller=\"fit\", callee=\"fit_transform\").add(\n- caller=\"fit_transform\", callee=\"fit_transform\"\n- )\n- )\n- else:\n- (\n- method_mapping.add(caller=\"fit\", callee=\"fit\")\n- .add(caller=\"fit\", callee=\"transform\")\n- .add(caller=\"fit_transform\", callee=\"fit\")\n- .add(caller=\"fit_transform\", callee=\"transform\")\n- )\n- method_mapping.add(caller=\"transform\", callee=\"transform\")\n- router.add(method_mapping=method_mapping, **{name: step})\n-\n- return router\n \n def __sklearn_tags__(self):\n tags = super().__sklearn_tags__()\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/compose/_column_transformer.py.\nHere is the description for the function:\n def get_metadata_routing(self):\n \"\"\"Get metadata routing of this object.\n\n Please check :ref:`User Guide <metadata_routing>` on how the routing\n mechanism works.\n\n .. versionadded:: 1.4\n\n Returns\n -------\n routing : MetadataRouter\n A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating\n routing information.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/compose/tests/test_column_transformer.py::test_metadata_routing_for_column_transformer[transform]", "sklearn/compose/tests/test_column_transformer.py::test_metadata_routing_for_column_transformer[fit_transform]", "sklearn/compose/tests/test_column_transformer.py::test_metadata_routing_for_column_transformer[fit]", "sklearn/compose/tests/test_column_transformer.py::test_metadata_routing_no_fit_transform", "sklearn/compose/tests/test_column_transformer.py::test_metadata_routing_error_for_column_transformer[transform]", "sklearn/compose/tests/test_column_transformer.py::test_metadata_routing_error_for_column_transformer[fit_transform]", "sklearn/compose/tests/test_column_transformer.py::test_metadata_routing_error_for_column_transformer[fit]", "sklearn/compose/tests/test_column_transformer.py::test_get_metadata_routing_works_without_fit", "sklearn/compose/tests/test_column_transformer.py::test_remainder_request_always_present", "sklearn/compose/tests/test_column_transformer.py::test_unused_transformer_request_present" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-25
1.0
{ "code": "diff --git b/sklearn/compose/_column_transformer.py a/sklearn/compose/_column_transformer.py\nindex 4f62c21f4..73a0f5e2b 100644\n--- b/sklearn/compose/_column_transformer.py\n+++ a/sklearn/compose/_column_transformer.py\n@@ -376,6 +376,22 @@ class ColumnTransformer(TransformerMixin, _BaseComposition):\n self : estimator instance\n Estimator instance.\n \"\"\"\n+ super().set_output(transform=transform)\n+\n+ transformers = (\n+ trans\n+ for _, trans, _ in chain(\n+ self.transformers, getattr(self, \"transformers_\", [])\n+ )\n+ if trans not in {\"passthrough\", \"drop\"}\n+ )\n+ for trans in transformers:\n+ _safe_set_output(trans, transform=transform)\n+\n+ if self.remainder not in {\"passthrough\", \"drop\"}:\n+ _safe_set_output(self.remainder, transform=transform)\n+\n+ return self\n \n def get_params(self, deep=True):\n \"\"\"Get parameters for this estimator.\n", "test": null }
null
{ "code": "diff --git a/sklearn/compose/_column_transformer.py b/sklearn/compose/_column_transformer.py\nindex 73a0f5e2b..4f62c21f4 100644\n--- a/sklearn/compose/_column_transformer.py\n+++ b/sklearn/compose/_column_transformer.py\n@@ -376,22 +376,6 @@ class ColumnTransformer(TransformerMixin, _BaseComposition):\n self : estimator instance\n Estimator instance.\n \"\"\"\n- super().set_output(transform=transform)\n-\n- transformers = (\n- trans\n- for _, trans, _ in chain(\n- self.transformers, getattr(self, \"transformers_\", [])\n- )\n- if trans not in {\"passthrough\", \"drop\"}\n- )\n- for trans in transformers:\n- _safe_set_output(trans, transform=transform)\n-\n- if self.remainder not in {\"passthrough\", \"drop\"}:\n- _safe_set_output(self.remainder, transform=transform)\n-\n- return self\n \n def get_params(self, deep=True):\n \"\"\"Get parameters for this estimator.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/compose/_column_transformer.py.\nHere is the description for the function:\n def set_output(self, *, transform=None):\n \"\"\"Set the output container when `\"transform\"` and `\"fit_transform\"` are called.\n\n Calling `set_output` will set the output of all estimators in `transformers`\n and `transformers_`.\n\n Parameters\n ----------\n transform : {\"default\", \"pandas\", \"polars\"}, default=None\n Configure output of `transform` and `fit_transform`.\n\n - `\"default\"`: Default output format of a transformer\n - `\"pandas\"`: DataFrame output\n - `\"polars\"`: Polars output\n - `None`: Transform configuration is unchanged\n\n .. versionadded:: 1.4\n `\"polars\"` option was added.\n\n Returns\n -------\n self : estimator instance\n Estimator instance.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_set_output[drop-True]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_set_output[drop-False]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_set_output[passthrough-True]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_set_output[passthrough-False]", "sklearn/compose/tests/test_column_transformer.py::test_column_transform_set_output_mixed[True-drop]", "sklearn/compose/tests/test_column_transformer.py::test_column_transform_set_output_mixed[True-passthrough]", "sklearn/compose/tests/test_column_transformer.py::test_column_transform_set_output_mixed[False-drop]", "sklearn/compose/tests/test_column_transformer.py::test_column_transform_set_output_mixed[False-passthrough]", "sklearn/compose/tests/test_column_transformer.py::test_column_transform_set_output_after_fitting[drop]", "sklearn/compose/tests/test_column_transformer.py::test_column_transform_set_output_after_fitting[passthrough]", "sklearn/compose/tests/test_column_transformer.py::test_transformers_with_pandas_out_but_not_feature_names_out[trans_10-expected_verbose_names0-expected_non_verbose_names0]", "sklearn/compose/tests/test_column_transformer.py::test_transformers_with_pandas_out_but_not_feature_names_out[drop-expected_verbose_names1-expected_non_verbose_names1]", "sklearn/compose/tests/test_column_transformer.py::test_transformers_with_pandas_out_but_not_feature_names_out[passthrough-expected_verbose_names2-expected_non_verbose_names2]", "sklearn/compose/tests/test_column_transformer.py::test_empty_selection_pandas_output[list]", "sklearn/compose/tests/test_column_transformer.py::test_empty_selection_pandas_output[bool]", "sklearn/compose/tests/test_column_transformer.py::test_empty_selection_pandas_output[bool_int]", "sklearn/compose/tests/test_column_transformer.py::test_raise_error_if_index_not_aligned", "sklearn/compose/tests/test_column_transformer.py::test_remainder_set_output", "sklearn/compose/tests/test_column_transformer.py::test_transform_pd_na", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_passthrough_naming_consistency[default]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_passthrough_naming_consistency[pandas]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_column_renaming[pandas]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_error_with_duplicated_columns[pandas]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-True-HistGradientBoostingRegressor-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-True-HistGradientBoostingRegressor-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-True-HistGradientBoostingClassifier-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-True-HistGradientBoostingClassifier-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-False-HistGradientBoostingRegressor-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-False-HistGradientBoostingRegressor-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-False-HistGradientBoostingClassifier-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-False-HistGradientBoostingClassifier-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-True-HistGradientBoostingRegressor-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-True-HistGradientBoostingRegressor-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-True-HistGradientBoostingClassifier-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-True-HistGradientBoostingClassifier-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-False-HistGradientBoostingRegressor-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-False-HistGradientBoostingRegressor-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-False-HistGradientBoostingClassifier-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-False-HistGradientBoostingClassifier-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_encoding_strategies", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_spec_errors[categorical_features4-monotonic_cst4-Categorical features cannot have monotonic constraints-HistGradientBoostingClassifier]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_spec_errors[categorical_features4-monotonic_cst4-Categorical features cannot have monotonic constraints-HistGradientBoostingRegressor]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_bad_encoding_errors[False-at index 0-HistGradientBoostingClassifier]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_bad_encoding_errors[False-at index 0-HistGradientBoostingRegressor]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_bad_encoding_errors[True-'f0'-HistGradientBoostingClassifier]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_bad_encoding_errors[True-'f0'-HistGradientBoostingRegressor]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_category_that_are_negative", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_dataframe_categorical_results_same_as_ndarray[HistGradientBoostingClassifier-pandas]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_dataframe_categorical_results_same_as_ndarray[HistGradientBoostingRegressor-pandas]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_dataframe_categorical_errors[HistGradientBoostingClassifier-pandas]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_dataframe_categorical_errors[HistGradientBoostingRegressor-pandas]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_different_order_same_model[pandas]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_monotonic_constraints.py::test_predictions[42-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_monotonic_constraints.py::test_predictions[42-False]", "sklearn/tests/test_common.py::test_set_output_transform[ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-26
1.0
{ "code": "diff --git b/sklearn/compose/_column_transformer.py a/sklearn/compose/_column_transformer.py\nindex 6616c14e8..73a0f5e2b 100644\n--- b/sklearn/compose/_column_transformer.py\n+++ a/sklearn/compose/_column_transformer.py\n@@ -1060,6 +1060,62 @@ class ColumnTransformer(TransformerMixin, _BaseComposition):\n any result is a sparse matrix, everything will be converted to\n sparse matrices.\n \"\"\"\n+ _raise_for_params(params, self, \"transform\")\n+ check_is_fitted(self)\n+ X = _check_X(X)\n+\n+ # If ColumnTransformer is fit using a dataframe, and now a dataframe is\n+ # passed to be transformed, we select columns by name instead. This\n+ # enables the user to pass X at transform time with extra columns which\n+ # were not present in fit time, and the order of the columns doesn't\n+ # matter.\n+ fit_dataframe_and_transform_dataframe = hasattr(self, \"feature_names_in_\") and (\n+ _is_pandas_df(X) or hasattr(X, \"__dataframe__\")\n+ )\n+\n+ n_samples = _num_samples(X)\n+ column_names = _get_feature_names(X)\n+\n+ if fit_dataframe_and_transform_dataframe:\n+ named_transformers = self.named_transformers_\n+ # check that all names seen in fit are in transform, unless\n+ # they were dropped\n+ non_dropped_indices = [\n+ ind\n+ for name, ind in self._transformer_to_input_indices.items()\n+ if name in named_transformers and named_transformers[name] != \"drop\"\n+ ]\n+\n+ all_indices = set(chain(*non_dropped_indices))\n+ all_names = set(self.feature_names_in_[ind] for ind in all_indices)\n+\n+ diff = all_names - set(column_names)\n+ if diff:\n+ raise ValueError(f\"columns are missing: {diff}\")\n+ else:\n+ # ndarray was used for fitting or transforming, thus we only\n+ # check that n_features_in_ is consistent\n+ _check_n_features(self, X, reset=False)\n+\n+ if _routing_enabled():\n+ routed_params = process_routing(self, \"transform\", **params)\n+ else:\n+ routed_params = self._get_empty_routing()\n+\n+ Xs = self._call_func_on_transformers(\n+ X,\n+ None,\n+ _transform_one,\n+ column_as_labels=fit_dataframe_and_transform_dataframe,\n+ routed_params=routed_params,\n+ )\n+ self._validate_output(Xs)\n+\n+ if not Xs:\n+ # All transformers are None\n+ return np.zeros((n_samples, 0))\n+\n+ return self._hstack(list(Xs), n_samples=n_samples)\n \n def _hstack(self, Xs, *, n_samples):\n \"\"\"Stacks Xs horizontally.\n", "test": null }
null
{ "code": "diff --git a/sklearn/compose/_column_transformer.py b/sklearn/compose/_column_transformer.py\nindex 73a0f5e2b..6616c14e8 100644\n--- a/sklearn/compose/_column_transformer.py\n+++ b/sklearn/compose/_column_transformer.py\n@@ -1060,62 +1060,6 @@ class ColumnTransformer(TransformerMixin, _BaseComposition):\n any result is a sparse matrix, everything will be converted to\n sparse matrices.\n \"\"\"\n- _raise_for_params(params, self, \"transform\")\n- check_is_fitted(self)\n- X = _check_X(X)\n-\n- # If ColumnTransformer is fit using a dataframe, and now a dataframe is\n- # passed to be transformed, we select columns by name instead. This\n- # enables the user to pass X at transform time with extra columns which\n- # were not present in fit time, and the order of the columns doesn't\n- # matter.\n- fit_dataframe_and_transform_dataframe = hasattr(self, \"feature_names_in_\") and (\n- _is_pandas_df(X) or hasattr(X, \"__dataframe__\")\n- )\n-\n- n_samples = _num_samples(X)\n- column_names = _get_feature_names(X)\n-\n- if fit_dataframe_and_transform_dataframe:\n- named_transformers = self.named_transformers_\n- # check that all names seen in fit are in transform, unless\n- # they were dropped\n- non_dropped_indices = [\n- ind\n- for name, ind in self._transformer_to_input_indices.items()\n- if name in named_transformers and named_transformers[name] != \"drop\"\n- ]\n-\n- all_indices = set(chain(*non_dropped_indices))\n- all_names = set(self.feature_names_in_[ind] for ind in all_indices)\n-\n- diff = all_names - set(column_names)\n- if diff:\n- raise ValueError(f\"columns are missing: {diff}\")\n- else:\n- # ndarray was used for fitting or transforming, thus we only\n- # check that n_features_in_ is consistent\n- _check_n_features(self, X, reset=False)\n-\n- if _routing_enabled():\n- routed_params = process_routing(self, \"transform\", **params)\n- else:\n- routed_params = self._get_empty_routing()\n-\n- Xs = self._call_func_on_transformers(\n- X,\n- None,\n- _transform_one,\n- column_as_labels=fit_dataframe_and_transform_dataframe,\n- routed_params=routed_params,\n- )\n- self._validate_output(Xs)\n-\n- if not Xs:\n- # All transformers are None\n- return np.zeros((n_samples, 0))\n-\n- return self._hstack(list(Xs), n_samples=n_samples)\n \n def _hstack(self, Xs, *, n_samples):\n \"\"\"Stacks Xs horizontally.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/compose/_column_transformer.py.\nHere is the description for the function:\n def transform(self, X, **params):\n \"\"\"Transform X separately by each transformer, concatenate results.\n\n Parameters\n ----------\n X : {array-like, dataframe} of shape (n_samples, n_features)\n The data to be transformed by subset.\n\n **params : dict, default=None\n Parameters to be passed to the underlying transformers' ``transform``\n method.\n\n You can only pass this if metadata routing is enabled, which you\n can enable using ``sklearn.set_config(enable_metadata_routing=True)``.\n\n .. versionadded:: 1.4\n\n Returns\n -------\n X_t : {array-like, sparse matrix} of \\\n shape (n_samples, sum_n_components)\n Horizontally stacked results of transformers. sum_n_components is the\n sum of n_components (output dimension) over transformers. If\n any result is a sparse matrix, everything will be converted to\n sparse matrices.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/compose/tests/test_column_transformer.py::test_column_transformer", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_tuple_transformers_parameter", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_dataframe[dataframe]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[False-list-pandas]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[False-list-numpy]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[False-bool-pandas]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[False-bool-numpy]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[False-bool_int-pandas]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[False-bool_int-numpy]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[True-list-pandas]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[True-list-numpy]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[True-bool-pandas]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[True-bool-numpy]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[True-bool_int-pandas]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[True-bool_int-numpy]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_sparse_array[csr_matrix]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_sparse_array[csr_array]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_list", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_sparse_stacking[csr_matrix]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_sparse_stacking[csr_array]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_invalid_columns[drop]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_invalid_columns[passthrough]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_special_strings", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_numpy[key0-expected_cols0]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_numpy[key1-expected_cols1]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_numpy[key2-expected_cols2]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_numpy[key3-expected_cols3]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_pandas[key0-expected_cols0]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_pandas[key1-expected_cols1]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_pandas[key2-expected_cols2]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_pandas[key3-expected_cols3]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_pandas[pd-index-expected_cols4]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_pandas[key5-expected_cols5]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_pandas[key6-expected_cols6]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_pandas[key7-expected_cols7]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_pandas[key8-expected_cols8]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_transformer[key0-expected_cols0]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_transformer[key1-expected_cols1]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_transformer[key2-expected_cols2]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_transformer[key3-expected_cols3]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_no_remaining_remainder_transformer", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_drops_all_remainder_transformer", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_callable_specifier", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_callable_specifier_dataframe", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_reordered_column_names_remainder[remainder0-first]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_reordered_column_names_remainder[remainder0-second]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_reordered_column_names_remainder[remainder0-0]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_reordered_column_names_remainder[remainder0-1]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_reordered_column_names_remainder[passthrough-first]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_reordered_column_names_remainder[passthrough-second]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_reordered_column_names_remainder[passthrough-0]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_reordered_column_names_remainder[passthrough-1]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_reordered_column_names_remainder[drop-first]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_reordered_column_names_remainder[drop-second]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_reordered_column_names_remainder[drop-0]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_reordered_column_names_remainder[drop-1]", "sklearn/compose/tests/test_column_transformer.py::test_feature_name_validation_missing_columns_drop_passthough", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_set_output[drop-True]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_set_output[drop-False]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_set_output[passthrough-True]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_set_output[passthrough-False]", "sklearn/compose/tests/test_column_transformer.py::test_column_transform_set_output_mixed[False-drop]", "sklearn/compose/tests/test_column_transformer.py::test_column_transform_set_output_mixed[False-passthrough]", "sklearn/compose/tests/test_column_transformer.py::test_column_transform_set_output_after_fitting[drop]", "sklearn/compose/tests/test_column_transformer.py::test_column_transform_set_output_after_fitting[passthrough]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-integer-column-transformer-estimator-brute]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-integer-column-transformer-estimator-recursion]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-integer-column-transformer-passthrough-estimator-brute]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-integer-column-transformer-passthrough-estimator-recursion]", "sklearn/compose/tests/test_column_transformer.py::test_routing_passed_metadata_not_supported[transform]", "sklearn/compose/tests/test_column_transformer.py::test_metadata_routing_for_column_transformer[transform]", "sklearn/compose/tests/test_column_transformer.py::test_metadata_routing_error_for_column_transformer[transform]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-string-column-transformer-estimator-brute]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-string-column-transformer-estimator-recursion]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-string-column-transformer-passthrough-estimator-brute]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-string-column-transformer-passthrough-estimator-recursion]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_feature_type[scalar-int]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_feature_type[scalar-str]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_feature_type[list-int]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_feature_type[list-str]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_feature_type[mask]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[0-estimator0]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[0-estimator1]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[0-estimator2]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[0-estimator3]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[1-estimator0]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[1-estimator1]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[1-estimator2]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[1-estimator3]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[-1-estimator0]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[-1-estimator1]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[-1-estimator2]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[-1-estimator3]", "sklearn/tests/test_common.py::test_estimators[ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])-check_transformers_unfitted]", "sklearn/tests/test_common.py::test_estimators[ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])-check_fit_idempotent]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-True-HistGradientBoostingRegressor-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-True-HistGradientBoostingRegressor-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-True-HistGradientBoostingClassifier-False]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_with_categorical[categorical_features0-dataframe]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-True-HistGradientBoostingClassifier-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-False-HistGradientBoostingRegressor-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-False-HistGradientBoostingRegressor-True]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_with_categorical[categorical_features1-array]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_with_categorical[categorical_features2-array]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-False-HistGradientBoostingClassifier-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-False-HistGradientBoostingClassifier-True]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_legend", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-True-HistGradientBoostingRegressor-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-True-HistGradientBoostingRegressor-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-True-HistGradientBoostingClassifier-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-True-HistGradientBoostingClassifier-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-False-HistGradientBoostingRegressor-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-False-HistGradientBoostingRegressor-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-False-HistGradientBoostingClassifier-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-False-HistGradientBoostingClassifier-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_encoding_strategies", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_category_that_are_negative", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_not_fitted_errors[DetCurveDisplay-clf2]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_complex_pipeline[from_estimator-clf2]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_dataframe_categorical_results_same_as_ndarray[HistGradientBoostingClassifier-pandas]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_dataframe_categorical_results_same_as_ndarray[HistGradientBoostingRegressor-pandas]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_not_fitted_errors[PrecisionRecallDisplay-clf2]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_not_fitted_errors[RocCurveDisplay-clf2]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_precision_recall_display_pipeline[clf1]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_mixed_types_pandas", "sklearn/metrics/_plot/tests/test_confusion_matrix_display.py::test_confusion_matrix_pipeline[pipeline-column_transformer-clf]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_monotonic_constraints.py::test_predictions[42-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_monotonic_constraints.py::test_predictions[42-False]", "sklearn/utils/tests/test_parallel.py::test_dispatch_config_parallel[1]", "sklearn/utils/tests/test_parallel.py::test_dispatch_config_parallel[2]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])]", "sklearn/tests/test_common.py::test_set_output_transform[ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-ColumnTransformer(transformers=[('trans1',StandardScaler(),[0,1])])]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-27
1.0
{ "code": "diff --git b/sklearn/cluster/_dbscan.py a/sklearn/cluster/_dbscan.py\nindex c9f545be4..12f9b74d0 100644\n--- b/sklearn/cluster/_dbscan.py\n+++ a/sklearn/cluster/_dbscan.py\n@@ -360,6 +360,10 @@ class DBSCAN(ClusterMixin, BaseEstimator):\n self.p = p\n self.n_jobs = n_jobs\n \n+ @_fit_context(\n+ # DBSCAN.metric is not validated yet\n+ prefer_skip_nested_validation=False\n+ )\n def fit(self, X, y=None, sample_weight=None):\n \"\"\"Perform DBSCAN clustering from features, or distance matrix.\n \n@@ -385,6 +389,59 @@ class DBSCAN(ClusterMixin, BaseEstimator):\n self : object\n Returns a fitted instance of self.\n \"\"\"\n+ X = validate_data(self, X, accept_sparse=\"csr\")\n+\n+ if sample_weight is not None:\n+ sample_weight = _check_sample_weight(sample_weight, X)\n+\n+ # Calculate neighborhood for all samples. This leaves the original\n+ # point in, which needs to be considered later (i.e. point i is in the\n+ # neighborhood of point i. While True, its useless information)\n+ if self.metric == \"precomputed\" and sparse.issparse(X):\n+ # set the diagonal to explicit values, as a point is its own\n+ # neighbor\n+ X = X.copy() # copy to avoid in-place modification\n+ with warnings.catch_warnings():\n+ warnings.simplefilter(\"ignore\", sparse.SparseEfficiencyWarning)\n+ X.setdiag(X.diagonal())\n+\n+ neighbors_model = NearestNeighbors(\n+ radius=self.eps,\n+ algorithm=self.algorithm,\n+ leaf_size=self.leaf_size,\n+ metric=self.metric,\n+ metric_params=self.metric_params,\n+ p=self.p,\n+ n_jobs=self.n_jobs,\n+ )\n+ neighbors_model.fit(X)\n+ # This has worst case O(n^2) memory complexity\n+ neighborhoods = neighbors_model.radius_neighbors(X, return_distance=False)\n+\n+ if sample_weight is None:\n+ n_neighbors = np.array([len(neighbors) for neighbors in neighborhoods])\n+ else:\n+ n_neighbors = np.array(\n+ [np.sum(sample_weight[neighbors]) for neighbors in neighborhoods]\n+ )\n+\n+ # Initially, all samples are noise.\n+ labels = np.full(X.shape[0], -1, dtype=np.intp)\n+\n+ # A list of all core samples found.\n+ core_samples = np.asarray(n_neighbors >= self.min_samples, dtype=np.uint8)\n+ dbscan_inner(core_samples, neighborhoods, labels)\n+\n+ self.core_sample_indices_ = np.where(core_samples)[0]\n+ self.labels_ = labels\n+\n+ if len(self.core_sample_indices_):\n+ # fix for scipy sparse indexing issue\n+ self.components_ = X[self.core_sample_indices_].copy()\n+ else:\n+ # no core samples\n+ self.components_ = np.empty((0, X.shape[1]))\n+ return self\n \n def fit_predict(self, X, y=None, sample_weight=None):\n \"\"\"Compute clusters from a data or distance matrix and predict labels.\n", "test": null }
null
{ "code": "diff --git a/sklearn/cluster/_dbscan.py b/sklearn/cluster/_dbscan.py\nindex 12f9b74d0..c9f545be4 100644\n--- a/sklearn/cluster/_dbscan.py\n+++ b/sklearn/cluster/_dbscan.py\n@@ -360,10 +360,6 @@ class DBSCAN(ClusterMixin, BaseEstimator):\n self.p = p\n self.n_jobs = n_jobs\n \n- @_fit_context(\n- # DBSCAN.metric is not validated yet\n- prefer_skip_nested_validation=False\n- )\n def fit(self, X, y=None, sample_weight=None):\n \"\"\"Perform DBSCAN clustering from features, or distance matrix.\n \n@@ -389,59 +385,6 @@ class DBSCAN(ClusterMixin, BaseEstimator):\n self : object\n Returns a fitted instance of self.\n \"\"\"\n- X = validate_data(self, X, accept_sparse=\"csr\")\n-\n- if sample_weight is not None:\n- sample_weight = _check_sample_weight(sample_weight, X)\n-\n- # Calculate neighborhood for all samples. This leaves the original\n- # point in, which needs to be considered later (i.e. point i is in the\n- # neighborhood of point i. While True, its useless information)\n- if self.metric == \"precomputed\" and sparse.issparse(X):\n- # set the diagonal to explicit values, as a point is its own\n- # neighbor\n- X = X.copy() # copy to avoid in-place modification\n- with warnings.catch_warnings():\n- warnings.simplefilter(\"ignore\", sparse.SparseEfficiencyWarning)\n- X.setdiag(X.diagonal())\n-\n- neighbors_model = NearestNeighbors(\n- radius=self.eps,\n- algorithm=self.algorithm,\n- leaf_size=self.leaf_size,\n- metric=self.metric,\n- metric_params=self.metric_params,\n- p=self.p,\n- n_jobs=self.n_jobs,\n- )\n- neighbors_model.fit(X)\n- # This has worst case O(n^2) memory complexity\n- neighborhoods = neighbors_model.radius_neighbors(X, return_distance=False)\n-\n- if sample_weight is None:\n- n_neighbors = np.array([len(neighbors) for neighbors in neighborhoods])\n- else:\n- n_neighbors = np.array(\n- [np.sum(sample_weight[neighbors]) for neighbors in neighborhoods]\n- )\n-\n- # Initially, all samples are noise.\n- labels = np.full(X.shape[0], -1, dtype=np.intp)\n-\n- # A list of all core samples found.\n- core_samples = np.asarray(n_neighbors >= self.min_samples, dtype=np.uint8)\n- dbscan_inner(core_samples, neighborhoods, labels)\n-\n- self.core_sample_indices_ = np.where(core_samples)[0]\n- self.labels_ = labels\n-\n- if len(self.core_sample_indices_):\n- # fix for scipy sparse indexing issue\n- self.components_ = X[self.core_sample_indices_].copy()\n- else:\n- # no core samples\n- self.components_ = np.empty((0, X.shape[1]))\n- return self\n \n def fit_predict(self, X, y=None, sample_weight=None):\n \"\"\"Compute clusters from a data or distance matrix and predict labels.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/cluster/_dbscan.py.\nHere is the description for the function:\n def fit(self, X, y=None, sample_weight=None):\n \"\"\"Perform DBSCAN clustering from features, or distance matrix.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features), or \\\n (n_samples, n_samples)\n Training instances to cluster, or distances between instances if\n ``metric='precomputed'``. If a sparse matrix is provided, it will\n be converted into a sparse ``csr_matrix``.\n\n y : Ignored\n Not used, present here for API consistency by convention.\n\n sample_weight : array-like of shape (n_samples,), default=None\n Weight of each sample, such that a sample with a weight of at least\n ``min_samples`` is by itself a core sample; a sample with a\n negative weight may inhibit its eps-neighbor from being core.\n Note that weights are absolute, and default to 1.\n\n Returns\n -------\n self : object\n Returns a fitted instance of self.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_common.py::test_estimators[DBSCAN()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[DBSCAN()-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[DBSCAN()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[DBSCAN()-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[DBSCAN()-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[DBSCAN()-check_sample_weights_list]", "sklearn/tests/test_public_functions.py::test_class_wrapper_param_validation[sklearn.cluster.dbscan-sklearn.cluster.DBSCAN]", "sklearn/tests/test_common.py::test_estimators[DBSCAN()-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[DBSCAN()-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[DBSCAN()-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[DBSCAN()-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[DBSCAN()-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[DBSCAN()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[DBSCAN()-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[DBSCAN()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[DBSCAN()-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[DBSCAN()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[DBSCAN()-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[DBSCAN()-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[DBSCAN()-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[DBSCAN()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[DBSCAN()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[DBSCAN()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[DBSCAN()-check_clustering]", "sklearn/tests/test_common.py::test_estimators[DBSCAN()-check_clustering(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[DBSCAN()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[DBSCAN()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[DBSCAN()-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[DBSCAN()-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[DBSCAN()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[DBSCAN()-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[DBSCAN()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[DBSCAN()-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[DBSCAN()-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[DBSCAN()-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[DBSCAN()-check_fit2d_predict1d]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float64-None-minkowski-3-0.1]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float64-None-minkowski-3-0.3]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float64-None-minkowski-3-0.5]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float64-None-minkowski-10-0.1]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float64-None-minkowski-10-0.3]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float64-None-minkowski-10-0.5]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float64-None-minkowski-20-0.1]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float64-None-minkowski-20-0.3]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float64-None-minkowski-20-0.5]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float64-None-euclidean-3-0.1]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float64-None-euclidean-3-0.3]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float64-None-euclidean-3-0.5]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float64-None-euclidean-10-0.1]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float64-None-euclidean-10-0.3]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float64-None-euclidean-10-0.5]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float64-None-euclidean-20-0.1]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float64-None-euclidean-20-0.3]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float64-None-euclidean-20-0.5]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float64-csr_matrix-euclidean-3-0.1]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float64-csr_matrix-euclidean-3-0.3]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float64-csr_matrix-euclidean-3-0.5]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float64-csr_matrix-euclidean-10-0.1]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float64-csr_matrix-euclidean-10-0.3]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float64-csr_matrix-euclidean-10-0.5]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float64-csr_matrix-euclidean-20-0.1]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float64-csr_matrix-euclidean-20-0.3]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float64-csr_matrix-euclidean-20-0.5]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float64-csr_array-euclidean-3-0.1]", "sklearn/cluster/tests/test_dbscan.py::test_dbscan_similarity", "sklearn/cluster/tests/test_dbscan.py::test_dbscan_feature", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float64-csr_array-euclidean-3-0.3]", "sklearn/cluster/tests/test_dbscan.py::test_dbscan_sparse[lil_matrix]", "sklearn/cluster/tests/test_dbscan.py::test_dbscan_sparse[lil_array]", "sklearn/cluster/tests/test_dbscan.py::test_dbscan_sparse_precomputed[False]", "sklearn/cluster/tests/test_dbscan.py::test_dbscan_sparse_precomputed[True]", "sklearn/cluster/tests/test_dbscan.py::test_dbscan_sparse_precomputed_different_eps", "sklearn/cluster/tests/test_dbscan.py::test_dbscan_input_not_modified[csr_matrix-precomputed]", "sklearn/cluster/tests/test_dbscan.py::test_dbscan_input_not_modified[csr_matrix-minkowski]", "sklearn/cluster/tests/test_dbscan.py::test_dbscan_input_not_modified[csr_array-precomputed]", "sklearn/cluster/tests/test_dbscan.py::test_dbscan_input_not_modified[csr_array-minkowski]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float64-csr_array-euclidean-3-0.5]", "sklearn/cluster/tests/test_dbscan.py::test_dbscan_input_not_modified[None-precomputed]", "sklearn/cluster/tests/test_dbscan.py::test_dbscan_input_not_modified[None-minkowski]", "sklearn/cluster/tests/test_dbscan.py::test_dbscan_input_not_modified_precomputed_sparse_nodiag[csr_matrix]", "sklearn/cluster/tests/test_dbscan.py::test_dbscan_input_not_modified_precomputed_sparse_nodiag[csr_array]", "sklearn/cluster/tests/test_dbscan.py::test_dbscan_no_core_samples[csr_matrix]", "sklearn/cluster/tests/test_dbscan.py::test_dbscan_no_core_samples[csr_array]", "sklearn/cluster/tests/test_dbscan.py::test_dbscan_callable", "sklearn/cluster/tests/test_dbscan.py::test_dbscan_metric_params", "sklearn/cluster/tests/test_dbscan.py::test_dbscan_balltree", "sklearn/cluster/tests/test_dbscan.py::test_input_validation", "sklearn/cluster/tests/test_dbscan.py::test_boundaries", "sklearn/cluster/tests/test_dbscan.py::test_weighted_dbscan[42]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float64-csr_array-euclidean-10-0.1]", "sklearn/cluster/tests/test_dbscan.py::test_dbscan_core_samples_toy[brute]", "sklearn/cluster/tests/test_dbscan.py::test_dbscan_core_samples_toy[kd_tree]", "sklearn/cluster/tests/test_dbscan.py::test_dbscan_core_samples_toy[ball_tree]", "sklearn/cluster/tests/test_dbscan.py::test_dbscan_precomputed_metric_with_degenerate_input_arrays", "sklearn/cluster/tests/test_dbscan.py::test_dbscan_precomputed_metric_with_initial_rows_zero[csr_matrix]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float64-csr_array-euclidean-10-0.3]", "sklearn/cluster/tests/test_dbscan.py::test_dbscan_precomputed_metric_with_initial_rows_zero[csr_array]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float64-csr_array-euclidean-10-0.5]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float64-csr_array-euclidean-20-0.1]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float64-csr_array-euclidean-20-0.3]", "sklearn/cluster/tests/test_optics.py::test_dbscan_optics_parity[float64-csr_array-euclidean-20-0.5]", "sklearn/neighbors/tests/test_neighbors_pipeline.py::test_dbscan", "sklearn/neighbors/_graph.py::sklearn.neighbors._graph.RadiusNeighborsTransformer", "sklearn/cluster/_dbscan.py::sklearn.cluster._dbscan.DBSCAN", "sklearn/cluster/_dbscan.py::sklearn.cluster._dbscan.dbscan", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[DBSCAN()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[DBSCAN()]", "sklearn/tests/test_common.py::test_check_param_validation[DBSCAN()]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-28
1.0
{ "code": "diff --git b/sklearn/tree/_classes.py a/sklearn/tree/_classes.py\nindex 826eb75fd..7366d5384 100644\n--- b/sklearn/tree/_classes.py\n+++ a/sklearn/tree/_classes.py\n@@ -972,6 +972,7 @@ class DecisionTreeClassifier(ClassifierMixin, BaseDecisionTree):\n ccp_alpha=ccp_alpha,\n )\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y, sample_weight=None, check_input=True):\n \"\"\"Build a decision tree classifier from the training set (X, y).\n \n@@ -1002,6 +1003,14 @@ class DecisionTreeClassifier(ClassifierMixin, BaseDecisionTree):\n Fitted estimator.\n \"\"\"\n \n+ super()._fit(\n+ X,\n+ y,\n+ sample_weight=sample_weight,\n+ check_input=check_input,\n+ )\n+ return self\n+\n def predict_proba(self, X, check_input=True):\n \"\"\"Predict class probabilities of the input samples X.\n \n", "test": null }
null
{ "code": "diff --git a/sklearn/tree/_classes.py b/sklearn/tree/_classes.py\nindex 7366d5384..826eb75fd 100644\n--- a/sklearn/tree/_classes.py\n+++ b/sklearn/tree/_classes.py\n@@ -972,7 +972,6 @@ class DecisionTreeClassifier(ClassifierMixin, BaseDecisionTree):\n ccp_alpha=ccp_alpha,\n )\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y, sample_weight=None, check_input=True):\n \"\"\"Build a decision tree classifier from the training set (X, y).\n \n@@ -1003,14 +1002,6 @@ class DecisionTreeClassifier(ClassifierMixin, BaseDecisionTree):\n Fitted estimator.\n \"\"\"\n \n- super()._fit(\n- X,\n- y,\n- sample_weight=sample_weight,\n- check_input=check_input,\n- )\n- return self\n-\n def predict_proba(self, X, check_input=True):\n \"\"\"Predict class probabilities of the input samples X.\n \n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/tree/_classes.py.\nHere is the description for the function:\n def fit(self, X, y, sample_weight=None, check_input=True):\n \"\"\"Build a decision tree classifier from the training set (X, y).\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n The training input samples. Internally, it will be converted to\n ``dtype=np.float32`` and if a sparse matrix is provided\n to a sparse ``csc_matrix``.\n\n y : array-like of shape (n_samples,) or (n_samples, n_outputs)\n The target values (class labels) as integers or strings.\n\n sample_weight : array-like of shape (n_samples,), default=None\n Sample weights. If None, then samples are equally weighted. Splits\n that would create child nodes with net zero or negative weight are\n ignored while searching for a split in each node. Splits are also\n ignored if they would result in any single class carrying a\n negative weight in either child node.\n\n check_input : bool, default=True\n Allow to bypass several input checking.\n Don't use this parameter unless you know what you're doing.\n\n Returns\n -------\n self : DecisionTreeClassifier\n Fitted estimator.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_sample_weights_pandas_series]", "sklearn/tree/tests/test_tree.py::test_classification_toy", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_sample_weights_not_an_array]", "sklearn/tree/tests/test_tree.py::test_weighted_classification_toy", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_dtype_object]", "sklearn/tree/tests/test_tree.py::test_xor", "sklearn/tree/tests/test_tree.py::test_iris", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tree/tests/test_tree.py::test_probability", "sklearn/tree/tests/test_tree.py::test_pure_set", "sklearn/tree/tests/test_tree.py::test_importances", "sklearn/tree/tests/test_tree.py::test_importances_gini_equal_squared_error", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_f_contiguous_array_estimator]", "sklearn/tree/tests/test_tree.py::test_max_features", "sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[accuracy-accuracy_score]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_classifier_data_not_an_array]", "sklearn/tree/tests/test_tree.py::test_error", "sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[balanced_accuracy-balanced_accuracy_score]", "sklearn/tree/tests/test_tree.py::test_min_samples_split", "sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[f1_weighted-metric2]", "sklearn/tree/tests/test_tree.py::test_min_samples_leaf", "sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[f1_macro-metric3]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_classifiers_one_label]", "sklearn/tree/tests/test_tree.py::test_min_weight_fraction_leaf_on_dense_input[DecisionTreeClassifier]", "sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[f1_micro-metric4]", "sklearn/tree/tests/test_tree.py::test_min_weight_fraction_leaf_on_dense_input[ExtraTreeClassifier]", "sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[precision_weighted-metric5]", "sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[precision_macro-metric6]", "sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[precision_micro-metric7]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_classifiers_one_label_sample_weights]", "sklearn/tree/tests/test_tree.py::test_min_weight_fraction_leaf_on_sparse_input[csc_matrix-DecisionTreeClassifier]", "sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[recall_weighted-metric8]", "sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[recall_macro-metric9]", "sklearn/tree/tests/test_tree.py::test_min_weight_fraction_leaf_on_sparse_input[csc_matrix-ExtraTreeClassifier]", "sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[recall_micro-metric10]", "sklearn/tree/tests/test_tree.py::test_min_weight_fraction_leaf_on_sparse_input[csc_array-DecisionTreeClassifier]", "sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[jaccard_weighted-metric11]", "sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[jaccard_macro-metric12]", "sklearn/tree/tests/test_tree.py::test_min_weight_fraction_leaf_on_sparse_input[csc_array-ExtraTreeClassifier]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_classifiers_classes]", "sklearn/metrics/tests/test_score_objects.py::test_classification_multiclass_scores[jaccard_micro-metric13]", "sklearn/tree/tests/test_tree.py::test_min_weight_fraction_leaf_with_min_samples_leaf_on_dense_input[DecisionTreeClassifier]", "sklearn/metrics/tests/test_score_objects.py::test_thresholded_scorers", "sklearn/tree/tests/test_tree.py::test_min_weight_fraction_leaf_with_min_samples_leaf_on_dense_input[ExtraTreeClassifier]", "sklearn/metrics/tests/test_score_objects.py::test_thresholded_scorers_multilabel_indicator_data", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_classifiers_train(readonly_memmap=True)]", "sklearn/metrics/tests/test_score_objects.py::test_classification_scorer_sample_weight", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[accuracy]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[adjusted_mutual_info_score]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[adjusted_rand_score]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[average_precision]", "sklearn/tree/tests/test_tree.py::test_min_weight_fraction_leaf_with_min_samples_leaf_on_sparse_input[csc_matrix-DecisionTreeClassifier]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[balanced_accuracy]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[completeness_score]", "sklearn/tree/tests/test_tree.py::test_min_weight_fraction_leaf_with_min_samples_leaf_on_sparse_input[csc_matrix-ExtraTreeClassifier]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[d2_absolute_error_score]", "sklearn/tree/tests/test_tree.py::test_min_weight_fraction_leaf_with_min_samples_leaf_on_sparse_input[csc_array-DecisionTreeClassifier]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_classifiers_regression_target]", "sklearn/tree/tests/test_tree.py::test_min_weight_fraction_leaf_with_min_samples_leaf_on_sparse_input[csc_array-ExtraTreeClassifier]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[explained_variance]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_supervised_y_2d]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[f1]", "sklearn/tree/tests/test_tree.py::test_min_impurity_decrease[42]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[f1_macro]", "sklearn/tree/tests/test_tree.py::test_pickle", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[f1_micro]", "sklearn/tree/tests/test_tree.py::test_multioutput", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_decision_proba_consistency]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[f1_samples]", "sklearn/tree/tests/test_tree.py::test_classes_shape", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[f1_weighted]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_methods_sample_order_invariance]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[fowlkes_mallows_score]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[homogeneity_score]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[jaccard]", "sklearn/tree/tests/test_tree.py::test_unbalanced_iris", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_methods_subset_invariance]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[jaccard_macro]", "sklearn/tree/tests/test_tree.py::test_memory_layout", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[jaccard_micro]", "sklearn/tree/tests/test_tree.py::test_sample_weight", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[jaccard_samples]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_fit2d_1sample]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[jaccard_weighted]", "sklearn/tree/tests/test_tree.py::test_sample_weight_invalid", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[matthews_corrcoef]", "sklearn/tree/tests/test_tree.py::test_class_weights[DecisionTreeClassifier]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[mutual_info_score]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_fit2d_1feature]", "sklearn/tree/tests/test_tree.py::test_class_weights[ExtraTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_class_weight_errors[DecisionTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_class_weight_errors[ExtraTreeClassifier]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_dict_unchanged]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_brier_score]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_log_loss]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_max_error]", "sklearn/tree/tests/test_tree.py::test_max_leaf_nodes", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_mean_absolute_error]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_dont_overwrite_parameters]", "sklearn/tree/tests/test_tree.py::test_max_leaf_nodes_max_depth", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_mean_absolute_percentage_error]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_mean_gamma_deviance]", "sklearn/tree/tests/test_tree.py::test_arrays_persist", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_fit_idempotent]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_mean_poisson_deviance]", "sklearn/tree/tests/test_tree.py::test_only_constant_features", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_mean_squared_error]", "sklearn/tree/tests/test_tree.py::test_behaviour_constant_feature_after_splits", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_fit_check_is_fitted]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_mean_squared_log_error]", "sklearn/tree/tests/test_tree.py::test_with_only_one_non_constant_features", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_median_absolute_error]", "sklearn/tree/tests/test_tree.py::test_big_input", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_n_features_in]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_negative_likelihood_ratio]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_root_mean_squared_error]", "sklearn/tree/tests/test_tree.py::test_huge_allocations", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_root_mean_squared_log_error]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[normalized_mutual_info_score]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[positive_likelihood_ratio]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_fit2d_predict1d]", "sklearn/tree/tests/test_tree.py::test_sparse_input[clf_small-DecisionTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_sparse_input[clf_small-ExtraTreeClassifier]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[precision]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[precision_macro]", "sklearn/tree/tests/test_tree.py::test_sparse_input[toy-DecisionTreeClassifier]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[precision_micro]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[precision_samples]", "sklearn/tree/tests/test_tree.py::test_sparse_input[toy-ExtraTreeClassifier]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[precision_weighted]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[r2]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[rand_score]", "sklearn/tree/tests/test_tree.py::test_sparse_input[digits-DecisionTreeClassifier]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[recall]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[recall_macro]", "sklearn/tree/tests/test_tree.py::test_sparse_input[digits-ExtraTreeClassifier]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[recall_micro]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[recall_samples]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[recall_weighted]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[roc_auc]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[roc_auc_ovo]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[roc_auc_ovo_weighted]", "sklearn/tree/tests/test_tree.py::test_sparse_input[multilabel-DecisionTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_sparse_input[multilabel-ExtraTreeClassifier]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[roc_auc_ovr]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[roc_auc_ovr_weighted]", "sklearn/tree/tests/test_tree.py::test_sparse_input[sparse-pos-DecisionTreeClassifier]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[top_k_accuracy]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[v_measure_score]", "sklearn/tree/tests/test_tree.py::test_sparse_input[sparse-pos-ExtraTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_sparse_input[sparse-neg-DecisionTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_sparse_input[sparse-neg-ExtraTreeClassifier]", "sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_sanity_check", "sklearn/tree/tests/test_tree.py::test_sparse_input[sparse-mix-DecisionTreeClassifier]", "sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_exception_handling[True]", "sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_exception_handling[False]", "sklearn/tree/tests/test_tree.py::test_sparse_input[sparse-mix-ExtraTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_sparse_input[zeros-DecisionTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_sparse_input[zeros-ExtraTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_sparse_parameters[csc_matrix-sparse-pos-DecisionTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_sparse_parameters[csc_matrix-sparse-pos-ExtraTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_sparse_parameters[csc_matrix-sparse-neg-DecisionTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_sparse_parameters[csc_matrix-sparse-neg-ExtraTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_sparse_parameters[csc_matrix-sparse-mix-DecisionTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_sparse_parameters[csc_matrix-sparse-mix-ExtraTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_sparse_parameters[csc_matrix-zeros-DecisionTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_sparse_parameters[csc_matrix-zeros-ExtraTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_sparse_parameters[csc_array-sparse-pos-DecisionTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_sparse_parameters[csc_array-sparse-pos-ExtraTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_sparse_parameters[csc_array-sparse-neg-DecisionTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_sparse_parameters[csc_array-sparse-neg-ExtraTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_sparse_parameters[csc_array-sparse-mix-DecisionTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_sparse_parameters[csc_array-sparse-mix-ExtraTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_sparse_parameters[csc_array-zeros-DecisionTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_sparse_parameters[csc_array-zeros-ExtraTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_matrix-sparse-pos-DecisionTreeClassifier-gini]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_matrix-sparse-pos-DecisionTreeClassifier-log_loss]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_matrix-sparse-pos-ExtraTreeClassifier-gini]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_matrix-sparse-pos-ExtraTreeClassifier-log_loss]", "sklearn/inspection/tests/test_partial_dependence.py::test_multiclass_multioutput[DecisionTreeClassifier]", "sklearn/inspection/tests/test_partial_dependence.py::test_multiclass_multioutput[ExtraTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_matrix-sparse-neg-DecisionTreeClassifier-gini]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_matrix-sparse-neg-DecisionTreeClassifier-log_loss]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_matrix-sparse-neg-ExtraTreeClassifier-gini]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_matrix-sparse-neg-ExtraTreeClassifier-log_loss]", "sklearn/metrics/tests/test_classification.py::test_classification_metric_division_by_zero_nan_validaton[scoring0]", "sklearn/metrics/tests/test_classification.py::test_classification_metric_division_by_zero_nan_validaton[scoring1]", "sklearn/metrics/tests/test_classification.py::test_classification_metric_division_by_zero_nan_validaton[scoring2]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_matrix-sparse-mix-DecisionTreeClassifier-gini]", "sklearn/metrics/tests/test_classification.py::test_classification_metric_division_by_zero_nan_validaton[scoring3]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_matrix-sparse-mix-DecisionTreeClassifier-log_loss]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_matrix-sparse-mix-ExtraTreeClassifier-gini]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_matrix-sparse-mix-ExtraTreeClassifier-log_loss]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_matrix-zeros-DecisionTreeClassifier-gini]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_matrix-zeros-DecisionTreeClassifier-log_loss]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_matrix-zeros-ExtraTreeClassifier-gini]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_matrix-zeros-ExtraTreeClassifier-log_loss]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_array-sparse-pos-DecisionTreeClassifier-gini]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_array-sparse-pos-DecisionTreeClassifier-log_loss]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_array-sparse-pos-ExtraTreeClassifier-gini]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_array-sparse-pos-ExtraTreeClassifier-log_loss]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_array-sparse-neg-DecisionTreeClassifier-gini]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_array-sparse-neg-DecisionTreeClassifier-log_loss]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_array-sparse-neg-ExtraTreeClassifier-gini]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_array-sparse-neg-ExtraTreeClassifier-log_loss]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_array-sparse-mix-DecisionTreeClassifier-gini]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_array-sparse-mix-DecisionTreeClassifier-log_loss]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_array-sparse-mix-ExtraTreeClassifier-gini]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_array-sparse-mix-ExtraTreeClassifier-log_loss]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_fit_score_takes_y]", "sklearn/metrics/tests/test_score_objects.py::test_multimetric_scoring_metadata_routing", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_estimators_overwrite_params]", "sklearn/metrics/tests/test_score_objects.py::test_kwargs_without_metadata_routing_error", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_estimators_dtypes]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_array-zeros-DecisionTreeClassifier-gini]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_array-zeros-DecisionTreeClassifier-log_loss]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_array-zeros-ExtraTreeClassifier-gini]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_array-zeros-ExtraTreeClassifier-log_loss]", "sklearn/tree/tests/test_tree.py::test_explicit_sparse_zeros[csc_matrix-csr_matrix-DecisionTreeClassifier]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_sample_weights_pandas_series]", "sklearn/tree/tests/test_tree.py::test_explicit_sparse_zeros[csc_matrix-csr_matrix-ExtraTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_explicit_sparse_zeros[csc_array-csr_array-DecisionTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_explicit_sparse_zeros[csc_array-csr_array-ExtraTreeClassifier]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_sample_weights_list]", "sklearn/tree/tests/test_tree.py::test_1d_input[DecisionTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_1d_input[ExtraTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_min_weight_leaf_split_level[None-DecisionTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_min_weight_leaf_split_level[None-ExtraTreeClassifier]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_sample_weights_shape]", "sklearn/tree/tests/test_tree.py::test_min_weight_leaf_split_level[csc_matrix-DecisionTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_min_weight_leaf_split_level[csc_matrix-ExtraTreeClassifier]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tree/tests/test_tree.py::test_min_weight_leaf_split_level[csc_array-DecisionTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_min_weight_leaf_split_level[csc_array-ExtraTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_public_apply_all_trees[DecisionTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_public_apply_all_trees[ExtraTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_public_apply_sparse_trees[csr_matrix-DecisionTreeClassifier]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_estimators_fit_returns_self]", "sklearn/tree/tests/test_tree.py::test_public_apply_sparse_trees[csr_matrix-ExtraTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_public_apply_sparse_trees[csr_array-DecisionTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_public_apply_sparse_trees[csr_array-ExtraTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_decision_path_hardcoded", "sklearn/tree/tests/test_tree.py::test_decision_path[DecisionTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_decision_path[ExtraTreeClassifier]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tree/tests/test_tree.py::test_no_sparse_y_support[csr_matrix-DecisionTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_no_sparse_y_support[csr_matrix-ExtraTreeClassifier]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_dtype_object]", "sklearn/tree/tests/test_tree.py::test_no_sparse_y_support[csr_array-DecisionTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_no_sparse_y_support[csr_array-ExtraTreeClassifier]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_pipeline_consistency]", "sklearn/tree/tests/test_tree.py::test_prune_tree_classifier_are_subtrees[DecisionTreeClassifier-clf_small]", "sklearn/tree/tests/test_tree.py::test_prune_tree_classifier_are_subtrees[DecisionTreeClassifier-digits]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_estimator_sparse_array]", "sklearn/tree/tests/test_tree.py::test_prune_tree_classifier_are_subtrees[DecisionTreeClassifier-iris]", "sklearn/tree/tests/test_tree.py::test_prune_tree_classifier_are_subtrees[DecisionTreeClassifier-multilabel]", "sklearn/tree/tests/test_tree.py::test_prune_tree_classifier_are_subtrees[DecisionTreeClassifier-sparse-mix]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_estimator_sparse_matrix]", "sklearn/tree/tests/test_tree.py::test_prune_tree_classifier_are_subtrees[DecisionTreeClassifier-sparse-neg]", "sklearn/tree/tests/test_tree.py::test_prune_tree_classifier_are_subtrees[DecisionTreeClassifier-sparse-pos]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_estimators_pickle]", "sklearn/tree/tests/test_tree.py::test_prune_tree_classifier_are_subtrees[DecisionTreeClassifier-toy]", "sklearn/tree/tests/test_tree.py::test_prune_tree_classifier_are_subtrees[DecisionTreeClassifier-zeros]", "sklearn/tree/tests/test_tree.py::test_prune_tree_classifier_are_subtrees[ExtraTreeClassifier-clf_small]", "sklearn/tree/tests/test_tree.py::test_prune_tree_classifier_are_subtrees[ExtraTreeClassifier-digits]", "sklearn/tree/tests/test_tree.py::test_prune_tree_classifier_are_subtrees[ExtraTreeClassifier-iris]", "sklearn/tree/tests/test_tree.py::test_prune_tree_classifier_are_subtrees[ExtraTreeClassifier-multilabel]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tree/tests/test_tree.py::test_prune_tree_classifier_are_subtrees[ExtraTreeClassifier-sparse-mix]", "sklearn/tree/tests/test_tree.py::test_prune_tree_classifier_are_subtrees[ExtraTreeClassifier-sparse-neg]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_f_contiguous_array_estimator]", "sklearn/tree/tests/test_tree.py::test_prune_tree_classifier_are_subtrees[ExtraTreeClassifier-sparse-pos]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_classifier_data_not_an_array]", "sklearn/tree/tests/test_tree.py::test_prune_tree_classifier_are_subtrees[ExtraTreeClassifier-toy]", "sklearn/tree/tests/test_tree.py::test_prune_tree_classifier_are_subtrees[ExtraTreeClassifier-zeros]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_classifiers_one_label_sample_weights]", "sklearn/tree/tests/test_tree.py::test_prune_single_node_tree", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_classifiers_classes]", "sklearn/tree/tests/test_tree.py::test_apply_path_readonly_all_trees[None-best-DecisionTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_apply_path_readonly_all_trees[None-best-ExtraTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_apply_path_readonly_all_trees[None-random-DecisionTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_apply_path_readonly_all_trees[None-random-ExtraTreeClassifier]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_classifiers_train]", "sklearn/tree/tests/test_tree.py::test_apply_path_readonly_all_trees[csc_matrix-best-DecisionTreeClassifier]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tree/tests/test_tree.py::test_apply_path_readonly_all_trees[csc_matrix-best-ExtraTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_apply_path_readonly_all_trees[csc_matrix-random-DecisionTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_apply_path_readonly_all_trees[csc_matrix-random-ExtraTreeClassifier]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tree/tests/test_tree.py::test_apply_path_readonly_all_trees[csc_array-best-DecisionTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_apply_path_readonly_all_trees[csc_array-best-ExtraTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_apply_path_readonly_all_trees[csc_array-random-DecisionTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_apply_path_readonly_all_trees[csc_array-random-ExtraTreeClassifier]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_supervised_y_2d]", "sklearn/tree/tests/test_tree.py::test_apply_path_readonly_all_trees[csr_matrix-best-DecisionTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_apply_path_readonly_all_trees[csr_matrix-best-ExtraTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_apply_path_readonly_all_trees[csr_matrix-random-DecisionTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_apply_path_readonly_all_trees[csr_matrix-random-ExtraTreeClassifier]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_methods_subset_invariance]", "sklearn/tree/tests/test_tree.py::test_apply_path_readonly_all_trees[csr_array-best-DecisionTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_apply_path_readonly_all_trees[csr_array-best-ExtraTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_apply_path_readonly_all_trees[csr_array-random-DecisionTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_apply_path_readonly_all_trees[csr_array-random-ExtraTreeClassifier]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_fit2d_1sample]", "sklearn/tree/tests/test_tree.py::test_criterion_entropy_same_as_log_loss[2-DecisionTreeClassifier]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_fit2d_1feature]", "sklearn/tree/tests/test_tree.py::test_criterion_entropy_same_as_log_loss[2-ExtraTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_criterion_entropy_same_as_log_loss[4-DecisionTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_criterion_entropy_same_as_log_loss[4-ExtraTreeClassifier]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_dict_unchanged]", "sklearn/tree/tests/test_tree.py::test_different_endianness_pickle", "sklearn/tree/tests/test_tree.py::test_different_endianness_joblib_pickle", "sklearn/tree/tests/test_tree.py::test_different_bitness_pickle", "sklearn/tree/tests/test_tree.py::test_different_bitness_joblib_pickle", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_dont_overwrite_parameters]", "sklearn/tree/tests/test_tree.py::test_tree_deserialization_from_read_only_buffer", "sklearn/tree/tests/test_tree.py::test_min_sample_split_1_error[DecisionTreeClassifier]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_fit_idempotent]", "sklearn/tree/tests/test_tree.py::test_min_sample_split_1_error[ExtraTreeClassifier]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_fit_check_is_fitted]", "sklearn/tree/tests/test_tree.py::test_missing_values_best_splitter_three_classes[entropy]", "sklearn/tree/tests/test_tree.py::test_missing_values_best_splitter_three_classes[gini]", "sklearn/tree/tests/test_tree.py::test_missing_values_best_splitter_to_left[entropy]", "sklearn/tree/tests/test_tree.py::test_missing_values_best_splitter_to_left[gini]", "sklearn/tree/tests/test_tree.py::test_missing_values_best_splitter_to_right[entropy]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_n_features_in]", "sklearn/tree/tests/test_tree.py::test_missing_values_best_splitter_to_right[gini]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_classifications[42-csc_matrix-True-True-DecisionTreeClassifier]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_fit2d_predict1d]", "sklearn/tree/tests/test_tree.py::test_missing_values_best_splitter_missing_both_classes_has_nan[entropy]", "sklearn/tree/tests/test_tree.py::test_missing_values_best_splitter_missing_both_classes_has_nan[gini]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_classifications[42-csc_matrix-True-True-ExtraTreeClassifier]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_classifications[42-csc_matrix-True-False-DecisionTreeClassifier]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_classifications[42-csc_matrix-True-False-ExtraTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_missing_values_is_resilience[42-None-make_friedman1_classification-DecisionTreeClassifier-0.03]", "sklearn/tree/tests/test_tree.py::test_missing_values_is_resilience[42-None-make_friedman1_classification-ExtraTreeClassifier-0.12]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_classifications[42-csc_matrix-False-True-DecisionTreeClassifier]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_classifications[42-csc_matrix-False-True-ExtraTreeClassifier]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_classifications[42-csc_matrix-False-False-DecisionTreeClassifier]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_classifications[42-csc_matrix-False-False-ExtraTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_missing_values_is_resilience[42-ones-make_friedman1_classification-DecisionTreeClassifier-0.03]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_classifications[42-csc_array-True-True-DecisionTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_missing_values_is_resilience[42-ones-make_friedman1_classification-ExtraTreeClassifier-0.12]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_classifications[42-csc_array-True-True-ExtraTreeClassifier]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_classifications[42-csc_array-True-False-DecisionTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_missing_value_is_predictive[42-DecisionTreeClassifier-0.85]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_classifications[42-csc_array-True-False-ExtraTreeClassifier]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_classifications[42-csc_array-False-True-DecisionTreeClassifier]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_classifications[42-csc_array-False-True-ExtraTreeClassifier]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_classifications[42-csc_array-False-False-DecisionTreeClassifier]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_classifications[42-csc_array-False-False-ExtraTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_missing_value_is_predictive[42-ExtraTreeClassifier-0.53]", "sklearn/tree/tests/test_tree.py::test_sample_weight_non_uniform[make_classification-DecisionTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_deterministic_pickle", "sklearn/tree/tests/test_tree.py::test_classification_tree_missing_values_toy", "sklearn/tree/tests/test_tree.py::test_build_pruned_tree_py", "sklearn/tree/tests/test_monotonic_tree.py::test_multiclass_raises[DecisionTreeClassifier]", "sklearn/tree/tests/test_monotonic_tree.py::test_multiclass_raises[ExtraTreeClassifier]", "sklearn/tree/tests/test_monotonic_tree.py::test_multiple_output_raises[DecisionTreeClassifier]", "sklearn/tree/tests/test_monotonic_tree.py::test_multiple_output_raises[ExtraTreeClassifier]", "sklearn/tree/tests/test_monotonic_tree.py::test_missing_values_raises[DecisionTreeClassifier]", "sklearn/tree/tests/test_monotonic_tree.py::test_missing_values_raises[ExtraTreeClassifier]", "sklearn/tree/tests/test_monotonic_tree.py::test_bad_monotonic_cst_raises[DecisionTreeClassifier]", "sklearn/tree/tests/test_monotonic_tree.py::test_bad_monotonic_cst_raises[ExtraTreeClassifier]", "sklearn/ensemble/tests/test_bagging.py::test_classification", "sklearn/tree/tests/test_tree.py::test_build_pruned_tree_infinite_loop", "sklearn/model_selection/tests/test_search.py::test_search_cv_score_samples_error[search_cv0]", "sklearn/model_selection/tests/test_search.py::test_search_cv_score_samples_error[search_cv1]", "sklearn/model_selection/tests/test_search.py::test_search_cv_results_none_param", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_fit_score_takes_y]", "sklearn/model_selection/tests/test_search.py::test_grid_search_with_multioutput_data", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_base.py::test_score_sample_weight[tree0-dataset0]", "sklearn/tests/test_base.py::test_pickle_version_warning_is_not_raised_with_matching_version", "sklearn/tests/test_base.py::test_pickle_version_warning_is_issued_upon_different_version", "sklearn/tests/test_base.py::test_pickle_version_warning_is_issued_when_no_version_info_in_pickle", "sklearn/tests/test_base.py::test_pickle_version_no_warning_is_issued_with_non_sklearn_estimator", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_estimators_empty_data_messages]", "sklearn/model_selection/tests/test_classification_threshold.py::test_fit_and_score_over_thresholds_prefit", "sklearn/model_selection/tests/test_search.py::test_searchcv_raise_warning_with_non_finite_score[GridSearchCV-specialized_params0-False]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_pipeline_consistency]", "sklearn/model_selection/tests/test_search.py::test_searchcv_raise_warning_with_non_finite_score[GridSearchCV-specialized_params0-True]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_estimator_sparse_array]", "sklearn/model_selection/tests/test_search.py::test_searchcv_raise_warning_with_non_finite_score[RandomizedSearchCV-specialized_params1-False]", "sklearn/model_selection/tests/test_search.py::test_searchcv_raise_warning_with_non_finite_score[RandomizedSearchCV-specialized_params1-True]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_estimators_pickle]", "sklearn/ensemble/tests/test_bagging.py::test_probability", "sklearn/ensemble/tests/test_bagging.py::test_oob_score_classification", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_multiclass.py::test_ovr_pipeline", "sklearn/ensemble/tests/test_bagging.py::test_error", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_classifier_data_not_an_array]", "sklearn/ensemble/tests/test_bagging.py::test_parallel_classification", "sklearn/ensemble/tests/test_weight_boosting.py::test_oneclass_adaboost_proba", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_error_classifier[CalibrationDisplay]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_multilabel_classifier_error[auto]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_classifiers_one_label]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_error_classifier[DetCurveDisplay]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_error_classifier[PrecisionRecallDisplay]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_multilabel_classifier_error[predict]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_error_classifier[RocCurveDisplay]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_multilabel_classifier_error[predict_proba]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_error_regression[CalibrationDisplay]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_multi_output_multi_class_classifier_error[auto]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_error_regression[DetCurveDisplay]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_error_regression[PrecisionRecallDisplay]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_multi_output_multi_class_classifier_error[predict]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_classifiers_one_label_sample_weights]", "sklearn/ensemble/tests/test_weight_boosting.py::test_classification_toy[SAMME]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_multi_output_multi_class_classifier_error[predict_proba]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_error_regression[RocCurveDisplay]", "sklearn/ensemble/tests/test_weight_boosting.py::test_classification_toy[SAMME.R]", "sklearn/ensemble/tests/test_weight_boosting.py::test_iris", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_classifier_multioutput]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_n_samples_consistency[DetCurveDisplay]", "sklearn/ensemble/tests/test_weight_boosting.py::test_staged_predict[SAMME]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_n_samples_consistency[PrecisionRecallDisplay]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_classifiers_train]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_n_samples_consistency[RocCurveDisplay]", "sklearn/ensemble/tests/test_weight_boosting.py::test_staged_predict[SAMME.R]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_error_pos_label[DetCurveDisplay]", "sklearn/ensemble/tests/test_weight_boosting.py::test_gridsearch", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_error_pos_label[PrecisionRecallDisplay]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_classifiers_train(readonly_memmap=True)]", "sklearn/ensemble/tests/test_weight_boosting.py::test_pickle", "sklearn/ensemble/tests/test_weight_boosting.py::test_importances", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_error_pos_label[RocCurveDisplay]", "sklearn/ensemble/tests/test_weight_boosting.py::test_sample_weights_infinite", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_classifiers_regression_target]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_classifiers_multilabel_representation_invariance]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_classifiers_multilabel_output_format_predict]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_classifiers_multilabel_output_format_predict_proba]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_supervised_y_no_nan]", "sklearn/ensemble/tests/test_weight_boosting.py::test_adaboost_consistent_predict[SAMME]", "sklearn/ensemble/tests/test_weight_boosting.py::test_adaboost_consistent_predict[SAMME.R]", "sklearn/utils/tests/test_response.py::test_get_response_values_classifier_inconsistent_y_pred_for_binary_proba[predict_proba]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_supervised_y_2d]", "sklearn/ensemble/tests/test_weight_boosting.py::test_adaboost_numerically_stable_feature_importance_with_small_weights", "sklearn/ensemble/tests/test_weight_boosting.py::test_adaboost_decision_function[42-SAMME]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_class_weight_classifiers]", "sklearn/utils/tests/test_response.py::test_get_response_values_classifier_inconsistent_y_pred_for_binary_proba[predict_log_proba]", "sklearn/utils/tests/test_response.py::test_get_response_error[estimator1-X1-y1-pos_label=unknown is not a valid label: It should be one of \\\\[0 1\\\\]-params1]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_methods_sample_order_invariance]", "sklearn/utils/tests/test_response.py::test_get_response_error[estimator2-X2-y2-be a binary classifier. Got 3 classes instead.-params2]", "sklearn/utils/tests/test_response.py::test_get_response_predict_proba[True]", "sklearn/utils/tests/test_response.py::test_get_response_predict_proba[False]", "sklearn/utils/tests/test_response.py::test_get_response_values_multiclass[estimator0-predict_proba]", "sklearn/ensemble/tests/test_weight_boosting.py::test_adaboost_decision_function[42-SAMME.R]", "sklearn/semi_supervised/tests/test_self_training.py::test_self_training_estimator_attribute_error", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_methods_subset_invariance]", "sklearn/utils/tests/test_response.py::test_get_response_values_multiclass[estimator1-predict_log_proba]", "sklearn/ensemble/tests/test_weight_boosting.py::test_deprecated_samme_r_algorithm", "sklearn/semi_supervised/tests/test_self_training.py::test_deprecation_warning_base_estimator", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_dont_overwrite_parameters]", "sklearn/tests/test_multioutput.py::test_classifier_chain_verbose", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_fit_idempotent]", "sklearn/utils/tests/test_class_weight.py::test_class_weight_does_not_contains_more_classes", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_fit_check_is_fitted]", "sklearn/model_selection/tests/test_plot.py::test_curve_display_parameters_validation[LearningCurveDisplay-specific_params1-params0-ValueError-Unknown std_display_style:]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_n_features_in]", "sklearn/model_selection/tests/test_plot.py::test_curve_display_parameters_validation[LearningCurveDisplay-specific_params1-params1-ValueError-Unknown score_type:]", "sklearn/ensemble/tests/test_voting.py::test_n_features_in[VotingClassifier]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_fit1d]", "sklearn/model_selection/tests/test_plot.py::test_learning_curve_display_default_usage", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_fit2d_predict1d]", "sklearn/model_selection/tests/test_plot.py::test_curve_display_negate_score[ValidationCurveDisplay-specific_params0]", "sklearn/model_selection/tests/test_plot.py::test_curve_display_negate_score[LearningCurveDisplay-specific_params1]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_requires_y_none]", "sklearn/model_selection/tests/test_plot.py::test_curve_display_score_name[LearningCurveDisplay-specific_params1-None-Score]", "sklearn/model_selection/tests/test_plot.py::test_curve_display_score_name[LearningCurveDisplay-specific_params1-Accuracy-Accuracy]", "sklearn/tree/tests/test_export.py::test_graphviz_toy", "sklearn/tree/tests/test_export.py::test_graphviz_feature_class_names_array_support[list]", "sklearn/tree/tests/test_export.py::test_graphviz_feature_class_names_array_support[array]", "sklearn/tree/tests/test_export.py::test_graphviz_errors", "sklearn/tree/tests/test_export.py::test_precision", "sklearn/tree/tests/test_export.py::test_export_text_errors", "sklearn/ensemble/tests/test_voting.py::test_get_features_names_out_classifier[kwargs0-expected_names0]", "sklearn/tree/tests/test_export.py::test_export_text", "sklearn/tree/tests/test_export.py::test_export_text_feature_class_names_array_support[list]", "sklearn/tree/tests/test_export.py::test_export_text_feature_class_names_array_support[array]", "sklearn/ensemble/tests/test_bagging.py::test_estimator", "sklearn/ensemble/tests/test_voting.py::test_get_features_names_out_classifier[kwargs1-expected_names1]", "sklearn/model_selection/tests/test_plot.py::test_learning_curve_display_score_type[None]", "sklearn/model_selection/tests/test_plot.py::test_learning_curve_display_score_type[errorbar]", "sklearn/ensemble/tests/test_voting.py::test_get_features_names_out_classifier_error", "sklearn/model_selection/tests/test_plot.py::test_curve_display_xscale_auto[LearningCurveDisplay-specific_params1-linear]", "sklearn/model_selection/tests/test_plot.py::test_curve_display_xscale_auto[LearningCurveDisplay-specific_params3-log]", "sklearn/model_selection/tests/test_plot.py::test_curve_display_std_display_style[LearningCurveDisplay-specific_params1]", "sklearn/tree/tests/test_export.py::test_plot_tree_entropy", "sklearn/tree/tests/test_export.py::test_plot_tree_gini[None]", "sklearn/tree/tests/test_export.py::test_plot_tree_gini[10]", "sklearn/tree/tests/test_export.py::test_plot_tree_gini[20]", "sklearn/model_selection/tests/test_plot.py::test_curve_display_plot_kwargs[LearningCurveDisplay-specific_params1]", "sklearn/model_selection/tests/test_plot.py::test_subclassing_displays[LearningCurveDisplay-params0]", "sklearn/model_selection/_validation.py::sklearn.model_selection._validation.learning_curve", "sklearn/ensemble/tests/test_bagging.py::test_bagging_with_pipeline", "sklearn/ensemble/tests/test_bagging.py::test_warm_start", "sklearn/ensemble/tests/test_bagging.py::test_warm_start_smaller_n_estimators", "sklearn/model_selection/_plot.py::sklearn.model_selection._plot.LearningCurveDisplay", "sklearn/metrics/_scorer.py::sklearn.metrics._scorer.check_scoring", "sklearn/tree/_classes.py::sklearn.tree._classes.ExtraTreeClassifier", "sklearn/ensemble/tests/test_bagging.py::test_warm_start_equal_n_estimators", "sklearn/model_selection/_plot.py::sklearn.model_selection._plot.LearningCurveDisplay.from_estimator", "sklearn/tree/_export.py::sklearn.tree._export.export_graphviz", "sklearn/tree/_export.py::sklearn.tree._export.export_text", "sklearn/tree/_export.py::sklearn.tree._export.plot_tree", "sklearn/ensemble/tests/test_bagging.py::test_warm_start_equivalence", "sklearn/ensemble/tests/test_bagging.py::test_oob_score_removed_on_warm_start", "sklearn/inspection/_plot/decision_boundary.py::sklearn.inspection._plot.decision_boundary.DecisionBoundaryDisplay", "sklearn/ensemble/tests/test_forest.py::test_estimators_samples[ExtraTreesClassifier-True-None]", "sklearn/ensemble/_weight_boosting.py::sklearn.ensemble._weight_boosting.AdaBoostClassifier", "sklearn/ensemble/tests/test_bagging.py::test_set_oob_score_label_encoding", "sklearn/ensemble/tests/test_bagging.py::test_bagging_classifier_with_missing_inputs", "sklearn/ensemble/tests/test_forest.py::test_estimators_samples[ExtraTreesClassifier-True-1]", "sklearn/ensemble/tests/test_forest.py::test_estimators_samples[ExtraTreesClassifier-False-None]", "sklearn/ensemble/tests/test_bagging.py::test_bagging_without_support_metadata_routing[model0]", "sklearn/ensemble/tests/test_forest.py::test_estimators_samples[ExtraTreesClassifier-False-1]", "sklearn/ensemble/tests/test_forest.py::test_estimators_samples[RandomForestClassifier-True-None]", "sklearn/ensemble/tests/test_forest.py::test_estimators_samples[RandomForestClassifier-True-1]", "sklearn/ensemble/tests/test_forest.py::test_estimators_samples[RandomForestClassifier-False-None]", "sklearn/ensemble/tests/test_forest.py::test_estimators_samples[RandomForestClassifier-False-1]", "sklearn/tests/test_calibration.py::test_calibration_less_classes[True]", "sklearn/tests/test_calibration.py::test_calibration_less_classes[False]", "sklearn/tests/test_calibration.py::test_calibration_display_ref_line", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_classifier_multioutput]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_classifiers_regression_target]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_classifiers_multilabel_representation_invariance]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_classifiers_multilabel_output_format_predict]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_classifiers_multilabel_output_format_predict_proba]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_class_weight_classifiers]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_requires_y_none]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[AdaBoostClassifier(n_estimators=5)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[BaggingClassifier(n_estimators=5)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[DecisionTreeClassifier()]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[ExtraTreeClassifier()]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[AdaBoostClassifier(n_estimators=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[BaggingClassifier(n_estimators=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[DecisionTreeClassifier()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[ExtraTreeClassifier()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[BaggingClassifier(n_estimators=5,oob_score=True)]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_check_param_validation[DecisionTreeClassifier()]", "sklearn/tests/test_common.py::test_check_param_validation[ExtraTreeClassifier()]", "sklearn/tests/test_common.py::test_set_output_transform[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_set_output_transform[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-29
1.0
{ "code": "diff --git b/sklearn/tree/_classes.py a/sklearn/tree/_classes.py\nindex ba8e04d46..7366d5384 100644\n--- b/sklearn/tree/_classes.py\n+++ a/sklearn/tree/_classes.py\n@@ -1035,6 +1035,18 @@ class DecisionTreeClassifier(ClassifierMixin, BaseDecisionTree):\n The class probabilities of the input samples. The order of the\n classes corresponds to that in the attribute :term:`classes_`.\n \"\"\"\n+ check_is_fitted(self)\n+ X = self._validate_X_predict(X, check_input)\n+ proba = self.tree_.predict(X)\n+\n+ if self.n_outputs_ == 1:\n+ return proba[:, : self.n_classes_]\n+ else:\n+ all_proba = []\n+ for k in range(self.n_outputs_):\n+ proba_k = proba[:, k, : self.n_classes_[k]]\n+ all_proba.append(proba_k)\n+ return all_proba\n \n def predict_log_proba(self, X):\n \"\"\"Predict class log-probabilities of the input samples X.\n", "test": null }
null
{ "code": "diff --git a/sklearn/tree/_classes.py b/sklearn/tree/_classes.py\nindex 7366d5384..ba8e04d46 100644\n--- a/sklearn/tree/_classes.py\n+++ b/sklearn/tree/_classes.py\n@@ -1035,18 +1035,6 @@ class DecisionTreeClassifier(ClassifierMixin, BaseDecisionTree):\n The class probabilities of the input samples. The order of the\n classes corresponds to that in the attribute :term:`classes_`.\n \"\"\"\n- check_is_fitted(self)\n- X = self._validate_X_predict(X, check_input)\n- proba = self.tree_.predict(X)\n-\n- if self.n_outputs_ == 1:\n- return proba[:, : self.n_classes_]\n- else:\n- all_proba = []\n- for k in range(self.n_outputs_):\n- proba_k = proba[:, k, : self.n_classes_[k]]\n- all_proba.append(proba_k)\n- return all_proba\n \n def predict_log_proba(self, X):\n \"\"\"Predict class log-probabilities of the input samples X.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/tree/_classes.py.\nHere is the description for the function:\n def predict_proba(self, X, check_input=True):\n \"\"\"Predict class probabilities of the input samples X.\n\n The predicted class probability is the fraction of samples of the same\n class in a leaf.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n The input samples. Internally, it will be converted to\n ``dtype=np.float32`` and if a sparse matrix is provided\n to a sparse ``csr_matrix``.\n\n check_input : bool, default=True\n Allow to bypass several input checking.\n Don't use this parameter unless you know what you're doing.\n\n Returns\n -------\n proba : ndarray of shape (n_samples, n_classes) or list of n_outputs \\\n such arrays if n_outputs > 1\n The class probabilities of the input samples. The order of the\n classes corresponds to that in the attribute :term:`classes_`.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/ensemble/tests/test_forest.py::test_classification_toy[ExtraTreesClassifier]", "sklearn/ensemble/tests/test_forest.py::test_classification_toy[RandomForestClassifier]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_dtype_object]", "sklearn/ensemble/tests/test_forest.py::test_iris_criterion[gini-ExtraTreesClassifier]", "sklearn/ensemble/tests/test_forest.py::test_iris_criterion[gini-RandomForestClassifier]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_estimators_nan_inf]", "sklearn/ensemble/tests/test_forest.py::test_iris_criterion[log_loss-ExtraTreesClassifier]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_estimator_sparse_array]", "sklearn/ensemble/tests/test_forest.py::test_iris_criterion[log_loss-RandomForestClassifier]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_classifiers_one_label]", "sklearn/ensemble/tests/test_forest.py::test_probability[ExtraTreesClassifier]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_classifiers_one_label_sample_weights]", "sklearn/ensemble/tests/test_forest.py::test_probability[RandomForestClassifier]", "sklearn/tree/tests/test_tree.py::test_probability", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_classifiers_train]", "sklearn/tree/tests/test_tree.py::test_error", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_supervised_y_2d]", "sklearn/metrics/tests/test_score_objects.py::test_thresholded_scorers", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_decision_proba_consistency]", "sklearn/metrics/tests/test_score_objects.py::test_thresholded_scorers_multilabel_indicator_data", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_methods_subset_invariance]", "sklearn/metrics/tests/test_score_objects.py::test_classification_scorer_sample_weight", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_fit2d_1sample]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[average_precision]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_fit2d_1feature]", "sklearn/tree/tests/test_tree.py::test_multioutput", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_fit_check_is_fitted]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_brier_score]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_log_loss]", "sklearn/tree/tests/test_tree.py::test_with_only_one_non_constant_features", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_n_features_in]", "sklearn/tree/tests/test_tree.py::test_sparse_input[clf_small-DecisionTreeClassifier]", "sklearn/tests/test_common.py::test_estimators[AdaBoostClassifier(n_estimators=5)-check_fit2d_predict1d]", "sklearn/tree/tests/test_tree.py::test_sparse_input[clf_small-ExtraTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_sparse_input[toy-DecisionTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_sparse_input[toy-ExtraTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_sparse_input[digits-DecisionTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_sparse_input[digits-ExtraTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_sparse_input[multilabel-DecisionTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_sparse_input[multilabel-ExtraTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_sparse_input[sparse-pos-DecisionTreeClassifier]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[roc_auc]", "sklearn/tree/tests/test_tree.py::test_sparse_input[sparse-pos-ExtraTreeClassifier]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[roc_auc_ovo]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[roc_auc_ovo_weighted]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[roc_auc_ovr]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[roc_auc_ovr_weighted]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[top_k_accuracy]", "sklearn/tree/tests/test_tree.py::test_sparse_input[sparse-neg-DecisionTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_sparse_input[sparse-neg-ExtraTreeClassifier]", "sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_sanity_check", "sklearn/tree/tests/test_tree.py::test_sparse_input[sparse-mix-DecisionTreeClassifier]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X0-y0-0.9-array-ExtraTreesClassifier]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X0-y0-0.9-array-RandomForestClassifier]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X0-y0-0.9-sparse_csr-ExtraTreesClassifier]", "sklearn/tree/tests/test_tree.py::test_sparse_input[sparse-mix-ExtraTreeClassifier]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X0-y0-0.9-sparse_csr-RandomForestClassifier]", "sklearn/tree/tests/test_tree.py::test_sparse_input[zeros-DecisionTreeClassifier]", "sklearn/tree/tests/test_tree.py::test_sparse_input[zeros-ExtraTreeClassifier]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X0-y0-0.9-sparse_csc-ExtraTreesClassifier]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X0-y0-0.9-sparse_csc-RandomForestClassifier]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X1-y1-0.65-array-ExtraTreesClassifier]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X1-y1-0.65-array-RandomForestClassifier]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X1-y1-0.65-sparse_csr-ExtraTreesClassifier]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X1-y1-0.65-sparse_csr-RandomForestClassifier]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X1-y1-0.65-sparse_csc-ExtraTreesClassifier]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X1-y1-0.65-sparse_csc-RandomForestClassifier]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X2-y2-0.65-array-ExtraTreesClassifier]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X2-y2-0.65-array-RandomForestClassifier]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X2-y2-0.65-sparse_csr-ExtraTreesClassifier]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X2-y2-0.65-sparse_csr-RandomForestClassifier]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X2-y2-0.65-sparse_csc-ExtraTreesClassifier]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X2-y2-0.65-sparse_csc-RandomForestClassifier]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X3-y3-0.18-array-ExtraTreesClassifier]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X3-y3-0.18-array-RandomForestClassifier]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X3-y3-0.18-sparse_csr-ExtraTreesClassifier]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X3-y3-0.18-sparse_csr-RandomForestClassifier]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X3-y3-0.18-sparse_csc-ExtraTreesClassifier]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[True-X3-y3-0.18-sparse_csc-RandomForestClassifier]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X0-y0-0.9-array-ExtraTreesClassifier]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X0-y0-0.9-array-RandomForestClassifier]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X0-y0-0.9-sparse_csr-ExtraTreesClassifier]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X0-y0-0.9-sparse_csr-RandomForestClassifier]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X0-y0-0.9-sparse_csc-ExtraTreesClassifier]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X0-y0-0.9-sparse_csc-RandomForestClassifier]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X1-y1-0.65-array-ExtraTreesClassifier]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X1-y1-0.65-array-RandomForestClassifier]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X1-y1-0.65-sparse_csr-ExtraTreesClassifier]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_estimators_dtypes]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X1-y1-0.65-sparse_csr-RandomForestClassifier]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X1-y1-0.65-sparse_csc-ExtraTreesClassifier]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X1-y1-0.65-sparse_csc-RandomForestClassifier]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_dtype_object]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X2-y2-0.65-array-ExtraTreesClassifier]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X2-y2-0.65-array-RandomForestClassifier]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_pipeline_consistency]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X2-y2-0.65-sparse_csr-ExtraTreesClassifier]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_estimator_sparse_array]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X2-y2-0.65-sparse_csr-RandomForestClassifier]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_estimator_sparse_matrix]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X2-y2-0.65-sparse_csc-ExtraTreesClassifier]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X2-y2-0.65-sparse_csc-RandomForestClassifier]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X3-y3-0.18-array-ExtraTreesClassifier]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_estimators_pickle]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X3-y3-0.18-array-RandomForestClassifier]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X3-y3-0.18-sparse_csr-ExtraTreesClassifier]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_f_contiguous_array_estimator]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X3-y3-0.18-sparse_csr-RandomForestClassifier]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X3-y3-0.18-sparse_csc-ExtraTreesClassifier]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_classifiers_one_label]", "sklearn/ensemble/tests/test_forest.py::test_forest_classifier_oob[oob_score1-X3-y3-0.18-sparse_csc-RandomForestClassifier]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[BaggingClassifier(n_estimators=5)-check_fit_idempotent]", "sklearn/ensemble/tests/test_forest.py::test_forest_oob_warning[ExtraTreesClassifier]", "sklearn/ensemble/tests/test_forest.py::test_forest_oob_warning[RandomForestClassifier]", "sklearn/ensemble/tests/test_forest.py::test_parallel[ExtraTreesClassifier]", "sklearn/ensemble/tests/test_forest.py::test_parallel[RandomForestClassifier]", "sklearn/ensemble/tests/test_forest.py::test_pickle[ExtraTreesClassifier]", "sklearn/ensemble/tests/test_forest.py::test_pickle[RandomForestClassifier]", "sklearn/ensemble/tests/test_forest.py::test_multioutput[ExtraTreesClassifier]", "sklearn/ensemble/tests/test_forest.py::test_multioutput[RandomForestClassifier]", "sklearn/ensemble/tests/test_forest.py::test_multioutput_string[ExtraTreesClassifier]", "sklearn/ensemble/tests/test_forest.py::test_multioutput_string[RandomForestClassifier]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_classifications[42-csc_matrix-True-True-DecisionTreeClassifier]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_classifications[42-csc_matrix-True-True-ExtraTreeClassifier]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_classifications[42-csc_matrix-True-True-RandomForestClassifier]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_classifications[42-csc_matrix-True-True-ExtraTreesClassifier]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_classifications[42-csc_matrix-True-False-DecisionTreeClassifier]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_classifications[42-csc_matrix-True-False-ExtraTreeClassifier]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_classifications[42-csc_matrix-True-False-RandomForestClassifier]", "sklearn/ensemble/tests/test_forest.py::test_parallel_train", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_classifications[42-csc_matrix-True-False-ExtraTreesClassifier]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_classifications[42-csc_matrix-False-True-DecisionTreeClassifier]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_classifications[42-csc_matrix-False-True-ExtraTreeClassifier]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_classifications[42-csc_matrix-False-True-RandomForestClassifier]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_classifications[42-csc_matrix-False-True-ExtraTreesClassifier]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_classifications[42-csc_matrix-False-False-DecisionTreeClassifier]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_classifications[42-csc_matrix-False-False-ExtraTreeClassifier]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_classifications[42-csc_matrix-False-False-RandomForestClassifier]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_classifications[42-csc_matrix-False-False-ExtraTreesClassifier]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_classifications[42-csc_array-True-True-DecisionTreeClassifier]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_classifications[42-csc_array-True-True-ExtraTreeClassifier]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_classifications[42-csc_array-True-True-RandomForestClassifier]", "sklearn/ensemble/tests/test_forest.py::test_sparse_input[coo_matrix-ExtraTreesClassifier]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_classifications[42-csc_array-True-True-ExtraTreesClassifier]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_classifications[42-csc_array-True-False-DecisionTreeClassifier]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_classifications[42-csc_array-True-False-ExtraTreeClassifier]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_classifications[42-csc_array-True-False-RandomForestClassifier]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_classifications[42-csc_array-True-False-ExtraTreesClassifier]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_classifications[42-csc_array-False-True-DecisionTreeClassifier]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_classifications[42-csc_array-False-True-ExtraTreeClassifier]", "sklearn/ensemble/tests/test_forest.py::test_sparse_input[coo_matrix-RandomForestClassifier]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_classifications[42-csc_array-False-True-RandomForestClassifier]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_classifications[42-csc_array-False-True-ExtraTreesClassifier]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_classifications[42-csc_array-False-False-DecisionTreeClassifier]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_classifications[42-csc_array-False-False-ExtraTreeClassifier]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_classifications[42-csc_array-False-False-RandomForestClassifier]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_classifications[42-csc_array-False-False-ExtraTreesClassifier]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_sample_weights_invariance(kind=zeros)]", "sklearn/ensemble/tests/test_forest.py::test_sparse_input[coo_array-ExtraTreesClassifier]", "sklearn/ensemble/tests/test_forest.py::test_sparse_input[coo_array-RandomForestClassifier]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_estimator_sparse_array]", "sklearn/ensemble/tests/test_bagging.py::test_classification", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_estimators_pickle]", "sklearn/tests/test_pipeline.py::test_pipeline_with_estimator_with_len", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_classifier_multioutput]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_classifiers_train(readonly_memmap=True)]", "sklearn/ensemble/tests/test_forest.py::test_sparse_input[csc_matrix-ExtraTreesClassifier]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_classifiers_multilabel_output_format_predict_proba]", "sklearn/ensemble/tests/test_forest.py::test_sparse_input[csc_matrix-RandomForestClassifier]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_estimators_unfitted]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeClassifier()-check_fit2d_predict1d]", "sklearn/ensemble/tests/test_forest.py::test_sparse_input[csc_array-ExtraTreesClassifier]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[False-final_estimator1-3]", "sklearn/ensemble/tests/test_forest.py::test_sparse_input[csc_array-RandomForestClassifier]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[False-final_estimator1-cv1]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[True-final_estimator1-3]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[True-final_estimator1-cv1]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_drop_column_binary_classification", "sklearn/ensemble/tests/test_forest.py::test_sparse_input[csr_matrix-ExtraTreesClassifier]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_drop_estimator", "sklearn/ensemble/tests/test_forest.py::test_sparse_input[csr_matrix-RandomForestClassifier]", "sklearn/model_selection/tests/test_classification_threshold.py::test_fit_and_score_over_thresholds_prefit", "sklearn/ensemble/tests/test_bagging.py::test_probability", "sklearn/tests/test_calibration.py::test_calibration_multiclass[0-True-sigmoid]", "sklearn/ensemble/tests/test_forest.py::test_sparse_input[csr_array-ExtraTreesClassifier]", "sklearn/ensemble/tests/test_bagging.py::test_oob_score_classification", "sklearn/ensemble/tests/test_bagging.py::test_parallel_classification", "sklearn/ensemble/tests/test_forest.py::test_sparse_input[csr_array-RandomForestClassifier]", "sklearn/tests/test_multiclass.py::test_ovr_pipeline", "sklearn/tests/test_calibration.py::test_calibration_multiclass[0-True-isotonic]", "sklearn/ensemble/tests/test_weight_boosting.py::test_classification_toy[SAMME.R]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_error_classifier[CalibrationDisplay]", "sklearn/ensemble/tests/test_weight_boosting.py::test_iris", "sklearn/tests/test_calibration.py::test_calibration_multiclass[0-False-sigmoid]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_error_classifier[DetCurveDisplay]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_error_classifier[PrecisionRecallDisplay]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_error_classifier[RocCurveDisplay]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_error_regression[CalibrationDisplay]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_error_regression[DetCurveDisplay]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_error_regression[PrecisionRecallDisplay]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_error_regression[RocCurveDisplay]", "sklearn/ensemble/tests/test_weight_boosting.py::test_staged_predict[SAMME.R]", "sklearn/tests/test_multioutput.py::test_multi_output_classification", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_drop_binary_prob", "sklearn/ensemble/tests/test_weight_boosting.py::test_pickle", "sklearn/tests/test_calibration.py::test_calibration_multiclass[0-False-isotonic]", "sklearn/ensemble/tests/test_forest.py::test_memory_layout[float64-ExtraTreesClassifier]", "sklearn/ensemble/tests/test_weight_boosting.py::test_importances", "sklearn/tests/test_multioutput.py::test_multi_output_classification_sample_weights", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_n_samples_consistency[DetCurveDisplay]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_n_samples_consistency[PrecisionRecallDisplay]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_n_samples_consistency[RocCurveDisplay]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_error_pos_label[DetCurveDisplay]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_error_pos_label[PrecisionRecallDisplay]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_error_pos_label[RocCurveDisplay]", "sklearn/ensemble/tests/test_weight_boosting.py::test_estimator", "sklearn/ensemble/tests/test_forest.py::test_memory_layout[float64-RandomForestClassifier]", "sklearn/ensemble/tests/test_voting.py::test_majority_label_iris[42]", "sklearn/ensemble/tests/test_voting.py::test_tie_situation", "sklearn/tests/test_calibration.py::test_calibration_multiclass[1-True-sigmoid]", "sklearn/ensemble/tests/test_voting.py::test_weights_iris[42]", "sklearn/ensemble/tests/test_voting.py::test_predict_on_toy_problem[42]", "sklearn/ensemble/tests/test_voting.py::test_predict_proba_on_toy_problem", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_with_method_multilabel_rf", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_with_method_multilabel_rf_rare_class", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_predict_proba[RandomForestClassifier]", "sklearn/ensemble/tests/test_voting.py::test_parallel_fit[42]", "sklearn/ensemble/tests/test_weight_boosting.py::test_adaboost_consistent_predict[SAMME.R]", "sklearn/utils/tests/test_response.py::test_get_response_values_classifier_inconsistent_y_pred_for_binary_proba[predict_proba]", "sklearn/utils/tests/test_response.py::test_get_response_values_classifier_inconsistent_y_pred_for_binary_proba[predict_log_proba]", "sklearn/semi_supervised/tests/test_self_training.py::test_self_training_estimator_attribute_error", "sklearn/utils/tests/test_response.py::test_get_response_predict_proba[True]", "sklearn/ensemble/tests/test_weight_boosting.py::test_adaboost_decision_function[42-SAMME.R]", "sklearn/utils/tests/test_response.py::test_get_response_predict_proba[False]", "sklearn/utils/tests/test_response.py::test_get_response_values_multiclass[estimator0-predict_proba]", "sklearn/semi_supervised/tests/test_self_training.py::test_deprecation_warning_base_estimator", "sklearn/tests/test_calibration.py::test_calibration_multiclass[1-True-isotonic]", "sklearn/ensemble/tests/test_voting.py::test_sample_weight[42]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_cv_groups", "sklearn/utils/tests/test_response.py::test_get_response_values_multiclass[estimator1-predict_log_proba]", "sklearn/ensemble/tests/test_voting.py::test_voting_classifier_set_params[42]", "sklearn/utils/tests/test_estimator_checks.py::test_check_estimator_clones", "sklearn/ensemble/tests/test_weight_boosting.py::test_deprecated_samme_r_algorithm", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_auto_predict[False-auto]", "sklearn/ensemble/tests/test_forest.py::test_memory_layout[float32-ExtraTreesClassifier]", "sklearn/ensemble/tests/test_voting.py::test_set_estimator_drop", "sklearn/ensemble/tests/test_voting.py::test_estimator_weights_format[42]", "sklearn/ensemble/tests/test_forest.py::test_memory_layout[float32-RandomForestClassifier]", "sklearn/tests/test_multioutput.py::test_classifier_chain_tuple_order[list]", "sklearn/ensemble/tests/test_voting.py::test_transform[42]", "sklearn/tests/test_multioutput.py::test_classifier_chain_tuple_order[array]", "sklearn/ensemble/tests/test_voting.py::test_none_estimator_with_weights[X0-y0-voter0]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[1-False-sigmoid]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_estimators_dtypes]", "sklearn/tests/test_multioutput.py::test_classifier_chain_tuple_order[tuple]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_sample_weights_invariance(kind=ones)]", "sklearn/ensemble/tests/test_common.py::test_ensemble_heterogeneous_estimators_behavior[stacking-classifier]", "sklearn/ensemble/tests/test_voting.py::test_get_features_names_out_classifier[kwargs0-expected_names0]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_correlated_feature_regression_pandas[0.5-1]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_sample_weights_invariance(kind=zeros)]", "sklearn/feature_selection/tests/test_rfe.py::test_multioutput[RFECV]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_estimator_sparse_array]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_auto_predict[False-predict]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_correlated_feature_regression_pandas[0.5-2]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_correlated_feature_regression_pandas[1.0-1]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_correlated_feature_regression_pandas[1.0-2]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_estimator_sparse_matrix]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[1-False-isotonic]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_classifier_multioutput]", "sklearn/inspection/tests/test_permutation_importance.py::test_robustness_to_high_cardinality_noisy_feature[0.5-1]", "sklearn/inspection/tests/test_permutation_importance.py::test_robustness_to_high_cardinality_noisy_feature[0.5-2]", "sklearn/inspection/tests/test_permutation_importance.py::test_robustness_to_high_cardinality_noisy_feature[1.0-1]", "sklearn/inspection/tests/test_permutation_importance.py::test_robustness_to_high_cardinality_noisy_feature[1.0-2]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_auto_predict[True-auto]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_classifiers_train]", "sklearn/ensemble/_forest.py::sklearn.ensemble._forest.ExtraTreesClassifier", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_classifiers_train(readonly_memmap=True)]", "sklearn/ensemble/tests/test_bagging.py::test_warm_start_equal_n_estimators", "sklearn/utils/tests/test_parallel.py::test_dispatch_config_parallel[1]", "sklearn/ensemble/tests/test_bagging.py::test_warm_start_equivalence", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_classifiers_multilabel_output_format_predict_proba]", "sklearn/ensemble/tests/test_bagging.py::test_oob_score_removed_on_warm_start", "sklearn/ensemble/_forest.py::sklearn.ensemble._forest.RandomForestClassifier", "sklearn/utils/tests/test_parallel.py::test_dispatch_config_parallel[2]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_estimators_unfitted]", "sklearn/tests/test_calibration.py::test_calibration_nan_imputer[True]", "sklearn/tests/test_calibration.py::test_calibration_nan_imputer[False]", "sklearn/multiclass.py::sklearn.multiclass.OutputCodeClassifier", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_methods_subset_invariance]", "sklearn/tree/_classes.py::sklearn.tree._classes.ExtraTreeClassifier", "sklearn/ensemble/_voting.py::sklearn.ensemble._voting.VotingClassifier", "sklearn/ensemble/tests/test_bagging.py::test_set_oob_score_label_encoding", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_dict_unchanged]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_auto_predict[True-predict]", "sklearn/ensemble/_stacking.py::sklearn.ensemble._stacking.StackingClassifier", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_fit_idempotent]", "sklearn/ensemble/tests/test_bagging.py::test_bagging_classifier_with_missing_inputs", "sklearn/tests/test_calibration.py::test_calibration_less_classes[True]", "sklearn/tests/test_calibration.py::test_calibration_less_classes[False]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeClassifier()-check_fit2d_predict1d]", "sklearn/model_selection/_classification_threshold.py::sklearn.model_selection._classification_threshold.TunedThresholdClassifierCV", "sklearn/tests/test_calibration.py::test_calibration_dict_pipeline", "sklearn/tests/test_common.py::test_estimators[ExtraTreesClassifier(n_estimators=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[ExtraTreesClassifier(n_estimators=5)-check_estimators_dtypes]", "sklearn/tests/test_calibration.py::test_calibration_display_ref_line", "sklearn/tests/test_common.py::test_estimators[ExtraTreesClassifier(n_estimators=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_final_estimator_attribute_error", "sklearn/tests/test_common.py::test_estimators[ExtraTreesClassifier(n_estimators=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[ExtraTreesClassifier(n_estimators=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[ExtraTreesClassifier(n_estimators=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[ExtraTreesClassifier(n_estimators=5)-check_estimator_sparse_array]", "sklearn/ensemble/tests/test_forest.py::test_warm_start_oob[ExtraTreesClassifier]", "sklearn/ensemble/tests/test_forest.py::test_warm_start_oob[RandomForestClassifier]", "sklearn/tests/test_common.py::test_estimators[ExtraTreesClassifier(n_estimators=5)-check_estimator_sparse_matrix]", "sklearn/ensemble/tests/test_forest.py::test_oob_not_computed_twice[ExtraTreesClassifier]", "sklearn/tests/test_common.py::test_estimators[ExtraTreesClassifier(n_estimators=5)-check_estimators_pickle]", "sklearn/ensemble/tests/test_forest.py::test_oob_not_computed_twice[RandomForestClassifier]", "sklearn/tests/test_common.py::test_estimators[ExtraTreesClassifier(n_estimators=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/ensemble/tests/test_forest.py::test_dtype_convert", "sklearn/tests/test_common.py::test_estimators[ExtraTreesClassifier(n_estimators=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[ExtraTreesClassifier(n_estimators=5)-check_classifier_data_not_an_array]", "sklearn/ensemble/tests/test_forest.py::test_backend_respected", "sklearn/tests/test_common.py::test_estimators[ExtraTreesClassifier(n_estimators=5)-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[ExtraTreesClassifier(n_estimators=5)-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[ExtraTreesClassifier(n_estimators=5)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[ExtraTreesClassifier(n_estimators=5)-check_classifier_multioutput]", "sklearn/tests/test_common.py::test_estimators[ExtraTreesClassifier(n_estimators=5)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[ExtraTreesClassifier(n_estimators=5)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[ExtraTreesClassifier(n_estimators=5)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[ExtraTreesClassifier(n_estimators=5)-check_classifiers_multilabel_representation_invariance]", "sklearn/tests/test_common.py::test_estimators[ExtraTreesClassifier(n_estimators=5)-check_classifiers_multilabel_output_format_predict]", "sklearn/tests/test_common.py::test_estimators[ExtraTreesClassifier(n_estimators=5)-check_classifiers_multilabel_output_format_predict_proba]", "sklearn/tests/test_common.py::test_estimators[ExtraTreesClassifier(n_estimators=5)-check_supervised_y_2d]", "sklearn/ensemble/tests/test_forest.py::test_max_samples_boundary_classifiers[ExtraTreesClassifier]", "sklearn/tests/test_common.py::test_estimators[ExtraTreesClassifier(n_estimators=5)-check_class_weight_classifiers]", "sklearn/ensemble/tests/test_forest.py::test_max_samples_boundary_classifiers[RandomForestClassifier]", "sklearn/tests/test_common.py::test_estimators[ExtraTreesClassifier(n_estimators=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[ExtraTreesClassifier(n_estimators=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[ExtraTreesClassifier(n_estimators=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[ExtraTreesClassifier(n_estimators=5)-check_fit_idempotent]", "sklearn/ensemble/tests/test_forest.py::test_missing_values_is_resilient[make_classification-RandomForestClassifier]", "sklearn/ensemble/tests/test_forest.py::test_missing_values_is_resilient[make_classification-ExtraTreesClassifier]", "sklearn/ensemble/tests/test_forest.py::test_missing_value_is_predictive[RandomForestClassifier]", "sklearn/ensemble/tests/test_forest.py::test_missing_value_is_predictive[ExtraTreesClassifier]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_classifier_multioutput]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_classifiers_multilabel_representation_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_classifiers_multilabel_output_format_predict]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_classifiers_multilabel_output_format_predict_proba]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_class_weight_classifiers]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[RandomForestClassifier(n_estimators=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[AdaBoostClassifier(n_estimators=5)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[DecisionTreeClassifier()]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[ExtraTreeClassifier()]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[AdaBoostClassifier(n_estimators=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[BaggingClassifier(n_estimators=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[DecisionTreeClassifier()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[ExtraTreeClassifier()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[ExtraTreesClassifier(n_estimators=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RandomForestClassifier(n_estimators=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[BaggingClassifier(n_estimators=5,oob_score=True)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[ExtraTreesClassifier(bootstrap=True,n_estimators=5,oob_score=True)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RandomForestClassifier(n_estimators=5,oob_score=True)]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_set_output_transform[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-30
1.0
{ "code": "diff --git b/sklearn/tree/_classes.py a/sklearn/tree/_classes.py\nindex 145976a24..7366d5384 100644\n--- b/sklearn/tree/_classes.py\n+++ a/sklearn/tree/_classes.py\n@@ -1344,6 +1344,7 @@ class DecisionTreeRegressor(RegressorMixin, BaseDecisionTree):\n monotonic_cst=monotonic_cst,\n )\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y, sample_weight=None, check_input=True):\n \"\"\"Build a decision tree regressor from the training set (X, y).\n \n@@ -1373,6 +1374,14 @@ class DecisionTreeRegressor(RegressorMixin, BaseDecisionTree):\n Fitted estimator.\n \"\"\"\n \n+ super()._fit(\n+ X,\n+ y,\n+ sample_weight=sample_weight,\n+ check_input=check_input,\n+ )\n+ return self\n+\n def _compute_partial_dependence_recursion(self, grid, target_features):\n \"\"\"Fast partial dependence computation.\n \n", "test": null }
null
{ "code": "diff --git a/sklearn/tree/_classes.py b/sklearn/tree/_classes.py\nindex 7366d5384..145976a24 100644\n--- a/sklearn/tree/_classes.py\n+++ b/sklearn/tree/_classes.py\n@@ -1344,7 +1344,6 @@ class DecisionTreeRegressor(RegressorMixin, BaseDecisionTree):\n monotonic_cst=monotonic_cst,\n )\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y, sample_weight=None, check_input=True):\n \"\"\"Build a decision tree regressor from the training set (X, y).\n \n@@ -1374,14 +1373,6 @@ class DecisionTreeRegressor(RegressorMixin, BaseDecisionTree):\n Fitted estimator.\n \"\"\"\n \n- super()._fit(\n- X,\n- y,\n- sample_weight=sample_weight,\n- check_input=check_input,\n- )\n- return self\n-\n def _compute_partial_dependence_recursion(self, grid, target_features):\n \"\"\"Fast partial dependence computation.\n \n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/tree/_classes.py.\nHere is the description for the function:\n def fit(self, X, y, sample_weight=None, check_input=True):\n \"\"\"Build a decision tree regressor from the training set (X, y).\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n The training input samples. Internally, it will be converted to\n ``dtype=np.float32`` and if a sparse matrix is provided\n to a sparse ``csc_matrix``.\n\n y : array-like of shape (n_samples,) or (n_samples, n_outputs)\n The target values (real numbers). Use ``dtype=np.float64`` and\n ``order='C'`` for maximum efficiency.\n\n sample_weight : array-like of shape (n_samples,), default=None\n Sample weights. If None, then samples are equally weighted. Splits\n that would create child nodes with net zero or negative weight are\n ignored while searching for a split in each node.\n\n check_input : bool, default=True\n Allow to bypass several input checking.\n Don't use this parameter unless you know what you're doing.\n\n Returns\n -------\n self : DecisionTreeRegressor\n Fitted estimator.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_sample_weights_shape]", "sklearn/tree/tests/test_tree.py::test_regression_toy[squared_error-DecisionTreeRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-5-GradientBoostingClassifier-auto-data0]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_sample_weights_not_overwritten]", "sklearn/tree/tests/test_tree.py::test_regression_toy[squared_error-ExtraTreeRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-5-GradientBoostingClassifier-auto-data1]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tree/tests/test_tree.py::test_regression_toy[absolute_error-DecisionTreeRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-5-GradientBoostingClassifier-brute-data2]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tree/tests/test_tree.py::test_regression_toy[absolute_error-ExtraTreeRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-5-GradientBoostingClassifier-brute-data3]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_estimators_fit_returns_self]", "sklearn/tree/tests/test_tree.py::test_regression_toy[friedman_mse-DecisionTreeRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-5-GradientBoostingRegressor-auto-data4]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tree/tests/test_tree.py::test_regression_toy[friedman_mse-ExtraTreeRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-5-GradientBoostingRegressor-brute-data5]", "sklearn/tree/tests/test_tree.py::test_regression_toy[poisson-DecisionTreeRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-5-DecisionTreeRegressor-brute-data6]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_dtype_object]", "sklearn/tree/tests/test_tree.py::test_regression_toy[poisson-ExtraTreeRegressor]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_estimators_nan_inf]", "sklearn/tree/tests/test_tree.py::test_diabetes_overfit[squared_error-DecisionTreeRegressor-DecisionTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_diabetes_overfit[squared_error-ExtraTreeRegressor-ExtraTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_diabetes_overfit[absolute_error-DecisionTreeRegressor-DecisionTreeRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-10-GradientBoostingClassifier-auto-data0]", "sklearn/tree/tests/test_tree.py::test_diabetes_overfit[absolute_error-ExtraTreeRegressor-ExtraTreeRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-10-GradientBoostingClassifier-auto-data1]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_estimator_sparse_array]", "sklearn/tree/tests/test_tree.py::test_diabetes_overfit[friedman_mse-DecisionTreeRegressor-DecisionTreeRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-10-GradientBoostingClassifier-brute-data2]", "sklearn/tree/tests/test_tree.py::test_diabetes_overfit[friedman_mse-ExtraTreeRegressor-ExtraTreeRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-10-GradientBoostingClassifier-brute-data3]", "sklearn/tree/tests/test_tree.py::test_diabetes_overfit[poisson-DecisionTreeRegressor-DecisionTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_diabetes_overfit[poisson-ExtraTreeRegressor-ExtraTreeRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-10-GradientBoostingRegressor-auto-data4]", "sklearn/tree/tests/test_tree.py::test_diabetes_underfit[squared_error-15-mean_squared_error-60-DecisionTreeRegressor-DecisionTreeRegressor]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_estimator_sparse_matrix]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-10-GradientBoostingRegressor-brute-data5]", "sklearn/tree/tests/test_tree.py::test_diabetes_underfit[squared_error-15-mean_squared_error-60-ExtraTreeRegressor-ExtraTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_diabetes_underfit[absolute_error-20-mean_squared_error-60-DecisionTreeRegressor-DecisionTreeRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-10-DecisionTreeRegressor-brute-data6]", "sklearn/tree/tests/test_tree.py::test_diabetes_underfit[absolute_error-20-mean_squared_error-60-ExtraTreeRegressor-ExtraTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_diabetes_underfit[friedman_mse-15-mean_squared_error-60-DecisionTreeRegressor-DecisionTreeRegressor]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tree/tests/test_tree.py::test_diabetes_underfit[friedman_mse-15-mean_squared_error-60-ExtraTreeRegressor-ExtraTreeRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-5-GradientBoostingClassifier-auto-data0]", "sklearn/tree/tests/test_tree.py::test_diabetes_underfit[poisson-15-mean_poisson_deviance-30-DecisionTreeRegressor-DecisionTreeRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-5-GradientBoostingClassifier-auto-data1]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-5-GradientBoostingClassifier-brute-data2]", "sklearn/tree/tests/test_tree.py::test_diabetes_underfit[poisson-15-mean_poisson_deviance-30-ExtraTreeRegressor-ExtraTreeRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-5-GradientBoostingClassifier-brute-data3]", "sklearn/tree/tests/test_tree.py::test_arrayrepr", "sklearn/tree/tests/test_tree.py::test_pure_set", "sklearn/tree/tests/test_tree.py::test_numerical_stability", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-5-GradientBoostingRegressor-auto-data4]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_regressors_train]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-5-GradientBoostingRegressor-brute-data5]", "sklearn/tree/tests/test_tree.py::test_importances_gini_equal_squared_error", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_regressors_train(readonly_memmap=True)]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-5-DecisionTreeRegressor-brute-data6]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tree/tests/test_tree.py::test_max_features", "sklearn/tree/tests/test_tree.py::test_error", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-10-GradientBoostingClassifier-auto-data0]", "sklearn/tree/tests/test_tree.py::test_min_samples_split", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-10-GradientBoostingClassifier-auto-data1]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-10-GradientBoostingClassifier-brute-data2]", "sklearn/tree/tests/test_tree.py::test_min_samples_leaf", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-10-GradientBoostingClassifier-brute-data3]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-10-GradientBoostingRegressor-auto-data4]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_regressor_data_not_an_array]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-10-GradientBoostingRegressor-brute-data5]", "sklearn/metrics/tests/test_score_objects.py::test_thresholded_scorers", "sklearn/tree/tests/test_tree.py::test_min_weight_fraction_leaf_on_dense_input[DecisionTreeRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-10-DecisionTreeRegressor-brute-data6]", "sklearn/tree/tests/test_tree.py::test_min_weight_fraction_leaf_on_dense_input[ExtraTreeRegressor]", "sklearn/metrics/tests/test_score_objects.py::test_classification_scorer_sample_weight", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_regressors_no_decision_function]", "sklearn/metrics/tests/test_score_objects.py::test_regression_scorer_sample_weight", "sklearn/tree/tests/test_tree.py::test_min_weight_fraction_leaf_on_sparse_input[csc_matrix-DecisionTreeRegressor]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[accuracy]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_supervised_y_2d]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[adjusted_mutual_info_score]", "sklearn/tree/tests/test_tree.py::test_min_weight_fraction_leaf_on_sparse_input[csc_matrix-ExtraTreeRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-5-GradientBoostingClassifier-auto-data0]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[adjusted_rand_score]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_regressors_int]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-5-GradientBoostingClassifier-auto-data1]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[average_precision]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[balanced_accuracy]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-5-GradientBoostingClassifier-brute-data2]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[completeness_score]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[d2_absolute_error_score]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[explained_variance]", "sklearn/tree/tests/test_tree.py::test_min_weight_fraction_leaf_on_sparse_input[csc_array-DecisionTreeRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-5-GradientBoostingClassifier-brute-data3]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-5-GradientBoostingRegressor-auto-data4]", "sklearn/tree/tests/test_tree.py::test_min_weight_fraction_leaf_on_sparse_input[csc_array-ExtraTreeRegressor]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[f1]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-5-GradientBoostingRegressor-brute-data5]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[f1_macro]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_methods_subset_invariance]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-5-DecisionTreeRegressor-brute-data6]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[f1_micro]", "sklearn/impute/tests/test_impute.py::test_imputation_pipeline_grid_search", "sklearn/tree/tests/test_tree.py::test_min_weight_fraction_leaf_with_min_samples_leaf_on_dense_input[DecisionTreeRegressor]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[f1_samples]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_fit2d_1sample]", "sklearn/tree/tests/test_tree.py::test_min_weight_fraction_leaf_with_min_samples_leaf_on_dense_input[ExtraTreeRegressor]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[f1_weighted]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[fowlkes_mallows_score]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_fit2d_1feature]", "sklearn/tree/tests/test_tree.py::test_min_weight_fraction_leaf_with_min_samples_leaf_on_sparse_input[csc_matrix-DecisionTreeRegressor]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[homogeneity_score]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-10-GradientBoostingClassifier-auto-data0]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[jaccard]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-10-GradientBoostingClassifier-auto-data1]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-10-GradientBoostingClassifier-brute-data2]", "sklearn/tree/tests/test_tree.py::test_min_weight_fraction_leaf_with_min_samples_leaf_on_sparse_input[csc_matrix-ExtraTreeRegressor]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[jaccard_macro]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-10-GradientBoostingClassifier-brute-data3]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[jaccard_micro]", "sklearn/tree/tests/test_tree.py::test_min_weight_fraction_leaf_with_min_samples_leaf_on_sparse_input[csc_array-DecisionTreeRegressor]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[jaccard_samples]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[jaccard_weighted]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[matthews_corrcoef]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-10-GradientBoostingRegressor-auto-data4]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[mutual_info_score]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_dict_unchanged]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-10-GradientBoostingRegressor-brute-data5]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_dont_overwrite_parameters]", "sklearn/tree/tests/test_tree.py::test_min_weight_fraction_leaf_with_min_samples_leaf_on_sparse_input[csc_array-ExtraTreeRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-10-DecisionTreeRegressor-brute-data6]", "sklearn/tree/tests/test_tree.py::test_min_impurity_decrease[42]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_fit_idempotent]", "sklearn/tree/tests/test_tree.py::test_pickle", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_fit_check_is_fitted]", "sklearn/tree/tests/test_tree.py::test_multioutput", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_brier_score]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-5-GradientBoostingClassifier-auto-data0]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-5-GradientBoostingClassifier-auto-data1]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_log_loss]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_n_features_in]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-5-GradientBoostingClassifier-brute-data2]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_max_error]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-5-GradientBoostingClassifier-brute-data3]", "sklearn/tree/tests/test_tree.py::test_memory_layout", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_mean_absolute_error]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-5-GradientBoostingRegressor-auto-data4]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_mean_absolute_percentage_error]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-5-GradientBoostingRegressor-brute-data5]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_mean_gamma_deviance]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_mean_poisson_deviance]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-5-DecisionTreeRegressor-brute-data6]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_mean_squared_error]", "sklearn/tests/test_common.py::test_estimators[AdaBoostRegressor(n_estimators=5)-check_fit2d_predict1d]", "sklearn/tree/tests/test_tree.py::test_max_leaf_nodes", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_mean_squared_log_error]", "sklearn/tree/tests/test_tree.py::test_max_leaf_nodes_max_depth", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_median_absolute_error]", "sklearn/tree/tests/test_tree.py::test_only_constant_features", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_negative_likelihood_ratio]", "sklearn/tree/tests/test_tree.py::test_behaviour_constant_feature_after_splits", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-10-GradientBoostingClassifier-auto-data0]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_root_mean_squared_error]", "sklearn/tree/tests/test_tree.py::test_with_only_one_non_constant_features", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_root_mean_squared_log_error]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-10-GradientBoostingClassifier-auto-data1]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[normalized_mutual_info_score]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[positive_likelihood_ratio]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-10-GradientBoostingClassifier-brute-data2]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-10-GradientBoostingClassifier-brute-data3]", "sklearn/tree/tests/test_tree.py::test_sparse_input[clf_small-DecisionTreeRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-10-GradientBoostingRegressor-auto-data4]", "sklearn/tree/tests/test_tree.py::test_sparse_input[clf_small-ExtraTreeRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-10-GradientBoostingRegressor-brute-data5]", "sklearn/tree/tests/test_tree.py::test_sparse_input[toy-DecisionTreeRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-10-DecisionTreeRegressor-brute-data6]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[precision]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[precision_macro]", "sklearn/tree/tests/test_tree.py::test_sparse_input[toy-ExtraTreeRegressor]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[precision_micro]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[precision_samples]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-5-GradientBoostingClassifier-auto-data0]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[precision_weighted]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-5-GradientBoostingClassifier-auto-data1]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[r2]", "sklearn/tree/tests/test_tree.py::test_sparse_input[digits-DecisionTreeRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-5-GradientBoostingClassifier-brute-data2]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[rand_score]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-5-GradientBoostingClassifier-brute-data3]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[recall]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[recall_macro]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-5-GradientBoostingRegressor-auto-data4]", "sklearn/tree/tests/test_tree.py::test_sparse_input[digits-ExtraTreeRegressor]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[recall_micro]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-5-GradientBoostingRegressor-brute-data5]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[recall_samples]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-5-DecisionTreeRegressor-brute-data6]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[recall_weighted]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[roc_auc]", "sklearn/tree/tests/test_tree.py::test_sparse_input[multilabel-DecisionTreeRegressor]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[roc_auc_ovo]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[roc_auc_ovo_weighted]", "sklearn/tree/tests/test_tree.py::test_sparse_input[multilabel-ExtraTreeRegressor]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[roc_auc_ovr]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-10-GradientBoostingClassifier-auto-data0]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[roc_auc_ovr_weighted]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-10-GradientBoostingClassifier-auto-data1]", "sklearn/tree/tests/test_tree.py::test_sparse_input[sparse-pos-DecisionTreeRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-10-GradientBoostingClassifier-brute-data2]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[top_k_accuracy]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-10-GradientBoostingClassifier-brute-data3]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[v_measure_score]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-10-GradientBoostingRegressor-auto-data4]", "sklearn/metrics/tests/test_score_objects.py::test_deprecated_scorer", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-10-GradientBoostingRegressor-brute-data5]", "sklearn/tree/tests/test_tree.py::test_sparse_input[sparse-pos-ExtraTreeRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-10-DecisionTreeRegressor-brute-data6]", "sklearn/tree/tests/test_tree.py::test_sparse_input[sparse-neg-DecisionTreeRegressor]", "sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_calls_method_once_regressor_threshold", "sklearn/tree/tests/test_tree.py::test_sparse_input[sparse-neg-ExtraTreeRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-5-GradientBoostingClassifier-auto-data0]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-5-GradientBoostingClassifier-auto-data1]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-5-GradientBoostingClassifier-brute-data2]", "sklearn/tree/tests/test_tree.py::test_sparse_input[sparse-mix-DecisionTreeRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-5-GradientBoostingClassifier-brute-data3]", "sklearn/tree/tests/test_tree.py::test_sparse_input[sparse-mix-ExtraTreeRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-5-GradientBoostingRegressor-auto-data4]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-5-GradientBoostingRegressor-brute-data5]", "sklearn/tree/tests/test_tree.py::test_sparse_input[zeros-DecisionTreeRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-5-DecisionTreeRegressor-brute-data6]", "sklearn/tree/tests/test_tree.py::test_sparse_input[zeros-ExtraTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_sparse_input_reg_trees[diabetes-DecisionTreeRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-10-GradientBoostingClassifier-auto-data0]", "sklearn/tree/tests/test_tree.py::test_sparse_input_reg_trees[diabetes-ExtraTreeRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-10-GradientBoostingClassifier-auto-data1]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-10-GradientBoostingClassifier-brute-data2]", "sklearn/tree/tests/test_tree.py::test_sparse_input_reg_trees[reg_small-DecisionTreeRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-10-GradientBoostingClassifier-brute-data3]", "sklearn/tree/tests/test_tree.py::test_sparse_input_reg_trees[reg_small-ExtraTreeRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-10-GradientBoostingRegressor-auto-data4]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-10-GradientBoostingRegressor-brute-data5]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-10-DecisionTreeRegressor-brute-data6]", "sklearn/tree/tests/test_tree.py::test_sparse_parameters[csc_matrix-sparse-pos-DecisionTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_sparse_parameters[csc_matrix-sparse-pos-ExtraTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_sparse_parameters[csc_matrix-sparse-neg-DecisionTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_sparse_parameters[csc_matrix-sparse-neg-ExtraTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_sparse_parameters[csc_matrix-sparse-mix-DecisionTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_sparse_parameters[csc_matrix-sparse-mix-ExtraTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_sparse_parameters[csc_matrix-zeros-DecisionTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_sparse_parameters[csc_matrix-zeros-ExtraTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_sparse_parameters[csc_array-sparse-pos-DecisionTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_sparse_parameters[csc_array-sparse-pos-ExtraTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_sparse_parameters[csc_array-sparse-neg-DecisionTreeRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est1-brute-0]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est1-brute-1]", "sklearn/tree/tests/test_tree.py::test_sparse_parameters[csc_array-sparse-neg-ExtraTreeRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est1-brute-2]", "sklearn/tree/tests/test_tree.py::test_sparse_parameters[csc_array-sparse-mix-DecisionTreeRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est1-brute-3]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est1-brute-4]", "sklearn/tree/tests/test_tree.py::test_sparse_parameters[csc_array-sparse-mix-ExtraTreeRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est2-recursion-0]", "sklearn/tree/tests/test_tree.py::test_sparse_parameters[csc_array-zeros-DecisionTreeRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est2-recursion-1]", "sklearn/tree/tests/test_tree.py::test_sparse_parameters[csc_array-zeros-ExtraTreeRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est2-recursion-2]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_matrix-sparse-pos-DecisionTreeRegressor-squared_error]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est2-recursion-3]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_matrix-sparse-pos-DecisionTreeRegressor-absolute_error]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_matrix-sparse-pos-DecisionTreeRegressor-friedman_mse]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_matrix-sparse-pos-DecisionTreeRegressor-poisson]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est2-recursion-4]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_matrix-sparse-pos-ExtraTreeRegressor-squared_error]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_matrix-sparse-pos-ExtraTreeRegressor-absolute_error]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_matrix-sparse-pos-ExtraTreeRegressor-friedman_mse]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_matrix-sparse-pos-ExtraTreeRegressor-poisson]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_tree_vs_forest_and_gbdt[0]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_matrix-sparse-neg-DecisionTreeRegressor-squared_error]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_matrix-sparse-neg-DecisionTreeRegressor-absolute_error]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[0-est0]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_matrix-sparse-neg-DecisionTreeRegressor-friedman_mse]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_matrix-sparse-neg-DecisionTreeRegressor-poisson]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[1-est0]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_matrix-sparse-neg-ExtraTreeRegressor-squared_error]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[2-est0]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_matrix-sparse-neg-ExtraTreeRegressor-absolute_error]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_matrix-sparse-neg-ExtraTreeRegressor-friedman_mse]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_matrix-sparse-neg-ExtraTreeRegressor-poisson]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[3-est0]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_matrix-sparse-mix-DecisionTreeRegressor-squared_error]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_matrix-sparse-mix-DecisionTreeRegressor-absolute_error]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_matrix-sparse-mix-DecisionTreeRegressor-friedman_mse]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_estimators_overwrite_params]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_matrix-sparse-mix-DecisionTreeRegressor-poisson]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[4-est0]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_matrix-sparse-mix-ExtraTreeRegressor-squared_error]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_matrix-sparse-mix-ExtraTreeRegressor-absolute_error]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[5-est0]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_matrix-sparse-mix-ExtraTreeRegressor-friedman_mse]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_matrix-sparse-mix-ExtraTreeRegressor-poisson]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_estimators_dtypes]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_matrix-zeros-DecisionTreeRegressor-squared_error]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_easy_target[1-est1]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_matrix-zeros-DecisionTreeRegressor-absolute_error]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_sample_weights_pandas_series]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_matrix-zeros-DecisionTreeRegressor-friedman_mse]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_easy_target[1-est3]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_matrix-zeros-DecisionTreeRegressor-poisson]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_sample_weights_not_an_array]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_matrix-zeros-ExtraTreeRegressor-squared_error]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_sample_weights_list]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_matrix-zeros-ExtraTreeRegressor-absolute_error]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_easy_target[2-est1]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_matrix-zeros-ExtraTreeRegressor-friedman_mse]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_matrix-zeros-ExtraTreeRegressor-poisson]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_easy_target[2-est3]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_array-sparse-pos-DecisionTreeRegressor-squared_error]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_array-sparse-pos-DecisionTreeRegressor-absolute_error]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_array-sparse-pos-DecisionTreeRegressor-friedman_mse]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_sample_weights_shape]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_array-sparse-pos-DecisionTreeRegressor-poisson]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_error[estimator2-params2-'recursion' method, the response_method must be 'decision_function']", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_array-sparse-pos-ExtraTreeRegressor-squared_error]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_error[estimator3-params3-'recursion' method, the response_method must be 'decision_function']", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_array-sparse-pos-ExtraTreeRegressor-absolute_error]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_sample_weights_not_overwritten]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_unknown_feature_indices[-1-estimator1]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_unknown_feature_indices[10000-estimator1]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_array-sparse-pos-ExtraTreeRegressor-friedman_mse]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_unknown_feature_string[estimator1]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_array-sparse-pos-ExtraTreeRegressor-poisson]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_X_list[estimator1]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_array-sparse-neg-DecisionTreeRegressor-squared_error]", "sklearn/inspection/tests/test_partial_dependence.py::test_warning_recursion_non_constant_init", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_array-sparse-neg-DecisionTreeRegressor-absolute_error]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_sample_weight_of_fitted_estimator", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_array-sparse-neg-DecisionTreeRegressor-friedman_mse]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_array-sparse-neg-DecisionTreeRegressor-poisson]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_array-sparse-neg-ExtraTreeRegressor-squared_error]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_array-sparse-neg-ExtraTreeRegressor-absolute_error]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_estimators_fit_returns_self]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-integer-None-estimator-recursion]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_array-sparse-neg-ExtraTreeRegressor-friedman_mse]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_array-sparse-neg-ExtraTreeRegressor-poisson]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_array-sparse-mix-DecisionTreeRegressor-squared_error]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_array-sparse-mix-DecisionTreeRegressor-absolute_error]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_array-sparse-mix-DecisionTreeRegressor-friedman_mse]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_array-sparse-mix-DecisionTreeRegressor-poisson]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_pipeline_consistency]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_array-sparse-mix-ExtraTreeRegressor-squared_error]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-integer-column-transformer-estimator-recursion]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_array-sparse-mix-ExtraTreeRegressor-absolute_error]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_array-sparse-mix-ExtraTreeRegressor-friedman_mse]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_array-sparse-mix-ExtraTreeRegressor-poisson]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_array-zeros-DecisionTreeRegressor-squared_error]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_array-zeros-DecisionTreeRegressor-absolute_error]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_estimator_sparse_array]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-integer-column-transformer-passthrough-estimator-recursion]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_array-zeros-DecisionTreeRegressor-friedman_mse]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_array-zeros-DecisionTreeRegressor-poisson]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_estimator_sparse_matrix]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_array-zeros-ExtraTreeRegressor-squared_error]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-string-None-estimator-recursion]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_array-zeros-ExtraTreeRegressor-absolute_error]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_array-zeros-ExtraTreeRegressor-friedman_mse]", "sklearn/tree/tests/test_tree.py::test_sparse_criteria[csc_array-zeros-ExtraTreeRegressor-poisson]", "sklearn/tree/tests/test_tree.py::test_explicit_sparse_zeros[csc_matrix-csr_matrix-DecisionTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_explicit_sparse_zeros[csc_matrix-csr_matrix-ExtraTreeRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-string-column-transformer-estimator-recursion]", "sklearn/tree/tests/test_tree.py::test_explicit_sparse_zeros[csc_array-csr_array-DecisionTreeRegressor]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_estimators_pickle]", "sklearn/tree/tests/test_tree.py::test_explicit_sparse_zeros[csc_array-csr_array-ExtraTreeRegressor]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tree/tests/test_tree.py::test_1d_input[DecisionTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_1d_input[ExtraTreeRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-string-column-transformer-passthrough-estimator-recursion]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_f_contiguous_array_estimator]", "sklearn/tree/tests/test_tree.py::test_min_weight_leaf_split_level[None-DecisionTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_min_weight_leaf_split_level[None-ExtraTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_min_weight_leaf_split_level[csc_matrix-DecisionTreeRegressor]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_regressors_train]", "sklearn/tree/tests/test_tree.py::test_min_weight_leaf_split_level[csc_matrix-ExtraTreeRegressor]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_regressors_train(readonly_memmap=True)]", "sklearn/tree/tests/test_tree.py::test_min_weight_leaf_split_level[csc_array-DecisionTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_min_weight_leaf_split_level[csc_array-ExtraTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_public_apply_all_trees[DecisionTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_public_apply_all_trees[ExtraTreeRegressor]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tree/tests/test_tree.py::test_public_apply_sparse_trees[csr_matrix-DecisionTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_public_apply_sparse_trees[csr_matrix-ExtraTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_public_apply_sparse_trees[csr_array-DecisionTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_public_apply_sparse_trees[csr_array-ExtraTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_decision_path[DecisionTreeRegressor]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_regressor_data_not_an_array]", "sklearn/tree/tests/test_tree.py::test_decision_path[ExtraTreeRegressor]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_supervised_y_2d]", "sklearn/tree/tests/test_tree.py::test_no_sparse_y_support[csr_matrix-DecisionTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_no_sparse_y_support[csr_matrix-ExtraTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_no_sparse_y_support[csr_array-DecisionTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_no_sparse_y_support[csr_array-ExtraTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_mae", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_regressors_int]", "sklearn/tree/tests/test_tree.py::test_empty_leaf_infinite_threshold[None]", "sklearn/tree/tests/test_tree.py::test_empty_leaf_infinite_threshold[csc_matrix]", "sklearn/tree/tests/test_tree.py::test_empty_leaf_infinite_threshold[csc_array]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_fit2d_1sample]", "sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[DecisionTreeRegressor-iris]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_fit2d_1feature]", "sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[DecisionTreeRegressor-diabetes]", "sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[DecisionTreeRegressor-digits]", "sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[DecisionTreeRegressor-toy]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_dict_unchanged]", "sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[DecisionTreeRegressor-clf_small]", "sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[DecisionTreeRegressor-reg_small]", "sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[DecisionTreeRegressor-multilabel]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_dont_overwrite_parameters]", "sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[DecisionTreeRegressor-sparse-pos]", "sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[DecisionTreeRegressor-sparse-neg]", "sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[DecisionTreeRegressor-sparse-mix]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_fit_idempotent]", "sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[DecisionTreeRegressor-zeros]", "sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[ExtraTreeRegressor-iris]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_fit_check_is_fitted]", "sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[ExtraTreeRegressor-diabetes]", "sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[ExtraTreeRegressor-digits]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_regressions[42-csc_matrix-absolute_error-True-True-DecisionTreeRegressor]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_n_features_in]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_regressions[42-csc_matrix-absolute_error-True-True-ExtraTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[ExtraTreeRegressor-toy]", "sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[ExtraTreeRegressor-clf_small]", "sklearn/tests/test_common.py::test_estimators[BaggingRegressor(n_estimators=5)-check_fit2d_predict1d]", "sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[ExtraTreeRegressor-reg_small]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_regressions[42-csc_matrix-absolute_error-True-False-DecisionTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[ExtraTreeRegressor-multilabel]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_regressions[42-csc_matrix-absolute_error-True-False-ExtraTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[ExtraTreeRegressor-sparse-pos]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_regressions[42-csc_matrix-absolute_error-False-True-DecisionTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[ExtraTreeRegressor-sparse-neg]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_regressions[42-csc_matrix-absolute_error-False-True-ExtraTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[ExtraTreeRegressor-sparse-mix]", "sklearn/tree/tests/test_tree.py::test_prune_tree_regression_are_subtrees[ExtraTreeRegressor-zeros]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_regressions[42-csc_matrix-absolute_error-False-False-DecisionTreeRegressor]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_regressions[42-csc_matrix-absolute_error-False-False-ExtraTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_apply_path_readonly_all_trees[None-best-DecisionTreeRegressor]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_regressions[42-csc_matrix-squared_error-True-True-DecisionTreeRegressor]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_regressions[42-csc_matrix-squared_error-True-True-ExtraTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_apply_path_readonly_all_trees[None-best-ExtraTreeRegressor]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_regressions[42-csc_matrix-squared_error-True-False-DecisionTreeRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[0-estimator3]", "sklearn/tree/tests/test_tree.py::test_apply_path_readonly_all_trees[None-random-DecisionTreeRegressor]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_regressions[42-csc_matrix-squared_error-True-False-ExtraTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_apply_path_readonly_all_trees[None-random-ExtraTreeRegressor]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_regressions[42-csc_matrix-squared_error-False-True-DecisionTreeRegressor]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_regressions[42-csc_matrix-squared_error-False-True-ExtraTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_apply_path_readonly_all_trees[csc_matrix-best-DecisionTreeRegressor]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_regressions[42-csc_matrix-squared_error-False-False-DecisionTreeRegressor]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_regressions[42-csc_matrix-squared_error-False-False-ExtraTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_apply_path_readonly_all_trees[csc_matrix-best-ExtraTreeRegressor]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_regressions[42-csc_array-absolute_error-True-True-DecisionTreeRegressor]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_regressions[42-csc_array-absolute_error-True-True-ExtraTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_apply_path_readonly_all_trees[csc_matrix-random-DecisionTreeRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_classification_toy[42-log_loss]", "sklearn/tree/tests/test_tree.py::test_apply_path_readonly_all_trees[csc_matrix-random-ExtraTreeRegressor]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_regressions[42-csc_array-absolute_error-True-False-DecisionTreeRegressor]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_regressions[42-csc_array-absolute_error-True-False-ExtraTreeRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_classification_toy[42-exponential]", "sklearn/tree/tests/test_tree.py::test_apply_path_readonly_all_trees[csc_array-best-DecisionTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_apply_path_readonly_all_trees[csc_array-best-ExtraTreeRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_classification_synthetic[42-log_loss]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_classification_synthetic[42-exponential]", "sklearn/tree/tests/test_tree.py::test_apply_path_readonly_all_trees[csc_array-random-DecisionTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_apply_path_readonly_all_trees[csc_array-random-ExtraTreeRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_regression_dataset[42-1.0-squared_error]", "sklearn/tree/tests/test_tree.py::test_apply_path_readonly_all_trees[csr_matrix-best-DecisionTreeRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_regression_dataset[42-1.0-absolute_error]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_regressions[42-csc_array-absolute_error-False-True-DecisionTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_apply_path_readonly_all_trees[csr_matrix-best-ExtraTreeRegressor]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_regressions[42-csc_array-absolute_error-False-True-ExtraTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_apply_path_readonly_all_trees[csr_matrix-random-DecisionTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_apply_path_readonly_all_trees[csr_matrix-random-ExtraTreeRegressor]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_regressions[42-csc_array-absolute_error-False-False-DecisionTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_apply_path_readonly_all_trees[csr_array-best-DecisionTreeRegressor]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_regressions[42-csc_array-absolute_error-False-False-ExtraTreeRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_regression_dataset[42-1.0-huber]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_regressions[42-csc_array-squared_error-True-True-DecisionTreeRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[1-estimator3]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_regressions[42-csc_array-squared_error-True-True-ExtraTreeRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_regression_dataset[42-0.5-squared_error]", "sklearn/tree/tests/test_tree.py::test_apply_path_readonly_all_trees[csr_array-best-ExtraTreeRegressor]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_regressions[42-csc_array-squared_error-True-False-DecisionTreeRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_regression_dataset[42-0.5-absolute_error]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_regressions[42-csc_array-squared_error-True-False-ExtraTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_apply_path_readonly_all_trees[csr_array-random-DecisionTreeRegressor]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_regressions[42-csc_array-squared_error-False-True-DecisionTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_apply_path_readonly_all_trees[csr_array-random-ExtraTreeRegressor]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_regressions[42-csc_array-squared_error-False-True-ExtraTreeRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_regression_dataset[42-0.5-huber]", "sklearn/tree/tests/test_tree.py::test_balance_property[DecisionTreeRegressor-squared_error]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_iris[42-None-1.0]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_regressions[42-csc_array-squared_error-False-False-DecisionTreeRegressor]", "sklearn/tree/tests/test_monotonic_tree.py::test_monotonic_constraints_regressions[42-csc_array-squared_error-False-False-ExtraTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_balance_property[DecisionTreeRegressor-friedman_mse]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_iris[42-None-0.5]", "sklearn/tree/tests/test_tree.py::test_balance_property[DecisionTreeRegressor-poisson]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_iris[42-1-1.0]", "sklearn/tree/tests/test_tree.py::test_balance_property[ExtraTreeRegressor-squared_error]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_iris[42-1-0.5]", "sklearn/tree/tests/test_tree.py::test_balance_property[ExtraTreeRegressor-friedman_mse]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_regression_synthetic[42]", "sklearn/tree/tests/test_tree.py::test_balance_property[ExtraTreeRegressor-poisson]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_feature_importances[GradientBoostingRegressor-X0-y0]", "sklearn/tree/tests/test_tree.py::test_poisson_zero_nodes[0]", "sklearn/tree/tests/test_tree.py::test_poisson_zero_nodes[1]", "sklearn/tree/tests/test_tree.py::test_poisson_zero_nodes[2]", "sklearn/tree/tests/test_monotonic_tree.py::test_missing_values_raises[DecisionTreeRegressor]", "sklearn/tree/tests/test_monotonic_tree.py::test_missing_values_raises[ExtraTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_poisson_vs_mse", "sklearn/tree/tests/test_monotonic_tree.py::test_assert_1d_reg_tree_children_monotonic_bounded", "sklearn/ensemble/tests/test_gradient_boosting.py::test_feature_importances[GradientBoostingClassifier-X1-y1]", "sklearn/tree/tests/test_monotonic_tree.py::test_1d_opposite_monotonicity_cst_data[DecisionTreeRegressor]", "sklearn/tree/tests/test_monotonic_tree.py::test_1d_opposite_monotonicity_cst_data[ExtraTreeRegressor]", "sklearn/tree/tests/test_monotonic_tree.py::test_1d_tree_nodes_values[42-absolute_error-True--1-DecisionTreeRegressor]", "sklearn/tree/tests/test_monotonic_tree.py::test_1d_tree_nodes_values[42-absolute_error-True--1-ExtraTreeRegressor]", "sklearn/tree/tests/test_monotonic_tree.py::test_1d_tree_nodes_values[42-absolute_error-True-1-DecisionTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_decision_tree_regressor_sample_weight_consistency[squared_error]", "sklearn/tree/tests/test_monotonic_tree.py::test_1d_tree_nodes_values[42-absolute_error-True-1-ExtraTreeRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_probability_log[42]", "sklearn/tree/tests/test_monotonic_tree.py::test_1d_tree_nodes_values[42-absolute_error-False--1-DecisionTreeRegressor]", "sklearn/tree/tests/test_monotonic_tree.py::test_1d_tree_nodes_values[42-absolute_error-False--1-ExtraTreeRegressor]", "sklearn/tree/tests/test_monotonic_tree.py::test_1d_tree_nodes_values[42-absolute_error-False-1-DecisionTreeRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_check_inputs_predict_stages[csc_matrix]", "sklearn/tree/tests/test_monotonic_tree.py::test_1d_tree_nodes_values[42-absolute_error-False-1-ExtraTreeRegressor]", "sklearn/tree/tests/test_monotonic_tree.py::test_1d_tree_nodes_values[42-squared_error-True--1-DecisionTreeRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_check_inputs_predict_stages[csc_array]", "sklearn/tree/tests/test_monotonic_tree.py::test_1d_tree_nodes_values[42-squared_error-True--1-ExtraTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_decision_tree_regressor_sample_weight_consistency[absolute_error]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_max_feature_regression[42]", "sklearn/tree/tests/test_tree.py::test_decision_tree_regressor_sample_weight_consistency[friedman_mse]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[-1-estimator3]", "sklearn/tree/tests/test_monotonic_tree.py::test_1d_tree_nodes_values[42-squared_error-True-1-DecisionTreeRegressor]", "sklearn/tree/tests/test_monotonic_tree.py::test_1d_tree_nodes_values[42-squared_error-True-1-ExtraTreeRegressor]", "sklearn/tree/tests/test_monotonic_tree.py::test_1d_tree_nodes_values[42-squared_error-False--1-DecisionTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_decision_tree_regressor_sample_weight_consistency[poisson]", "sklearn/tree/tests/test_monotonic_tree.py::test_1d_tree_nodes_values[42-squared_error-False--1-ExtraTreeRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_max_features", "sklearn/tree/tests/test_monotonic_tree.py::test_1d_tree_nodes_values[42-squared_error-False-1-DecisionTreeRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_staged_predict", "sklearn/tree/tests/test_monotonic_tree.py::test_1d_tree_nodes_values[42-squared_error-False-1-ExtraTreeRegressor]", "sklearn/tree/tests/test_monotonic_tree.py::test_assert_nd_reg_tree_children_monotonic_bounded", "sklearn/tree/tests/test_monotonic_tree.py::test_nd_tree_nodes_values[42-absolute_error-True--1-DecisionTreeRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_staged_predict_proba", "sklearn/ensemble/tests/test_gradient_boosting.py::test_staged_functions_defensive[42-GradientBoostingClassifier]", "sklearn/tree/tests/test_monotonic_tree.py::test_nd_tree_nodes_values[42-absolute_error-True--1-ExtraTreeRegressor]", "sklearn/tree/tests/test_monotonic_tree.py::test_nd_tree_nodes_values[42-absolute_error-True-1-DecisionTreeRegressor]", "sklearn/tree/tests/test_monotonic_tree.py::test_nd_tree_nodes_values[42-absolute_error-True-1-ExtraTreeRegressor]", "sklearn/tree/tests/test_monotonic_tree.py::test_nd_tree_nodes_values[42-absolute_error-False--1-DecisionTreeRegressor]", "sklearn/tree/tests/test_monotonic_tree.py::test_nd_tree_nodes_values[42-absolute_error-False--1-ExtraTreeRegressor]", "sklearn/tree/tests/test_monotonic_tree.py::test_nd_tree_nodes_values[42-absolute_error-False-1-DecisionTreeRegressor]", "sklearn/tree/tests/test_monotonic_tree.py::test_nd_tree_nodes_values[42-absolute_error-False-1-ExtraTreeRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_staged_functions_defensive[42-GradientBoostingRegressor]", "sklearn/tree/tests/test_monotonic_tree.py::test_nd_tree_nodes_values[42-squared_error-True--1-DecisionTreeRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_serialization", "sklearn/tree/tests/test_tree.py::test_min_sample_split_1_error[DecisionTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_min_sample_split_1_error[ExtraTreeRegressor]", "sklearn/tree/tests/test_monotonic_tree.py::test_nd_tree_nodes_values[42-squared_error-True--1-ExtraTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_missing_values_best_splitter_on_equal_nodes_no_missing[squared_error]", "sklearn/tree/tests/test_monotonic_tree.py::test_nd_tree_nodes_values[42-squared_error-True-1-DecisionTreeRegressor]", "sklearn/tree/tests/test_monotonic_tree.py::test_nd_tree_nodes_values[42-squared_error-True-1-ExtraTreeRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_degenerate_targets", "sklearn/tree/tests/test_monotonic_tree.py::test_nd_tree_nodes_values[42-squared_error-False--1-DecisionTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_missing_values_best_splitter_on_equal_nodes_no_missing[friedman_mse]", "sklearn/tree/tests/test_tree.py::test_missing_values_random_splitter_on_equal_nodes_no_missing[squared_error-0]", "sklearn/tree/tests/test_monotonic_tree.py::test_nd_tree_nodes_values[42-squared_error-False--1-ExtraTreeRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_quantile_loss[42]", "sklearn/tree/tests/test_monotonic_tree.py::test_nd_tree_nodes_values[42-squared_error-False-1-DecisionTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_missing_values_random_splitter_on_equal_nodes_no_missing[squared_error-1]", "sklearn/tree/tests/test_tree.py::test_missing_values_random_splitter_on_equal_nodes_no_missing[squared_error-2]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_symbol_labels", "sklearn/tree/tests/test_tree.py::test_missing_values_random_splitter_on_equal_nodes_no_missing[friedman_mse-0]", "sklearn/tree/tests/test_tree.py::test_missing_values_random_splitter_on_equal_nodes_no_missing[friedman_mse-1]", "sklearn/tree/tests/test_tree.py::test_missing_values_random_splitter_on_equal_nodes_no_missing[friedman_mse-2]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_float_class_labels", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence[10]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_shape_y", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence[20]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_mem_layout", "sklearn/tree/tests/test_tree.py::test_missing_value_errors[tree0-None]", "sklearn/tree/tests/test_tree.py::test_missing_value_errors[tree0-csr_matrix]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[average-False-None-shape0]", "sklearn/tree/tests/test_tree.py::test_missing_value_errors[tree0-csr_array]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_oob_improvement[GradientBoostingClassifier]", "sklearn/tree/tests/test_tree.py::test_missing_value_errors[tree1-None]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[individual-False-None-shape1]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[both-False-None-shape2]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_oob_improvement[GradientBoostingRegressor]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[individual-False-20-shape3]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_oob_scores[GradientBoostingClassifier]", "sklearn/tree/tests/test_tree.py::test_missing_value_errors[tree1-csr_matrix]", "sklearn/tree/tests/test_tree.py::test_missing_value_errors[tree1-csr_array]", "sklearn/tree/tests/test_tree.py::test_missing_values_poisson[DecisionTreeRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_oob_scores[GradientBoostingRegressor]", "sklearn/tree/tests/test_tree.py::test_missing_values_poisson[ExtraTreeRegressor]", "sklearn/tree/tests/test_tree.py::test_missing_values_is_resilience[42-None-make_friedman1-DecisionTreeRegressor-0]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_oob_attributes_error[GradientBoostingClassifier-oob_improvement_]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[both-False-20-shape4]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[individual-False-0.5-shape5]", "sklearn/tree/tests/test_tree.py::test_missing_values_is_resilience[42-None-make_friedman1-ExtraTreeRegressor-0.07]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_oob_attributes_error[GradientBoostingClassifier-oob_scores_]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[both-False-0.5-shape6]", "sklearn/tree/tests/test_tree.py::test_missing_values_is_resilience[42-ones-make_friedman1-DecisionTreeRegressor-0]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_oob_attributes_error[GradientBoostingClassifier-oob_score_]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[average-True-None-shape7]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_oob_attributes_error[GradientBoostingRegressor-oob_improvement_]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[individual-True-None-shape8]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_oob_attributes_error[GradientBoostingRegressor-oob_scores_]", "sklearn/tree/tests/test_tree.py::test_missing_values_is_resilience[42-ones-make_friedman1-ExtraTreeRegressor-0.07]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[both-True-None-shape9]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_oob_attributes_error[GradientBoostingRegressor-oob_score_]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeRegressor()-check_fit_score_takes_y]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[individual-True-20-shape10]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_oob_multilcass_iris", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[both-True-20-shape11]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[dataframe-None]", "sklearn/tree/tests/test_tree.py::test_sample_weight_non_uniform[make_regression-DecisionTreeRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_verbose_output", "sklearn/tree/tests/test_tree.py::test_regression_tree_missing_values_toy[squared_error-X0-DecisionTreeRegressor]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeRegressor()-check_estimators_overwrite_params]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_more_verbose_output", "sklearn/tree/tests/test_tree.py::test_regression_tree_missing_values_toy[squared_error-X0-ExtraTreeRegressor]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[dataframe-list]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeRegressor()-check_estimators_dtypes]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start[42-GradientBoostingClassifier]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeRegressor()-check_sample_weights_pandas_series]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[list-list]", "sklearn/tree/tests/test_tree.py::test_regression_tree_missing_values_toy[squared_error-X1-DecisionTreeRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start[42-GradientBoostingRegressor]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[array-list]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeRegressor()-check_sample_weights_not_an_array]", "sklearn/tree/tests/test_tree.py::test_regression_tree_missing_values_toy[squared_error-X1-ExtraTreeRegressor]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[dataframe-array]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_n_estimators[42-GradientBoostingClassifier]", "sklearn/tree/tests/test_tree.py::test_regression_tree_missing_values_toy[squared_error-X2-DecisionTreeRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_n_estimators[42-GradientBoostingRegressor]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[list-array]", "sklearn/tree/tests/test_tree.py::test_regression_tree_missing_values_toy[squared_error-X2-ExtraTreeRegressor]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeRegressor()-check_sample_weights_list]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_max_depth[GradientBoostingClassifier]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[array-array]", "sklearn/tree/tests/test_monotonic_tree.py::test_nd_tree_nodes_values[42-squared_error-False-1-ExtraTreeRegressor]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeRegressor()-check_sample_weights_shape]", "sklearn/model_selection/tests/test_search.py::test_search_cv_results_none_param", "sklearn/tree/tests/test_tree.py::test_regression_tree_missing_values_toy[squared_error-X3-DecisionTreeRegressor]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[dataframe-series]", "sklearn/tree/tests/test_tree.py::test_regression_tree_missing_values_toy[squared_error-X3-ExtraTreeRegressor]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeRegressor()-check_sample_weights_not_overwritten]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[list-series]", "sklearn/tree/tests/test_tree.py::test_regression_tree_missing_values_toy[friedman_mse-X0-DecisionTreeRegressor]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeRegressor()-check_sample_weights_invariance(kind=ones)]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[array-series]", "sklearn/tree/tests/test_tree.py::test_regression_tree_missing_values_toy[friedman_mse-X0-ExtraTreeRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_max_depth[GradientBoostingRegressor]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[dataframe-index]", "sklearn/tree/tests/test_tree.py::test_regression_tree_missing_values_toy[friedman_mse-X1-DecisionTreeRegressor]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeRegressor()-check_sample_weights_invariance(kind=zeros)]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_clear[GradientBoostingClassifier]", "sklearn/model_selection/tests/test_search.py::test_grid_search_with_multioutput_data", "sklearn/tree/tests/test_tree.py::test_regression_tree_missing_values_toy[friedman_mse-X1-ExtraTreeRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_clear[GradientBoostingRegressor]", "sklearn/tree/tests/test_tree.py::test_regression_tree_missing_values_toy[friedman_mse-X2-DecisionTreeRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_state_oob_scores[GradientBoostingClassifier]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[list-index]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_state_oob_scores[GradientBoostingRegressor]", "sklearn/tests/test_multioutput.py::test_multi_target_regression", "sklearn/tests/test_common.py::test_estimators[DecisionTreeRegressor()-check_estimators_fit_returns_self]", "sklearn/tree/tests/test_tree.py::test_regression_tree_missing_values_toy[friedman_mse-X2-ExtraTreeRegressor]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[array-index]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_custom_axes", "sklearn/tests/test_common.py::test_estimators[DecisionTreeRegressor()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_smaller_n_estimators[GradientBoostingClassifier]", "sklearn/tree/tests/test_tree.py::test_regression_tree_missing_values_toy[friedman_mse-X3-DecisionTreeRegressor]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_passing_numpy_axes[average-1]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_smaller_n_estimators[GradientBoostingRegressor]", "sklearn/model_selection/tests/test_search.py::test_custom_run_search", "sklearn/tree/tests/test_tree.py::test_regression_tree_missing_values_toy[friedman_mse-X3-ExtraTreeRegressor]", "sklearn/ensemble/tests/test_bagging.py::test_regression", "sklearn/tests/test_common.py::test_estimators[DecisionTreeRegressor()-check_complex_data]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_passing_numpy_axes[individual-50]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_equal_n_estimators[GradientBoostingClassifier]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeRegressor()-check_dtype_object]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_passing_numpy_axes[both-51]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeRegressor()-check_estimators_empty_data_messages]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_incorrent_num_axes[2-2]", "sklearn/tests/test_multioutput.py::test_multi_target_sample_weights_api", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_incorrent_num_axes[3-1]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_equal_n_estimators[GradientBoostingRegressor]", "sklearn/tests/test_multioutput.py::test_multi_target_sample_weights", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_with_same_axes", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_oob_switch[GradientBoostingClassifier]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_feature_name_reuse", "sklearn/tests/test_base.py::test_score_sample_weight[tree1-dataset1]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_oob_switch[GradientBoostingRegressor]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeRegressor()-check_pipeline_consistency]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_oob[GradientBoostingClassifier]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeRegressor()-check_estimator_sparse_array]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_oob[GradientBoostingRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_sparse[coo_matrix-GradientBoostingClassifier]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeRegressor()-check_estimator_sparse_matrix]", "sklearn/ensemble/tests/test_bagging.py::test_bootstrap_samples", "sklearn/ensemble/tests/test_bagging.py::test_bootstrap_features", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_sparse[coo_matrix-GradientBoostingRegressor]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_multiclass", "sklearn/tests/test_common.py::test_estimators[DecisionTreeRegressor()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeRegressor()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeRegressor()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeRegressor()-check_regressors_train]", "sklearn/ensemble/tests/test_bagging.py::test_oob_score_regression", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_sparse[coo_array-GradientBoostingClassifier]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_dataframe", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_sparse[coo_array-GradientBoostingRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_sparse[csc_matrix-GradientBoostingClassifier]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_sparse[csc_matrix-GradientBoostingRegressor]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeRegressor()-check_regressors_train(readonly_memmap=True)]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_sparse[csc_array-GradientBoostingClassifier]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_sparse[csc_array-GradientBoostingRegressor]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[FixedThresholdClassifier-predict_proba-estimator2]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_sparse[csr_matrix-GradientBoostingClassifier]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[FixedThresholdClassifier-predict_log_proba-estimator2]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[FixedThresholdClassifier-decision_function-estimator2]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_multiclass_error[params0-target not in est.classes_, got 4]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeRegressor()-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_multiclass_error[params1-target must be specified for multi-class]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_outlier_detector[contourf-auto]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_multiclass_error[params2-Each entry in features must be either an int,]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_outlier_detector[contourf-predict]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_sparse[csr_matrix-GradientBoostingRegressor]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeRegressor()-check_regressor_data_not_an_array]", "sklearn/tests/test_multiclass.py::test_ovr_ovo_regressor", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_outlier_detector[contourf-decision_function]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_sparse[csr_array-GradientBoostingClassifier]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_does_not_override_ylabel", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_sparse[csr_array-GradientBoostingRegressor]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_outlier_detector[contour-auto]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_fortran[42-GradientBoostingClassifier]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_fortran[42-GradientBoostingRegressor]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeRegressor()-check_regressor_multioutput]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_monitor_early_stopping[GradientBoostingClassifier]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeRegressor()-check_regressors_no_decision_function]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_monitor_early_stopping[GradientBoostingRegressor]", "sklearn/ensemble/tests/test_weight_boosting.py::test_regression_toy", "sklearn/tests/test_common.py::test_estimators[DecisionTreeRegressor()-check_supervised_y_2d]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_subsampling[average-expected_shape0]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_outlier_detector[contour-predict]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[TunedThresholdClassifierCV-predict_proba-estimator2]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_subsampling[individual-expected_shape1]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeRegressor()-check_supervised_y_no_nan]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_error_regression[CalibrationDisplay]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_subsampling[both-expected_shape2]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_outlier_detector[contour-decision_function]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_complete_classification", "sklearn/tests/test_common.py::test_estimators[DecisionTreeRegressor()-check_regressors_int]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_overwrite_labels[individual-line_kw0-None]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_complete_regression", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_error_regression[DetCurveDisplay]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_overwrite_labels[individual-line_kw1-None]", "sklearn/ensemble/tests/test_weight_boosting.py::test_diabetes[linear]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_error_regression[PrecisionRecallDisplay]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_regressor[contourf-auto]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_error_regression[RocCurveDisplay]", "sklearn/ensemble/tests/test_weight_boosting.py::test_diabetes[square]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_overwrite_labels[average-line_kw2-None]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_zero_estimator_reg[42]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_regressor[contourf-predict]", "sklearn/ensemble/tests/test_weight_boosting.py::test_diabetes[exponential]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_regressor[contour-auto]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_zero_estimator_clf[42]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeRegressor()-check_methods_sample_order_invariance]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_overwrite_labels[average-line_kw3-xxx]", "sklearn/ensemble/tests/test_weight_boosting.py::test_staged_predict[SAMME]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_regressor[contour-predict]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_overwrite_labels[both-line_kw4-average]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_max_leaf_nodes_max_depth[GradientBoostingClassifier]", "sklearn/ensemble/tests/test_weight_boosting.py::test_staged_predict[SAMME.R]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeRegressor()-check_methods_subset_invariance]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_multioutput_regressor_error", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_overwrite_labels[both-line_kw5-xxx]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_max_leaf_nodes_max_depth[GradientBoostingRegressor]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_regressor_unsupported_response[predict_proba]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_regressor_unsupported_response[decision_function]", "sklearn/ensemble/tests/test_bagging.py::test_parallel_regression", "sklearn/ensemble/tests/test_weight_boosting.py::test_gridsearch", "sklearn/ensemble/tests/test_gradient_boosting.py::test_min_impurity_decrease[GradientBoostingClassifier]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_regressor_unsupported_response[response_method2]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeRegressor()-check_fit2d_1sample]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[TunedThresholdClassifierCV-predict_log_proba-estimator2]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_min_impurity_decrease[GradientBoostingRegressor]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeRegressor()-check_fit2d_1feature]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_plot_limits_one_way[True-individual]", "sklearn/ensemble/tests/test_bagging.py::test_estimator", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_plot_limits_one_way[True-average]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_plot_limits_one_way[True-both]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_wo_nestimators_change", "sklearn/ensemble/tests/test_weight_boosting.py::test_pickle", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_plot_limits_one_way[False-individual]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_non_uniform_weights_toy_edge_case_reg[squared_error-0.5]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeRegressor()-check_dict_unchanged]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_plot_limits_one_way[False-average]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_non_uniform_weights_toy_edge_case_reg[absolute_error-0.0]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_plot_limits_one_way[False-both]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeRegressor()-check_dont_overwrite_parameters]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_non_uniform_weights_toy_edge_case_reg[huber-0.5]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_plot_limits_two_way[True]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_non_uniform_weights_toy_edge_case_reg[quantile-0.5]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_plot_limits_two_way[False]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeRegressor()-check_fit_idempotent]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_non_uniform_weights_toy_edge_case_clf", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[TunedThresholdClassifierCV-decision_function-estimator2]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_kind_list", "sklearn/tests/test_common.py::test_estimators[DecisionTreeRegressor()-check_fit_check_is_fitted]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[coo_matrix-GradientBoostingClassifier]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_kind_error[features0-individual]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[coo_matrix-GradientBoostingRegressor]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeRegressor()-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeRegressor()-check_fit1d]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_kind_error[features1-both]", "sklearn/utils/tests/test_response.py::test_get_response_values_outlier_detection[True-predict]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_kind_error[features2-individual]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_kind_error[features3-both]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[coo_array-GradientBoostingClassifier]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_kind_error[features4-kind4]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeRegressor()-check_fit2d_predict1d]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[coo_array-GradientBoostingRegressor]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_kind_error[features5-kind5]", "sklearn/tests/test_common.py::test_estimators[DecisionTreeRegressor()-check_requires_y_none]", "sklearn/utils/tests/test_response.py::test_get_response_values_outlier_detection[True-decision_function]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_lines_kw[line_kw0-pd_line_kw0-ice_lines_kw0-expected_colors0]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[csc_matrix-GradientBoostingClassifier]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_lines_kw[None-pd_line_kw1-ice_lines_kw1-expected_colors1]", "sklearn/utils/tests/test_response.py::test_get_response_values_outlier_detection[True-response_method2]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_lines_kw[line_kw2-None-ice_lines_kw2-expected_colors2]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[csc_matrix-GradientBoostingRegressor]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_lines_kw[line_kw3-pd_line_kw3-None-expected_colors3]", "sklearn/utils/tests/test_response.py::test_get_response_values_outlier_detection[False-predict]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_lines_kw[line_kw4-None-None-expected_colors4]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[csc_array-GradientBoostingClassifier]", "sklearn/utils/tests/test_response.py::test_get_response_values_outlier_detection[False-decision_function]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[csc_array-GradientBoostingRegressor]", "sklearn/utils/tests/test_response.py::test_get_response_values_outlier_detection[False-response_method2]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_lines_kw[line_kw5-pd_line_kw5-ice_lines_kw5-expected_colors5]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_display_wrong_len_kind", "sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[csr_matrix-GradientBoostingClassifier]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_display_kind_centered_interaction[individual]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_display_kind_centered_interaction[both]", "sklearn/utils/tests/test_response.py::test_get_response_error[estimator0-X0-y0-Expected 'estimator' to be a binary classifier-params0]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[csr_matrix-GradientBoostingRegressor]", "sklearn/ensemble/tests/test_bagging.py::test_bagging_regressor_with_missing_inputs", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_display_kind_centered_interaction[average]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_display_kind_centered_interaction[kind3]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[csr_array-GradientBoostingClassifier]", "sklearn/ensemble/tests/test_bagging.py::test_bagging_without_support_metadata_routing[model1]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_display_kind_centered_interaction[kind4]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_display_with_constant_sample_weight", "sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[csr_array-GradientBoostingRegressor]", "sklearn/ensemble/tests/test_iforest.py::test_iforest[42]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_subclass_named_constructors_return_type_is_subclass", "sklearn/ensemble/tests/test_gradient_boosting.py::test_gradient_boosting_early_stopping[GradientBoostingClassifier]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_gradient_boosting_early_stopping[GradientBoostingRegressor]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_sparse[42-csc_matrix]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_sparse[42-csc_array]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_gradient_boosting_without_early_stopping", "sklearn/ensemble/tests/test_iforest.py::test_iforest_sparse[42-csr_matrix]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_gradient_boosting_validation_fraction", "sklearn/ensemble/tests/test_iforest.py::test_iforest_sparse[42-csr_array]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_gradient_boosting_with_init[42-binary classification]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_error", "sklearn/ensemble/tests/test_gradient_boosting.py::test_gradient_boosting_with_init[42-multiclass classification]", "sklearn/ensemble/tests/test_voting.py::test_n_features_in[VotingRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_gradient_boosting_with_init[42-regression]", "sklearn/ensemble/tests/test_iforest.py::test_recalculate_max_depth", "sklearn/ensemble/tests/test_gradient_boosting.py::test_gradient_boosting_with_init_pipeline", "sklearn/ensemble/tests/test_iforest.py::test_max_samples_attribute", "sklearn/ensemble/tests/test_gradient_boosting.py::test_gbr_degenerate_feature_importances", "sklearn/ensemble/tests/test_iforest.py::test_iforest_parallel_regression[42]", "sklearn/ensemble/tests/test_voting.py::test_get_features_names_out_regressor", "sklearn/ensemble/tests/test_gradient_boosting.py::test_huber_vs_mean_and_median", "sklearn/tree/tests/test_export.py::test_graphviz_toy", "sklearn/ensemble/tests/test_iforest.py::test_iforest_performance[42]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_works[42-0.25]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_squared_error_exact_backward_compat", "sklearn/tree/tests/test_export.py::test_friedman_mse_in_graphviz", "sklearn/tree/tests/test_export.py::test_precision", "sklearn/ensemble/tests/test_iforest.py::test_iforest_works[42-auto]", "sklearn/tree/tests/test_export.py::test_export_text", "sklearn/ensemble/tests/test_iforest.py::test_max_samples_consistency", "sklearn/ensemble/tests/test_gradient_boosting.py::test_huber_exact_backward_compat", "sklearn/ensemble/tests/test_iforest.py::test_iforest_subsampled_features", "sklearn/ensemble/tests/test_gradient_boosting.py::test_binomial_error_exact_backward_compat", "sklearn/ensemble/tests/test_iforest.py::test_score_samples", "sklearn/ensemble/tests/test_gradient_boosting.py::test_multinomial_error_exact_backward_compat", "sklearn/ensemble/tests/test_iforest.py::test_iforest_warm_start", "sklearn/ensemble/tests/test_gradient_boosting.py::test_gb_denominator_zero[42]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_chunks_works1[42-0.25-3]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_chunks_works1[42-auto-2]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_chunks_works2[42-0.25-3]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_chunks_works2[42-auto-2]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_with_uniform_data", "sklearn/ensemble/tests/test_iforest.py::test_iforest_with_n_jobs_does_not_segfault[csc_matrix]", "sklearn/tree/_classes.py::sklearn.tree._classes.ExtraTreeRegressor", "sklearn/ensemble/tests/test_iforest.py::test_iforest_with_n_jobs_does_not_segfault[csc_array]", "sklearn/ensemble/_gb.py::sklearn.ensemble._gb.GradientBoostingClassifier", "sklearn/ensemble/_gb.py::sklearn.ensemble._gb.GradientBoostingRegressor", "sklearn/inspection/_plot/partial_dependence.py::sklearn.inspection._plot.partial_dependence.PartialDependenceDisplay", "sklearn/inspection/_plot/partial_dependence.py::sklearn.inspection._plot.partial_dependence.PartialDependenceDisplay.from_estimator", "sklearn/ensemble/_iforest.py::sklearn.ensemble._iforest.IsolationForest", "sklearn/ensemble/_weight_boosting.py::sklearn.ensemble._weight_boosting.AdaBoostRegressor", "sklearn/ensemble/tests/test_iforest.py::test_iforest_preserve_feature_names", "sklearn/inspection/_partial_dependence.py::sklearn.inspection._partial_dependence.partial_dependence", "sklearn/ensemble/tests/test_iforest.py::test_iforest_sparse_input_float_contamination[csc_matrix]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_sparse_input_float_contamination[csc_array]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_sparse_input_float_contamination[csr_matrix]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_sparse_input_float_contamination[csr_array]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_predict_parallel[42-0.25-1]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_predict_parallel[42-0.25-2]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_predict_parallel[42-auto-1]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_predict_parallel[42-auto-2]", "sklearn/ensemble/tests/test_forest.py::test_estimators_samples[ExtraTreesRegressor-True-None]", "sklearn/ensemble/tests/test_forest.py::test_estimators_samples[ExtraTreesRegressor-True-1]", "sklearn/ensemble/tests/test_forest.py::test_estimators_samples[ExtraTreesRegressor-False-None]", "sklearn/ensemble/tests/test_forest.py::test_estimators_samples[ExtraTreesRegressor-False-1]", "sklearn/ensemble/tests/test_forest.py::test_estimators_samples[RandomForestRegressor-True-None]", "sklearn/ensemble/tests/test_forest.py::test_estimators_samples[RandomForestRegressor-True-1]", "sklearn/ensemble/tests/test_forest.py::test_estimators_samples[RandomForestRegressor-False-None]", "sklearn/ensemble/tests/test_forest.py::test_estimators_samples[RandomForestRegressor-False-1]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeRegressor()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeRegressor()-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeRegressor()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeRegressor()-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeRegressor()-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeRegressor()-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeRegressor()-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeRegressor()-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeRegressor()-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeRegressor()-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeRegressor()-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeRegressor()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeRegressor()-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeRegressor()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeRegressor()-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeRegressor()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeRegressor()-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeRegressor()-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeRegressor()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeRegressor()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeRegressor()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeRegressor()-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeRegressor()-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeRegressor()-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeRegressor()-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeRegressor()-check_regressor_multioutput]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeRegressor()-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeRegressor()-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeRegressor()-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeRegressor()-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeRegressor()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeRegressor()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeRegressor()-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeRegressor()-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeRegressor()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeRegressor()-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeRegressor()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeRegressor()-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeRegressor()-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeRegressor()-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeRegressor()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[ExtraTreeRegressor()-check_requires_y_none]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_outliers_fit_predict]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_outliers_train]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_outliers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[AdaBoostRegressor(n_estimators=5)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[BaggingRegressor(n_estimators=5)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[DecisionTreeRegressor()]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[ExtraTreeRegressor()]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[GradientBoostingClassifier(n_estimators=5)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[GradientBoostingRegressor(n_estimators=5)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[IsolationForest(n_estimators=5)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[AdaBoostRegressor(n_estimators=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[BaggingRegressor(n_estimators=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[DecisionTreeRegressor()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[ExtraTreeRegressor()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GradientBoostingClassifier(n_estimators=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GradientBoostingRegressor(n_estimators=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[IsolationForest(n_estimators=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[BaggingRegressor(n_estimators=5,oob_score=True)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GradientBoostingClassifier(n_estimators=5,n_iter_no_change=1)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GradientBoostingRegressor(n_estimators=5,n_iter_no_change=1)]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_check_param_validation[DecisionTreeRegressor()]", "sklearn/tests/test_common.py::test_check_param_validation[ExtraTreeRegressor()]", "sklearn/tests/test_common.py::test_set_output_transform[StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_set_output_transform[VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-StackingRegressor(cv=3,estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-VotingRegressor(estimators=[('est1',DecisionTreeRegressor(max_depth=3,random_state=0)),('est2',DecisionTreeRegressor(max_depth=3,random_state=1))])]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-31
1.0
{ "code": "diff --git b/sklearn/feature_extraction/_dict_vectorizer.py a/sklearn/feature_extraction/_dict_vectorizer.py\nindex 13ada2f8e..64c9a5704 100644\n--- b/sklearn/feature_extraction/_dict_vectorizer.py\n+++ a/sklearn/feature_extraction/_dict_vectorizer.py\n@@ -135,6 +135,7 @@ class DictVectorizer(TransformerMixin, BaseEstimator):\n indices.append(vocab[feature_name])\n values.append(self.dtype(vv))\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None):\n \"\"\"Learn a list of feature name -> indices mappings.\n \n@@ -155,6 +156,38 @@ class DictVectorizer(TransformerMixin, BaseEstimator):\n self : object\n DictVectorizer class instance.\n \"\"\"\n+ feature_names = []\n+ vocab = {}\n+\n+ for x in X:\n+ for f, v in x.items():\n+ if isinstance(v, str):\n+ feature_name = \"%s%s%s\" % (f, self.separator, v)\n+ elif isinstance(v, Number) or (v is None):\n+ feature_name = f\n+ elif isinstance(v, Mapping):\n+ raise TypeError(\n+ f\"Unsupported value type {type(v)} \"\n+ f\"for {f}: {v}.\\n\"\n+ \"Mapping objects are not supported.\"\n+ )\n+ elif isinstance(v, Iterable):\n+ feature_name = None\n+ self._add_iterable_element(f, v, feature_names, vocab)\n+\n+ if feature_name is not None:\n+ if feature_name not in vocab:\n+ vocab[feature_name] = len(feature_names)\n+ feature_names.append(feature_name)\n+\n+ if self.sort:\n+ feature_names.sort()\n+ vocab = {f: i for i, f in enumerate(feature_names)}\n+\n+ self.feature_names_ = feature_names\n+ self.vocabulary_ = vocab\n+\n+ return self\n \n def _transform(self, X, fitting):\n # Sanity check: Python's array has no way of explicitly requesting the\n", "test": null }
null
{ "code": "diff --git a/sklearn/feature_extraction/_dict_vectorizer.py b/sklearn/feature_extraction/_dict_vectorizer.py\nindex 64c9a5704..13ada2f8e 100644\n--- a/sklearn/feature_extraction/_dict_vectorizer.py\n+++ b/sklearn/feature_extraction/_dict_vectorizer.py\n@@ -135,7 +135,6 @@ class DictVectorizer(TransformerMixin, BaseEstimator):\n indices.append(vocab[feature_name])\n values.append(self.dtype(vv))\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None):\n \"\"\"Learn a list of feature name -> indices mappings.\n \n@@ -156,38 +155,6 @@ class DictVectorizer(TransformerMixin, BaseEstimator):\n self : object\n DictVectorizer class instance.\n \"\"\"\n- feature_names = []\n- vocab = {}\n-\n- for x in X:\n- for f, v in x.items():\n- if isinstance(v, str):\n- feature_name = \"%s%s%s\" % (f, self.separator, v)\n- elif isinstance(v, Number) or (v is None):\n- feature_name = f\n- elif isinstance(v, Mapping):\n- raise TypeError(\n- f\"Unsupported value type {type(v)} \"\n- f\"for {f}: {v}.\\n\"\n- \"Mapping objects are not supported.\"\n- )\n- elif isinstance(v, Iterable):\n- feature_name = None\n- self._add_iterable_element(f, v, feature_names, vocab)\n-\n- if feature_name is not None:\n- if feature_name not in vocab:\n- vocab[feature_name] = len(feature_names)\n- feature_names.append(feature_name)\n-\n- if self.sort:\n- feature_names.sort()\n- vocab = {f: i for i, f in enumerate(feature_names)}\n-\n- self.feature_names_ = feature_names\n- self.vocabulary_ = vocab\n-\n- return self\n \n def _transform(self, X, fitting):\n # Sanity check: Python's array has no way of explicitly requesting the\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/feature_extraction/_dict_vectorizer.py.\nHere is the description for the function:\n def fit(self, X, y=None):\n \"\"\"Learn a list of feature name -> indices mappings.\n\n Parameters\n ----------\n X : Mapping or iterable over Mappings\n Dict(s) or Mapping(s) from feature names (arbitrary Python\n objects) to feature values (strings or convertible to dtype).\n\n .. versionchanged:: 0.24\n Accepts multiple string values for one categorical feature.\n\n y : (ignored)\n Ignored parameter.\n\n Returns\n -------\n self : object\n DictVectorizer class instance.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_feature_selection", "sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_iterable_not_string_error", "sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_mapping_error", "sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_unseen_or_no_features", "sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_deterministic_vocabulary[42]", "sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_n_features_in", "sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_dict_vectorizer_get_feature_names_out", "sklearn/tests/test_common.py::test_check_param_validation[DictVectorizer()]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-32
1.0
{ "code": "diff --git b/sklearn/feature_extraction/_dict_vectorizer.py a/sklearn/feature_extraction/_dict_vectorizer.py\nindex 2f0160b95..64c9a5704 100644\n--- b/sklearn/feature_extraction/_dict_vectorizer.py\n+++ a/sklearn/feature_extraction/_dict_vectorizer.py\n@@ -337,6 +337,25 @@ class DictVectorizer(TransformerMixin, BaseEstimator):\n D : list of dict_type objects of shape (n_samples,)\n Feature mappings for the samples in X.\n \"\"\"\n+ check_is_fitted(self, \"feature_names_\")\n+\n+ # COO matrix is not subscriptable\n+ X = check_array(X, accept_sparse=[\"csr\", \"csc\"])\n+ n_samples = X.shape[0]\n+\n+ names = self.feature_names_\n+ dicts = [dict_type() for _ in range(n_samples)]\n+\n+ if sp.issparse(X):\n+ for i, j in zip(*X.nonzero()):\n+ dicts[i][names[j]] = X[i, j]\n+ else:\n+ for i, d in enumerate(dicts):\n+ for j, v in enumerate(X[i, :]):\n+ if v != 0:\n+ d[names[j]] = X[i, j]\n+\n+ return dicts\n \n def transform(self, X):\n \"\"\"Transform feature->value dicts to array or sparse matrix.\n", "test": null }
null
{ "code": "diff --git a/sklearn/feature_extraction/_dict_vectorizer.py b/sklearn/feature_extraction/_dict_vectorizer.py\nindex 64c9a5704..2f0160b95 100644\n--- a/sklearn/feature_extraction/_dict_vectorizer.py\n+++ b/sklearn/feature_extraction/_dict_vectorizer.py\n@@ -337,25 +337,6 @@ class DictVectorizer(TransformerMixin, BaseEstimator):\n D : list of dict_type objects of shape (n_samples,)\n Feature mappings for the samples in X.\n \"\"\"\n- check_is_fitted(self, \"feature_names_\")\n-\n- # COO matrix is not subscriptable\n- X = check_array(X, accept_sparse=[\"csr\", \"csc\"])\n- n_samples = X.shape[0]\n-\n- names = self.feature_names_\n- dicts = [dict_type() for _ in range(n_samples)]\n-\n- if sp.issparse(X):\n- for i, j in zip(*X.nonzero()):\n- dicts[i][names[j]] = X[i, j]\n- else:\n- for i, d in enumerate(dicts):\n- for j, v in enumerate(X[i, :]):\n- if v != 0:\n- d[names[j]] = X[i, j]\n-\n- return dicts\n \n def transform(self, X):\n \"\"\"Transform feature->value dicts to array or sparse matrix.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/feature_extraction/_dict_vectorizer.py.\nHere is the description for the function:\n def inverse_transform(self, X, dict_type=dict):\n \"\"\"Transform array or sparse matrix X back to feature mappings.\n\n X must have been produced by this DictVectorizer's transform or\n fit_transform method; it may only have passed through transformers\n that preserve the number of features and their order.\n\n In the case of one-hot/one-of-K coding, the constructed feature\n names and values are returned rather than the original ones.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n Sample matrix.\n dict_type : type, default=dict\n Constructor for feature mappings. Must conform to the\n collections.Mapping API.\n\n Returns\n -------\n D : list of dict_type objects of shape (n_samples,)\n Feature mappings for the samples in X.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_dictvectorizer[True-True-int-True]", "sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_dictvectorizer[True-True-int-False]", "sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_dictvectorizer[True-True-float32-True]", "sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_dictvectorizer[True-True-float32-False]", "sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_dictvectorizer[True-True-int16-True]", "sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_dictvectorizer[True-True-int16-False]", "sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_dictvectorizer[True-False-int-True]", "sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_dictvectorizer[True-False-int-False]", "sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_dictvectorizer[True-False-float32-True]", "sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_dictvectorizer[True-False-float32-False]", "sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_dictvectorizer[True-False-int16-True]", "sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_dictvectorizer[True-False-int16-False]", "sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_dictvectorizer[False-True-int-True]", "sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_dictvectorizer[False-True-int-False]", "sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_dictvectorizer[False-True-float32-True]", "sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_dictvectorizer[False-True-float32-False]", "sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_dictvectorizer[False-True-int16-True]", "sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_dictvectorizer[False-True-int16-False]", "sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_dictvectorizer[False-False-int-True]", "sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_dictvectorizer[False-False-int-False]", "sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_dictvectorizer[False-False-float32-True]", "sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_dictvectorizer[False-False-float32-False]", "sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_dictvectorizer[False-False-int16-True]", "sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_dictvectorizer[False-False-int16-False]", "sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_one_of_k", "sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_iterable_value", "sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_dictvectorizer_dense_sparse_equivalence", "sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_dict_vectorizer_not_fitted_error[inverse_transform-input1]", "sklearn/feature_extraction/_dict_vectorizer.py::sklearn.feature_extraction._dict_vectorizer.DictVectorizer" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-33
1.0
{ "code": "diff --git b/sklearn/dummy.py a/sklearn/dummy.py\nindex 0774a27ba..6332ff43c 100644\n--- b/sklearn/dummy.py\n+++ a/sklearn/dummy.py\n@@ -158,6 +158,7 @@ class DummyClassifier(MultiOutputMixin, ClassifierMixin, BaseEstimator):\n self.random_state = random_state\n self.constant = constant\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y, sample_weight=None):\n \"\"\"Fit the baseline classifier.\n \n@@ -177,6 +178,76 @@ class DummyClassifier(MultiOutputMixin, ClassifierMixin, BaseEstimator):\n self : object\n Returns the instance itself.\n \"\"\"\n+ validate_data(self, X, skip_check_array=True)\n+\n+ self._strategy = self.strategy\n+\n+ if self._strategy == \"uniform\" and sp.issparse(y):\n+ y = y.toarray()\n+ warnings.warn(\n+ (\n+ \"A local copy of the target data has been converted \"\n+ \"to a numpy array. Predicting on sparse target data \"\n+ \"with the uniform strategy would not save memory \"\n+ \"and would be slower.\"\n+ ),\n+ UserWarning,\n+ )\n+\n+ self.sparse_output_ = sp.issparse(y)\n+\n+ if not self.sparse_output_:\n+ y = np.asarray(y)\n+ y = np.atleast_1d(y)\n+\n+ if y.ndim == 1:\n+ y = np.reshape(y, (-1, 1))\n+\n+ self.n_outputs_ = y.shape[1]\n+\n+ check_consistent_length(X, y)\n+\n+ if sample_weight is not None:\n+ sample_weight = _check_sample_weight(sample_weight, X)\n+\n+ if self._strategy == \"constant\":\n+ if self.constant is None:\n+ raise ValueError(\n+ \"Constant target value has to be specified \"\n+ \"when the constant strategy is used.\"\n+ )\n+ else:\n+ constant = np.reshape(np.atleast_1d(self.constant), (-1, 1))\n+ if constant.shape[0] != self.n_outputs_:\n+ raise ValueError(\n+ \"Constant target value should have shape (%d, 1).\"\n+ % self.n_outputs_\n+ )\n+\n+ (self.classes_, self.n_classes_, self.class_prior_) = class_distribution(\n+ y, sample_weight\n+ )\n+\n+ if self._strategy == \"constant\":\n+ for k in range(self.n_outputs_):\n+ if not any(constant[k][0] == c for c in self.classes_[k]):\n+ # Checking in case of constant strategy if the constant\n+ # provided by the user is in y.\n+ err_msg = (\n+ \"The constant target value must be present in \"\n+ \"the training data. You provided constant={}. \"\n+ \"Possible values are: {}.\".format(\n+ self.constant, self.classes_[k].tolist()\n+ )\n+ )\n+ raise ValueError(err_msg)\n+\n+ if self.n_outputs_ == 1:\n+ self.n_classes_ = self.n_classes_[0]\n+ self.classes_ = self.classes_[0]\n+ self.class_prior_ = self.class_prior_[0]\n+\n+ return self\n \n def predict(self, X):\n \"\"\"Perform classification on test vectors X.\n", "test": null }
null
{ "code": "diff --git a/sklearn/dummy.py b/sklearn/dummy.py\nindex 6332ff43c..0774a27ba 100644\n--- a/sklearn/dummy.py\n+++ b/sklearn/dummy.py\n@@ -158,7 +158,6 @@ class DummyClassifier(MultiOutputMixin, ClassifierMixin, BaseEstimator):\n self.random_state = random_state\n self.constant = constant\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y, sample_weight=None):\n \"\"\"Fit the baseline classifier.\n \n@@ -178,76 +177,6 @@ class DummyClassifier(MultiOutputMixin, ClassifierMixin, BaseEstimator):\n self : object\n Returns the instance itself.\n \"\"\"\n- validate_data(self, X, skip_check_array=True)\n-\n- self._strategy = self.strategy\n-\n- if self._strategy == \"uniform\" and sp.issparse(y):\n- y = y.toarray()\n- warnings.warn(\n- (\n- \"A local copy of the target data has been converted \"\n- \"to a numpy array. Predicting on sparse target data \"\n- \"with the uniform strategy would not save memory \"\n- \"and would be slower.\"\n- ),\n- UserWarning,\n- )\n-\n- self.sparse_output_ = sp.issparse(y)\n-\n- if not self.sparse_output_:\n- y = np.asarray(y)\n- y = np.atleast_1d(y)\n-\n- if y.ndim == 1:\n- y = np.reshape(y, (-1, 1))\n-\n- self.n_outputs_ = y.shape[1]\n-\n- check_consistent_length(X, y)\n-\n- if sample_weight is not None:\n- sample_weight = _check_sample_weight(sample_weight, X)\n-\n- if self._strategy == \"constant\":\n- if self.constant is None:\n- raise ValueError(\n- \"Constant target value has to be specified \"\n- \"when the constant strategy is used.\"\n- )\n- else:\n- constant = np.reshape(np.atleast_1d(self.constant), (-1, 1))\n- if constant.shape[0] != self.n_outputs_:\n- raise ValueError(\n- \"Constant target value should have shape (%d, 1).\"\n- % self.n_outputs_\n- )\n-\n- (self.classes_, self.n_classes_, self.class_prior_) = class_distribution(\n- y, sample_weight\n- )\n-\n- if self._strategy == \"constant\":\n- for k in range(self.n_outputs_):\n- if not any(constant[k][0] == c for c in self.classes_[k]):\n- # Checking in case of constant strategy if the constant\n- # provided by the user is in y.\n- err_msg = (\n- \"The constant target value must be present in \"\n- \"the training data. You provided constant={}. \"\n- \"Possible values are: {}.\".format(\n- self.constant, self.classes_[k].tolist()\n- )\n- )\n- raise ValueError(err_msg)\n-\n- if self.n_outputs_ == 1:\n- self.n_classes_ = self.n_classes_[0]\n- self.classes_ = self.classes_[0]\n- self.class_prior_ = self.class_prior_[0]\n-\n- return self\n \n def predict(self, X):\n \"\"\"Perform classification on test vectors X.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/dummy.py.\nHere is the description for the function:\n def fit(self, X, y, sample_weight=None):\n \"\"\"Fit the baseline classifier.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n Training data.\n\n y : array-like of shape (n_samples,) or (n_samples, n_outputs)\n Target values.\n\n sample_weight : array-like of shape (n_samples,), default=None\n Sample weights.\n\n Returns\n -------\n self : object\n Returns the instance itself.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-5-GradientBoostingClassifier-auto-data0]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-5-GradientBoostingClassifier-auto-data1]", "sklearn/ensemble/tests/test_bagging.py::test_classification", "sklearn/model_selection/tests/test_successive_halving.py::test_nan_handling[fit-HalvingGridSearchCV]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-5-GradientBoostingClassifier-brute-data2]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-5-GradientBoostingClassifier-brute-data3]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_classification_toy[42-log_loss]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_classification_toy[42-exponential]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_classification_synthetic[42-log_loss]", "sklearn/model_selection/tests/test_successive_halving.py::test_nan_handling[fit-HalvingRandomSearchCV]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_classification_synthetic[42-exponential]", "sklearn/model_selection/tests/test_successive_halving.py::test_nan_handling[predict-HalvingGridSearchCV]", "sklearn/model_selection/tests/test_successive_halving.py::test_nan_handling[predict-HalvingRandomSearchCV]", "sklearn/model_selection/tests/test_successive_halving.py::test_aggressive_elimination[True-limited-4-4-3-1-expected_n_candidates0-expected_n_resources0-HalvingGridSearchCV]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-10-GradientBoostingClassifier-auto-data0]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-10-GradientBoostingClassifier-auto-data1]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-10-GradientBoostingClassifier-brute-data2]", "sklearn/model_selection/tests/test_successive_halving.py::test_aggressive_elimination[True-limited-4-4-3-1-expected_n_candidates0-expected_n_resources0-HalvingRandomSearchCV]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-10-GradientBoostingClassifier-brute-data3]", "sklearn/model_selection/tests/test_successive_halving.py::test_aggressive_elimination[False-limited-3-4-3-3-expected_n_candidates1-expected_n_resources1-HalvingGridSearchCV]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_iris[42-None-1.0]", "sklearn/model_selection/tests/test_successive_halving.py::test_aggressive_elimination[False-limited-3-4-3-3-expected_n_candidates1-expected_n_resources1-HalvingRandomSearchCV]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_iris[42-None-0.5]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_iris[42-1-1.0]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-5-GradientBoostingClassifier-auto-data0]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-5-GradientBoostingClassifier-auto-data1]", "sklearn/model_selection/tests/test_successive_halving.py::test_aggressive_elimination[True-unlimited-4-4-4-1-expected_n_candidates2-expected_n_resources2-HalvingGridSearchCV]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-5-GradientBoostingClassifier-brute-data2]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-5-GradientBoostingClassifier-brute-data3]", "sklearn/model_selection/tests/test_successive_halving.py::test_aggressive_elimination[True-unlimited-4-4-4-1-expected_n_candidates2-expected_n_resources2-HalvingRandomSearchCV]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_iris[42-1-0.5]", "sklearn/model_selection/tests/test_successive_halving.py::test_aggressive_elimination[False-unlimited-4-4-4-1-expected_n_candidates3-expected_n_resources3-HalvingGridSearchCV]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-10-GradientBoostingClassifier-auto-data0]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_feature_importances[GradientBoostingClassifier-X1-y1]", "sklearn/model_selection/tests/test_successive_halving.py::test_aggressive_elimination[False-unlimited-4-4-4-1-expected_n_candidates3-expected_n_resources3-HalvingRandomSearchCV]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-10-GradientBoostingClassifier-auto-data1]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_probability_log[42]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-10-GradientBoostingClassifier-brute-data2]", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[smallest-auto-2-4-expected_n_resources0-HalvingGridSearchCV]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-10-GradientBoostingClassifier-brute-data3]", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[smallest-auto-2-4-expected_n_resources0-HalvingRandomSearchCV]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_check_inputs_predict_stages[csc_matrix]", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[50-auto-2-3-expected_n_resources1-HalvingGridSearchCV]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_check_inputs_predict_stages[csc_array]", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[50-auto-2-3-expected_n_resources1-HalvingRandomSearchCV]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_max_feature_regression[42]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_max_features", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[smallest-30-1-1-expected_n_resources2-HalvingGridSearchCV]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_staged_predict_proba", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[smallest-30-1-1-expected_n_resources2-HalvingRandomSearchCV]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_staged_functions_defensive[42-GradientBoostingClassifier]", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-auto-2-2-expected_n_resources3-HalvingGridSearchCV]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_serialization", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-5-GradientBoostingClassifier-auto-data0]", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-auto-2-2-expected_n_resources3-HalvingRandomSearchCV]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-5-GradientBoostingClassifier-auto-data1]", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-1000-2-2-expected_n_resources4-HalvingGridSearchCV]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-5-GradientBoostingClassifier-brute-data2]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-5-GradientBoostingClassifier-brute-data3]", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-1000-2-2-expected_n_resources4-HalvingRandomSearchCV]", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-999-2-2-expected_n_resources5-HalvingGridSearchCV]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_symbol_labels", "sklearn/ensemble/tests/test_gradient_boosting.py::test_float_class_labels", "sklearn/ensemble/tests/test_gradient_boosting.py::test_shape_y", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-999-2-2-expected_n_resources5-HalvingRandomSearchCV]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_mem_layout", "sklearn/ensemble/tests/test_gradient_boosting.py::test_oob_improvement[GradientBoostingClassifier]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_multiclass", "sklearn/ensemble/tests/test_gradient_boosting.py::test_oob_scores[GradientBoostingClassifier]", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-600-2-2-expected_n_resources6-HalvingGridSearchCV]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-10-GradientBoostingClassifier-auto-data0]", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-600-2-2-expected_n_resources6-HalvingRandomSearchCV]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-10-GradientBoostingClassifier-auto-data1]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_oob_attributes_error[GradientBoostingClassifier-oob_improvement_]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-10-GradientBoostingClassifier-brute-data2]", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-599-2-2-expected_n_resources7-HalvingGridSearchCV]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-10-GradientBoostingClassifier-brute-data3]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_oob_attributes_error[GradientBoostingClassifier-oob_scores_]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_oob_attributes_error[GradientBoostingClassifier-oob_score_]", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-599-2-2-expected_n_resources7-HalvingRandomSearchCV]", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-300-2-2-expected_n_resources8-HalvingGridSearchCV]", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-300-2-2-expected_n_resources8-HalvingRandomSearchCV]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_oob_multilcass_iris", "sklearn/ensemble/tests/test_gradient_boosting.py::test_verbose_output", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-60-2-2-expected_n_resources9-HalvingGridSearchCV]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_more_verbose_output", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-60-2-2-expected_n_resources9-HalvingRandomSearchCV]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start[42-GradientBoostingClassifier]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-5-GradientBoostingClassifier-auto-data0]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-5-GradientBoostingClassifier-auto-data1]", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-50-1-1-expected_n_resources10-HalvingGridSearchCV]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-5-GradientBoostingClassifier-brute-data2]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_n_estimators[42-GradientBoostingClassifier]", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-50-1-1-expected_n_resources10-HalvingRandomSearchCV]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-5-GradientBoostingClassifier-brute-data3]", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-20-1-1-expected_n_resources11-HalvingGridSearchCV]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_multiclass_error[params0-target not in est.classes_, got 4]", "sklearn/model_selection/tests/test_successive_halving.py::test_min_max_resources[exhaust-20-1-1-expected_n_resources11-HalvingRandomSearchCV]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_multiclass_error[params1-target must be specified for multi-class]", "sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[auto-5-9-HalvingRandomSearchCV]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_multiclass_error[params2-Each entry in features must be either an int,]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_max_depth[GradientBoostingClassifier]", "sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[auto-5-9-HalvingGridSearchCV]", "sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[1024-5-9-HalvingRandomSearchCV]", "sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[1024-5-9-HalvingGridSearchCV]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_clear[GradientBoostingClassifier]", "sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[700-5-8-HalvingRandomSearchCV]", "sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[700-5-8-HalvingGridSearchCV]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-10-GradientBoostingClassifier-auto-data0]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_state_oob_scores[GradientBoostingClassifier]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-10-GradientBoostingClassifier-auto-data1]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-10-GradientBoostingClassifier-brute-data2]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-10-GradientBoostingClassifier-brute-data3]", "sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[512-5-8-HalvingRandomSearchCV]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_smaller_n_estimators[GradientBoostingClassifier]", "sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[512-5-8-HalvingGridSearchCV]", "sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[511-5-7-HalvingRandomSearchCV]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_equal_n_estimators[GradientBoostingClassifier]", "sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[511-5-7-HalvingGridSearchCV]", "sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[32-4-4-HalvingRandomSearchCV]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_oob_switch[GradientBoostingClassifier]", "sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[32-4-4-HalvingGridSearchCV]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_oob[GradientBoostingClassifier]", "sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[31-3-3-HalvingRandomSearchCV]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-5-GradientBoostingClassifier-auto-data0]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-5-GradientBoostingClassifier-auto-data1]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-5-GradientBoostingClassifier-brute-data2]", "sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[31-3-3-HalvingGridSearchCV]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-5-GradientBoostingClassifier-brute-data3]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_sparse[coo_matrix-GradientBoostingClassifier]", "sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[16-3-3-HalvingRandomSearchCV]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-10-GradientBoostingClassifier-auto-data0]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-10-GradientBoostingClassifier-auto-data1]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-10-GradientBoostingClassifier-brute-data2]", "sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[16-3-3-HalvingGridSearchCV]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-10-GradientBoostingClassifier-brute-data3]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_sparse[coo_array-GradientBoostingClassifier]", "sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[4-1-1-HalvingRandomSearchCV]", "sklearn/model_selection/tests/test_successive_halving.py::test_n_iterations[4-1-1-HalvingGridSearchCV]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_sparse[csc_matrix-GradientBoostingClassifier]", "sklearn/model_selection/tests/test_successive_halving.py::test_resource_parameter[HalvingRandomSearchCV]", "sklearn/model_selection/tests/test_successive_halving.py::test_resource_parameter[HalvingGridSearchCV]", "sklearn/model_selection/tests/test_successive_halving.py::test_random_search[512-exhaust-128]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_sparse[csc_array-GradientBoostingClassifier]", "sklearn/model_selection/tests/test_successive_halving.py::test_random_search[32-exhaust-8]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-5-GradientBoostingClassifier-auto-data0]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-5-GradientBoostingClassifier-auto-data1]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_sparse[csr_matrix-GradientBoostingClassifier]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-5-GradientBoostingClassifier-brute-data2]", "sklearn/model_selection/tests/test_successive_halving.py::test_random_search[32-8-8]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-5-GradientBoostingClassifier-brute-data3]", "sklearn/model_selection/tests/test_successive_halving.py::test_random_search[32-7-7]", "sklearn/model_selection/tests/test_successive_halving.py::test_random_search[32-9-9]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_sparse[csr_array-GradientBoostingClassifier]", "sklearn/model_selection/tests/test_successive_halving.py::test_random_search_discrete_distributions[param_distributions0-2]", "sklearn/model_selection/tests/test_successive_halving.py::test_random_search_discrete_distributions[param_distributions1-10]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_fortran[42-GradientBoostingClassifier]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-10-GradientBoostingClassifier-auto-data0]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_monitor_early_stopping[GradientBoostingClassifier]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-10-GradientBoostingClassifier-auto-data1]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-10-GradientBoostingClassifier-brute-data2]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_complete_classification", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-10-GradientBoostingClassifier-brute-data3]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_max_leaf_nodes_max_depth[GradientBoostingClassifier]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_min_impurity_decrease[GradientBoostingClassifier]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_wo_nestimators_change", "sklearn/ensemble/tests/test_gradient_boosting.py::test_non_uniform_weights_toy_edge_case_clf", "sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[coo_matrix-GradientBoostingClassifier]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[coo_array-GradientBoostingClassifier]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[csc_matrix-GradientBoostingClassifier]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[csc_array-GradientBoostingClassifier]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[csr_matrix-GradientBoostingClassifier]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[csr_array-GradientBoostingClassifier]", "sklearn/model_selection/tests/test_successive_halving.py::test_cv_results[HalvingRandomSearchCV]", "sklearn/model_selection/tests/test_successive_halving.py::test_cv_results[HalvingGridSearchCV]", "sklearn/model_selection/tests/test_successive_halving.py::test_base_estimator_inputs[HalvingGridSearchCV]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_gradient_boosting_early_stopping[GradientBoostingClassifier]", "sklearn/model_selection/tests/test_successive_halving.py::test_base_estimator_inputs[HalvingRandomSearchCV]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_gradient_boosting_without_early_stopping", "sklearn/ensemble/tests/test_gradient_boosting.py::test_gradient_boosting_validation_fraction", "sklearn/ensemble/tests/test_gradient_boosting.py::test_gradient_boosting_with_init[42-binary classification]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_gradient_boosting_with_init[42-multiclass classification]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[0-est0]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[1-est0]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[2-est0]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[3-est0]", "sklearn/model_selection/tests/test_split.py::test_nested_cv", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[4-est0]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[5-est0]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_binomial_error_exact_backward_compat", "sklearn/ensemble/tests/test_gradient_boosting.py::test_multinomial_error_exact_backward_compat", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_error[estimator2-params2-'recursion' method, the response_method must be 'decision_function']", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_error[estimator3-params3-'recursion' method, the response_method must be 'decision_function']", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_unknown_feature_indices[-1-estimator1]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_unknown_feature_indices[10000-estimator1]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_unknown_feature_string[estimator1]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_X_list[estimator1]", "sklearn/inspection/tests/test_partial_dependence.py::test_warning_recursion_non_constant_init", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_pipeline", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-integer-None-estimator-recursion]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-integer-column-transformer-estimator-recursion]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-integer-column-transformer-passthrough-estimator-recursion]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-string-None-estimator-recursion]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-string-column-transformer-estimator-recursion]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-string-column-transformer-passthrough-estimator-recursion]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[0-estimator3]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[1-estimator3]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[-1-estimator3]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_sample_weights_pandas_series]", "sklearn/tests/test_dummy.py::test_feature_names_in_and_n_features_in_[42]", "sklearn/tests/test_dummy.py::test_most_frequent_and_prior_strategy", "sklearn/tests/test_dummy.py::test_most_frequent_and_prior_strategy_with_2d_column_y", "sklearn/tests/test_dummy.py::test_most_frequent_and_prior_strategy_multioutput", "sklearn/tests/test_dummy.py::test_stratified_strategy[42]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_sample_weights_not_an_array]", "sklearn/tests/test_dummy.py::test_stratified_strategy_multioutput[42]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_gb_denominator_zero[42]", "sklearn/tests/test_dummy.py::test_uniform_strategy[42]", "sklearn/tests/test_dummy.py::test_uniform_strategy_multioutput[42]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[FixedThresholdClassifier-predict_proba-estimator2]", "sklearn/tests/test_dummy.py::test_string_labels", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_sample_weights_list]", "sklearn/tests/test_dummy.py::test_classifier_score_with_None[y0-y_test0]", "sklearn/tests/test_dummy.py::test_classifier_score_with_None[y1-y_test1]", "sklearn/tests/test_dummy.py::test_classifier_prediction_independent_of_X[42-stratified]", "sklearn/tests/test_dummy.py::test_classifier_prediction_independent_of_X[42-most_frequent]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_sample_weights_shape]", "sklearn/tests/test_dummy.py::test_classifier_prediction_independent_of_X[42-prior]", "sklearn/tests/test_dummy.py::test_classifier_prediction_independent_of_X[42-uniform]", "sklearn/tests/test_dummy.py::test_classifier_prediction_independent_of_X[42-constant]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_sample_weights_not_overwritten]", "sklearn/tests/test_dummy.py::test_constant_strategy", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[FixedThresholdClassifier-predict_log_proba-estimator2]", "sklearn/tests/test_dummy.py::test_constant_strategy_multioutput", "sklearn/tests/test_dummy.py::test_constant_strategy_exceptions[no-constant]", "sklearn/tests/test_dummy.py::test_constant_strategy_exceptions[too-many-constant]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[FixedThresholdClassifier-decision_function-estimator2]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_dummy.py::test_constant_strategy_exceptions[not-enough-output]", "sklearn/tests/test_dummy.py::test_constant_strategy_exceptions[single-output]", "sklearn/tests/test_dummy.py::test_constant_strategy_exceptions[multi-output]", "sklearn/tests/test_dummy.py::test_classification_sample_weight", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_estimators_fit_returns_self]", "sklearn/tests/test_dummy.py::test_constant_strategy_sparse_target[csc_matrix]", "sklearn/tests/test_dummy.py::test_constant_strategy_sparse_target[csc_array]", "sklearn/tests/test_dummy.py::test_uniform_strategy_sparse_target_warning[42-csc_matrix]", "sklearn/tests/test_dummy.py::test_uniform_strategy_sparse_target_warning[42-csc_array]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_dummy.py::test_stratified_strategy_sparse_target[42-csc_matrix]", "sklearn/tests/test_dummy.py::test_stratified_strategy_sparse_target[42-csc_array]", "sklearn/tests/test_dummy.py::test_most_frequent_and_prior_strategy_sparse_target[csc_matrix]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_pipeline_consistency]", "sklearn/tests/test_dummy.py::test_most_frequent_and_prior_strategy_sparse_target[csc_array]", "sklearn/tests/test_dummy.py::test_dummy_classifier_on_3D_array", "sklearn/tests/test_dummy.py::test_dtype_of_classifier_probas[stratified]", "sklearn/tests/test_dummy.py::test_dtype_of_classifier_probas[most_frequent]", "sklearn/tests/test_dummy.py::test_dtype_of_classifier_probas[prior]", "sklearn/tests/test_dummy.py::test_dtype_of_classifier_probas[uniform]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[TunedThresholdClassifierCV-predict_proba-estimator2]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_f_contiguous_array_estimator]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[TunedThresholdClassifierCV-predict_log_proba-estimator2]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_classifiers_classes]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[TunedThresholdClassifierCV-decision_function-estimator2]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_classifier_multioutput]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_classifiers_train]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_prefit[StackingClassifier-DummyClassifier-predict_proba-final_estimator0-X0-y0]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_sample_weights_list]", "sklearn/ensemble/tests/test_weight_boosting.py::test_multidimensional_X", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_estimators_fit_returns_self]", "sklearn/tests/test_multioutput.py::test_multioutput_estimator_with_fit_params[estimator0-dataset0]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_classifiers_one_label]", "sklearn/tests/test_dummy.py::test_dtype_of_classifier_probas[constant]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_classifier_multioutput]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_fit_check_is_fitted]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_large_memmaped_data[array]", "sklearn/tree/tests/test_export.py::test_friedman_mse_in_graphviz", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_large_memmaped_data[dataframe]", "sklearn/tests/test_calibration.py::test_calibration_zero_probability", "sklearn/metrics/_scorer.py::sklearn.metrics._scorer.get_scorer", "sklearn/dummy.py::sklearn.dummy.DummyClassifier", "sklearn/ensemble/_gb.py::sklearn.ensemble._gb.GradientBoostingClassifier", "sklearn/inspection/_partial_dependence.py::sklearn.inspection._partial_dependence.partial_dependence", "sklearn/tests/test_calibration.py::test_float32_predict_proba", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_error_constant_predictor", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[GradientBoostingClassifier(n_estimators=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GradientBoostingClassifier(n_estimators=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GradientBoostingClassifier(n_estimators=5,n_iter_no_change=1)]", "sklearn/tests/test_common.py::test_check_param_validation[DummyClassifier(strategy='stratified')]", "sklearn/tests/test_common.py::test_check_param_validation[DummyClassifier(strategy='most_frequent')]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-34
1.0
{ "code": "diff --git b/sklearn/dummy.py a/sklearn/dummy.py\nindex 053ca524f..6332ff43c 100644\n--- b/sklearn/dummy.py\n+++ a/sklearn/dummy.py\n@@ -262,6 +262,79 @@ class DummyClassifier(MultiOutputMixin, ClassifierMixin, BaseEstimator):\n y : array-like of shape (n_samples,) or (n_samples, n_outputs)\n Predicted target values for X.\n \"\"\"\n+ check_is_fitted(self)\n+\n+ # numpy random_state expects Python int and not long as size argument\n+ # under Windows\n+ n_samples = _num_samples(X)\n+ rs = check_random_state(self.random_state)\n+\n+ n_classes_ = self.n_classes_\n+ classes_ = self.classes_\n+ class_prior_ = self.class_prior_\n+ constant = self.constant\n+ if self.n_outputs_ == 1:\n+ # Get same type even for self.n_outputs_ == 1\n+ n_classes_ = [n_classes_]\n+ classes_ = [classes_]\n+ class_prior_ = [class_prior_]\n+ constant = [constant]\n+ # Compute probability only once\n+ if self._strategy == \"stratified\":\n+ proba = self.predict_proba(X)\n+ if self.n_outputs_ == 1:\n+ proba = [proba]\n+\n+ if self.sparse_output_:\n+ class_prob = None\n+ if self._strategy in (\"most_frequent\", \"prior\"):\n+ classes_ = [np.array([cp.argmax()]) for cp in class_prior_]\n+\n+ elif self._strategy == \"stratified\":\n+ class_prob = class_prior_\n+\n+ elif self._strategy == \"uniform\":\n+ raise ValueError(\n+ \"Sparse target prediction is not \"\n+ \"supported with the uniform strategy\"\n+ )\n+\n+ elif self._strategy == \"constant\":\n+ classes_ = [np.array([c]) for c in constant]\n+\n+ y = _random_choice_csc(n_samples, classes_, class_prob, self.random_state)\n+ else:\n+ if self._strategy in (\"most_frequent\", \"prior\"):\n+ y = np.tile(\n+ [\n+ classes_[k][class_prior_[k].argmax()]\n+ for k in range(self.n_outputs_)\n+ ],\n+ [n_samples, 1],\n+ )\n+\n+ elif self._strategy == \"stratified\":\n+ y = np.vstack(\n+ [\n+ classes_[k][proba[k].argmax(axis=1)]\n+ for k in range(self.n_outputs_)\n+ ]\n+ ).T\n+\n+ elif self._strategy == \"uniform\":\n+ ret = [\n+ classes_[k][rs.randint(n_classes_[k], size=n_samples)]\n+ for k in range(self.n_outputs_)\n+ ]\n+ y = np.vstack(ret).T\n+\n+ elif self._strategy == \"constant\":\n+ y = np.tile(self.constant, (n_samples, 1))\n+\n+ if self.n_outputs_ == 1:\n+ y = np.ravel(y)\n+\n+ return y\n \n def predict_proba(self, X):\n \"\"\"\n", "test": null }
null
{ "code": "diff --git a/sklearn/dummy.py b/sklearn/dummy.py\nindex 6332ff43c..053ca524f 100644\n--- a/sklearn/dummy.py\n+++ b/sklearn/dummy.py\n@@ -262,79 +262,6 @@ class DummyClassifier(MultiOutputMixin, ClassifierMixin, BaseEstimator):\n y : array-like of shape (n_samples,) or (n_samples, n_outputs)\n Predicted target values for X.\n \"\"\"\n- check_is_fitted(self)\n-\n- # numpy random_state expects Python int and not long as size argument\n- # under Windows\n- n_samples = _num_samples(X)\n- rs = check_random_state(self.random_state)\n-\n- n_classes_ = self.n_classes_\n- classes_ = self.classes_\n- class_prior_ = self.class_prior_\n- constant = self.constant\n- if self.n_outputs_ == 1:\n- # Get same type even for self.n_outputs_ == 1\n- n_classes_ = [n_classes_]\n- classes_ = [classes_]\n- class_prior_ = [class_prior_]\n- constant = [constant]\n- # Compute probability only once\n- if self._strategy == \"stratified\":\n- proba = self.predict_proba(X)\n- if self.n_outputs_ == 1:\n- proba = [proba]\n-\n- if self.sparse_output_:\n- class_prob = None\n- if self._strategy in (\"most_frequent\", \"prior\"):\n- classes_ = [np.array([cp.argmax()]) for cp in class_prior_]\n-\n- elif self._strategy == \"stratified\":\n- class_prob = class_prior_\n-\n- elif self._strategy == \"uniform\":\n- raise ValueError(\n- \"Sparse target prediction is not \"\n- \"supported with the uniform strategy\"\n- )\n-\n- elif self._strategy == \"constant\":\n- classes_ = [np.array([c]) for c in constant]\n-\n- y = _random_choice_csc(n_samples, classes_, class_prob, self.random_state)\n- else:\n- if self._strategy in (\"most_frequent\", \"prior\"):\n- y = np.tile(\n- [\n- classes_[k][class_prior_[k].argmax()]\n- for k in range(self.n_outputs_)\n- ],\n- [n_samples, 1],\n- )\n-\n- elif self._strategy == \"stratified\":\n- y = np.vstack(\n- [\n- classes_[k][proba[k].argmax(axis=1)]\n- for k in range(self.n_outputs_)\n- ]\n- ).T\n-\n- elif self._strategy == \"uniform\":\n- ret = [\n- classes_[k][rs.randint(n_classes_[k], size=n_samples)]\n- for k in range(self.n_outputs_)\n- ]\n- y = np.vstack(ret).T\n-\n- elif self._strategy == \"constant\":\n- y = np.tile(self.constant, (n_samples, 1))\n-\n- if self.n_outputs_ == 1:\n- y = np.ravel(y)\n-\n- return y\n \n def predict_proba(self, X):\n \"\"\"\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/dummy.py.\nHere is the description for the function:\n def predict(self, X):\n \"\"\"Perform classification on test vectors X.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n Test data.\n\n Returns\n -------\n y : array-like of shape (n_samples,) or (n_samples, n_outputs)\n Predicted target values for X.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/model_selection/tests/test_split.py::test_nested_cv", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_pipeline_consistency]", "sklearn/tests/test_dummy.py::test_most_frequent_and_prior_strategy", "sklearn/tests/test_dummy.py::test_most_frequent_and_prior_strategy_with_2d_column_y", "sklearn/tests/test_dummy.py::test_most_frequent_and_prior_strategy_multioutput", "sklearn/tests/test_dummy.py::test_stratified_strategy[42]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_estimator_sparse_array]", "sklearn/tests/test_dummy.py::test_stratified_strategy_multioutput[42]", "sklearn/tests/test_dummy.py::test_uniform_strategy[42]", "sklearn/tests/test_dummy.py::test_uniform_strategy_multioutput[42]", "sklearn/tests/test_dummy.py::test_string_labels", "sklearn/tests/test_dummy.py::test_classifier_score_with_None[y0-y_test0]", "sklearn/tests/test_dummy.py::test_classifier_score_with_None[y1-y_test1]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_estimator_sparse_matrix]", "sklearn/tests/test_dummy.py::test_classifier_prediction_independent_of_X[42-stratified]", "sklearn/tests/test_dummy.py::test_classifier_prediction_independent_of_X[42-most_frequent]", "sklearn/tests/test_dummy.py::test_classifier_prediction_independent_of_X[42-prior]", "sklearn/tests/test_dummy.py::test_classifier_prediction_independent_of_X[42-uniform]", "sklearn/tests/test_dummy.py::test_classifier_prediction_independent_of_X[42-constant]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_estimators_pickle]", "sklearn/tests/test_dummy.py::test_constant_strategy", "sklearn/tests/test_dummy.py::test_constant_strategy_multioutput", "sklearn/tests/test_dummy.py::test_constant_strategy_sparse_target[csc_matrix]", "sklearn/tests/test_dummy.py::test_constant_strategy_sparse_target[csc_array]", "sklearn/tests/test_dummy.py::test_uniform_strategy_sparse_target_warning[42-csc_matrix]", "sklearn/tests/test_dummy.py::test_uniform_strategy_sparse_target_warning[42-csc_array]", "sklearn/tests/test_dummy.py::test_stratified_strategy_sparse_target[42-csc_matrix]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_classifier_data_not_an_array]", "sklearn/tests/test_dummy.py::test_stratified_strategy_sparse_target[42-csc_array]", "sklearn/tests/test_dummy.py::test_most_frequent_and_prior_strategy_sparse_target[csc_matrix]", "sklearn/tests/test_dummy.py::test_most_frequent_and_prior_strategy_sparse_target[csc_array]", "sklearn/tests/test_dummy.py::test_dummy_classifier_on_3D_array", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_classifier_multioutput]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_estimators_unfitted]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_classifier_multioutput]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_classifiers_train(readonly_memmap=True)]", "sklearn/ensemble/tests/test_weight_boosting.py::test_multidimensional_X", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_estimators_unfitted]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_fit_idempotent]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_large_memmaped_data[array]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_large_memmaped_data[dataframe]", "sklearn/metrics/_scorer.py::sklearn.metrics._scorer.get_scorer", "sklearn/dummy.py::sklearn.dummy.DummyClassifier" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-35
1.0
{ "code": "diff --git b/sklearn/dummy.py a/sklearn/dummy.py\nindex 8c6383b9d..6332ff43c 100644\n--- b/sklearn/dummy.py\n+++ a/sklearn/dummy.py\n@@ -352,6 +352,52 @@ class DummyClassifier(MultiOutputMixin, ClassifierMixin, BaseEstimator):\n the model, where classes are ordered arithmetically, for each\n output.\n \"\"\"\n+ check_is_fitted(self)\n+\n+ # numpy random_state expects Python int and not long as size argument\n+ # under Windows\n+ n_samples = _num_samples(X)\n+ rs = check_random_state(self.random_state)\n+\n+ n_classes_ = self.n_classes_\n+ classes_ = self.classes_\n+ class_prior_ = self.class_prior_\n+ constant = self.constant\n+ if self.n_outputs_ == 1:\n+ # Get same type even for self.n_outputs_ == 1\n+ n_classes_ = [n_classes_]\n+ classes_ = [classes_]\n+ class_prior_ = [class_prior_]\n+ constant = [constant]\n+\n+ P = []\n+ for k in range(self.n_outputs_):\n+ if self._strategy == \"most_frequent\":\n+ ind = class_prior_[k].argmax()\n+ out = np.zeros((n_samples, n_classes_[k]), dtype=np.float64)\n+ out[:, ind] = 1.0\n+ elif self._strategy == \"prior\":\n+ out = np.ones((n_samples, 1)) * class_prior_[k]\n+\n+ elif self._strategy == \"stratified\":\n+ out = rs.multinomial(1, class_prior_[k], size=n_samples)\n+ out = out.astype(np.float64)\n+\n+ elif self._strategy == \"uniform\":\n+ out = np.ones((n_samples, n_classes_[k]), dtype=np.float64)\n+ out /= n_classes_[k]\n+\n+ elif self._strategy == \"constant\":\n+ ind = np.where(classes_[k] == constant[k])\n+ out = np.zeros((n_samples, n_classes_[k]), dtype=np.float64)\n+ out[:, ind] = 1.0\n+\n+ P.append(out)\n+\n+ if self.n_outputs_ == 1:\n+ P = P[0]\n+\n+ return P\n \n def predict_log_proba(self, X):\n \"\"\"\n", "test": null }
null
{ "code": "diff --git a/sklearn/dummy.py b/sklearn/dummy.py\nindex 6332ff43c..8c6383b9d 100644\n--- a/sklearn/dummy.py\n+++ b/sklearn/dummy.py\n@@ -352,52 +352,6 @@ class DummyClassifier(MultiOutputMixin, ClassifierMixin, BaseEstimator):\n the model, where classes are ordered arithmetically, for each\n output.\n \"\"\"\n- check_is_fitted(self)\n-\n- # numpy random_state expects Python int and not long as size argument\n- # under Windows\n- n_samples = _num_samples(X)\n- rs = check_random_state(self.random_state)\n-\n- n_classes_ = self.n_classes_\n- classes_ = self.classes_\n- class_prior_ = self.class_prior_\n- constant = self.constant\n- if self.n_outputs_ == 1:\n- # Get same type even for self.n_outputs_ == 1\n- n_classes_ = [n_classes_]\n- classes_ = [classes_]\n- class_prior_ = [class_prior_]\n- constant = [constant]\n-\n- P = []\n- for k in range(self.n_outputs_):\n- if self._strategy == \"most_frequent\":\n- ind = class_prior_[k].argmax()\n- out = np.zeros((n_samples, n_classes_[k]), dtype=np.float64)\n- out[:, ind] = 1.0\n- elif self._strategy == \"prior\":\n- out = np.ones((n_samples, 1)) * class_prior_[k]\n-\n- elif self._strategy == \"stratified\":\n- out = rs.multinomial(1, class_prior_[k], size=n_samples)\n- out = out.astype(np.float64)\n-\n- elif self._strategy == \"uniform\":\n- out = np.ones((n_samples, n_classes_[k]), dtype=np.float64)\n- out /= n_classes_[k]\n-\n- elif self._strategy == \"constant\":\n- ind = np.where(classes_[k] == constant[k])\n- out = np.zeros((n_samples, n_classes_[k]), dtype=np.float64)\n- out[:, ind] = 1.0\n-\n- P.append(out)\n-\n- if self.n_outputs_ == 1:\n- P = P[0]\n-\n- return P\n \n def predict_log_proba(self, X):\n \"\"\"\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/dummy.py.\nHere is the description for the function:\n def predict_proba(self, X):\n \"\"\"\n Return probability estimates for the test vectors X.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n Test data.\n\n Returns\n -------\n P : ndarray of shape (n_samples, n_classes) or list of such arrays\n Returns the probability of the sample for each class in\n the model, where classes are ordered arithmetically, for each\n output.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-5-GradientBoostingClassifier-auto-data0]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-5-GradientBoostingClassifier-auto-data1]", "sklearn/ensemble/tests/test_bagging.py::test_classification", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-5-GradientBoostingClassifier-brute-data2]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_classification_toy[42-log_loss]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-5-GradientBoostingClassifier-brute-data3]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_classification_toy[42-exponential]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_classification_synthetic[42-log_loss]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_classification_synthetic[42-exponential]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-10-GradientBoostingClassifier-auto-data0]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-10-GradientBoostingClassifier-auto-data1]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-10-GradientBoostingClassifier-brute-data2]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-10-GradientBoostingClassifier-brute-data3]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_iris[42-None-1.0]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_iris[42-None-0.5]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_iris[42-1-1.0]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-5-GradientBoostingClassifier-auto-data0]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-5-GradientBoostingClassifier-auto-data1]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_iris[42-1-0.5]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-5-GradientBoostingClassifier-brute-data2]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-5-GradientBoostingClassifier-brute-data3]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_feature_importances[GradientBoostingClassifier-X1-y1]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_probability_log[42]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_check_inputs_predict_stages[csc_matrix]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-10-GradientBoostingClassifier-auto-data0]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_check_inputs_predict_stages[csc_array]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-10-GradientBoostingClassifier-auto-data1]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_max_feature_regression[42]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-10-GradientBoostingClassifier-brute-data2]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_max_features", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-10-GradientBoostingClassifier-brute-data3]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_staged_predict_proba", "sklearn/ensemble/tests/test_gradient_boosting.py::test_staged_functions_defensive[42-GradientBoostingClassifier]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_serialization", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-5-GradientBoostingClassifier-auto-data0]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-5-GradientBoostingClassifier-auto-data1]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-5-GradientBoostingClassifier-brute-data2]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-5-GradientBoostingClassifier-brute-data3]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_symbol_labels", "sklearn/ensemble/tests/test_gradient_boosting.py::test_float_class_labels", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_multiclass", "sklearn/ensemble/tests/test_gradient_boosting.py::test_shape_y", "sklearn/ensemble/tests/test_gradient_boosting.py::test_mem_layout", "sklearn/ensemble/tests/test_gradient_boosting.py::test_oob_improvement[GradientBoostingClassifier]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-10-GradientBoostingClassifier-auto-data0]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_oob_scores[GradientBoostingClassifier]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-10-GradientBoostingClassifier-auto-data1]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-10-GradientBoostingClassifier-brute-data2]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-10-GradientBoostingClassifier-brute-data3]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_oob_attributes_error[GradientBoostingClassifier-oob_improvement_]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_oob_attributes_error[GradientBoostingClassifier-oob_scores_]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_oob_attributes_error[GradientBoostingClassifier-oob_score_]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_oob_multilcass_iris", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-5-GradientBoostingClassifier-auto-data0]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_verbose_output", "sklearn/ensemble/tests/test_gradient_boosting.py::test_more_verbose_output", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-5-GradientBoostingClassifier-auto-data1]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-5-GradientBoostingClassifier-brute-data2]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-5-GradientBoostingClassifier-brute-data3]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start[42-GradientBoostingClassifier]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_multiclass_error[params0-target not in est.classes_, got 4]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_n_estimators[42-GradientBoostingClassifier]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_multiclass_error[params1-target must be specified for multi-class]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_multiclass_error[params2-Each entry in features must be either an int,]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_max_depth[GradientBoostingClassifier]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-10-GradientBoostingClassifier-auto-data0]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-10-GradientBoostingClassifier-auto-data1]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_clear[GradientBoostingClassifier]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-10-GradientBoostingClassifier-brute-data2]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-10-GradientBoostingClassifier-brute-data3]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_state_oob_scores[GradientBoostingClassifier]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_smaller_n_estimators[GradientBoostingClassifier]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_equal_n_estimators[GradientBoostingClassifier]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-5-GradientBoostingClassifier-auto-data0]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-5-GradientBoostingClassifier-auto-data1]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-5-GradientBoostingClassifier-brute-data2]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_oob_switch[GradientBoostingClassifier]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-5-GradientBoostingClassifier-brute-data3]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_oob[GradientBoostingClassifier]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-10-GradientBoostingClassifier-auto-data0]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-10-GradientBoostingClassifier-auto-data1]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-10-GradientBoostingClassifier-brute-data2]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_sparse[coo_matrix-GradientBoostingClassifier]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-10-GradientBoostingClassifier-brute-data3]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_sparse[coo_array-GradientBoostingClassifier]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_sparse[csc_matrix-GradientBoostingClassifier]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-5-GradientBoostingClassifier-auto-data0]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-5-GradientBoostingClassifier-auto-data1]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-5-GradientBoostingClassifier-brute-data2]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-5-GradientBoostingClassifier-brute-data3]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_sparse[csc_array-GradientBoostingClassifier]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_sparse[csr_matrix-GradientBoostingClassifier]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-10-GradientBoostingClassifier-auto-data0]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-10-GradientBoostingClassifier-auto-data1]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-10-GradientBoostingClassifier-brute-data2]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-10-GradientBoostingClassifier-brute-data3]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_sparse[csr_array-GradientBoostingClassifier]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_fortran[42-GradientBoostingClassifier]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_monitor_early_stopping[GradientBoostingClassifier]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_complete_classification", "sklearn/ensemble/tests/test_gradient_boosting.py::test_max_leaf_nodes_max_depth[GradientBoostingClassifier]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_min_impurity_decrease[GradientBoostingClassifier]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_wo_nestimators_change", "sklearn/ensemble/tests/test_gradient_boosting.py::test_non_uniform_weights_toy_edge_case_clf", "sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[coo_matrix-GradientBoostingClassifier]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[coo_array-GradientBoostingClassifier]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[csc_matrix-GradientBoostingClassifier]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[csc_array-GradientBoostingClassifier]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[csr_matrix-GradientBoostingClassifier]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[csr_array-GradientBoostingClassifier]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_gradient_boosting_early_stopping[GradientBoostingClassifier]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[0-est0]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_gradient_boosting_without_early_stopping", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[1-est0]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[2-est0]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_gradient_boosting_validation_fraction", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[3-est0]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_gradient_boosting_with_init[42-binary classification]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_gradient_boosting_with_init[42-multiclass classification]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[4-est0]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[5-est0]", "sklearn/model_selection/tests/test_split.py::test_nested_cv", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_error[estimator2-params2-'recursion' method, the response_method must be 'decision_function']", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_error[estimator3-params3-'recursion' method, the response_method must be 'decision_function']", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_unknown_feature_indices[-1-estimator1]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_unknown_feature_indices[10000-estimator1]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_unknown_feature_string[estimator1]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_binomial_error_exact_backward_compat", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_X_list[estimator1]", "sklearn/inspection/tests/test_partial_dependence.py::test_warning_recursion_non_constant_init", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_pipeline", "sklearn/ensemble/tests/test_gradient_boosting.py::test_multinomial_error_exact_backward_compat", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-integer-None-estimator-recursion]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-integer-column-transformer-estimator-recursion]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-integer-column-transformer-passthrough-estimator-recursion]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-string-None-estimator-recursion]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-string-column-transformer-estimator-recursion]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-string-column-transformer-passthrough-estimator-recursion]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[0-estimator3]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[1-estimator3]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[-1-estimator3]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_estimators_dtypes]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_gb_denominator_zero[42]", "sklearn/tests/test_dummy.py::test_most_frequent_and_prior_strategy", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_dummy.py::test_most_frequent_and_prior_strategy_multioutput", "sklearn/tests/test_dummy.py::test_stratified_strategy[42]", "sklearn/tests/test_dummy.py::test_stratified_strategy_multioutput[42]", "sklearn/tests/test_dummy.py::test_uniform_strategy[42]", "sklearn/tests/test_dummy.py::test_uniform_strategy_multioutput[42]", "sklearn/tests/test_dummy.py::test_classifier_prediction_independent_of_X[42-stratified]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_pipeline_consistency]", "sklearn/tests/test_dummy.py::test_constant_strategy", "sklearn/tests/test_dummy.py::test_constant_strategy_multioutput", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_estimator_sparse_array]", "sklearn/tests/test_dummy.py::test_stratified_strategy_sparse_target[42-csc_matrix]", "sklearn/tests/test_dummy.py::test_stratified_strategy_sparse_target[42-csc_array]", "sklearn/tests/test_dummy.py::test_dummy_classifier_on_3D_array", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[FixedThresholdClassifier-predict_proba-estimator2]", "sklearn/tests/test_dummy.py::test_dtype_of_classifier_probas[stratified]", "sklearn/tests/test_dummy.py::test_dtype_of_classifier_probas[most_frequent]", "sklearn/tests/test_dummy.py::test_dtype_of_classifier_probas[prior]", "sklearn/tests/test_dummy.py::test_dtype_of_classifier_probas[uniform]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_estimator_sparse_matrix]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[FixedThresholdClassifier-predict_log_proba-estimator2]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[FixedThresholdClassifier-decision_function-estimator2]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_classifiers_one_label_sample_weights]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[TunedThresholdClassifierCV-predict_proba-estimator2]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_classifier_multioutput]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[TunedThresholdClassifierCV-predict_log_proba-estimator2]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_estimators_unfitted]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_prefit[StackingClassifier-DummyClassifier-predict_proba-final_estimator0-X0-y0]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='stratified')-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_estimators_dtypes]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[TunedThresholdClassifierCV-decision_function-estimator2]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_classifier_multioutput]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_estimators_unfitted]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[DummyClassifier(strategy='most_frequent')-check_fit_idempotent]", "sklearn/tests/test_dummy.py::test_dtype_of_classifier_probas[constant]", "sklearn/tree/tests/test_export.py::test_friedman_mse_in_graphviz", "sklearn/tests/test_calibration.py::test_calibration_zero_probability", "sklearn/tests/test_calibration.py::test_float32_predict_proba", "sklearn/ensemble/_gb.py::sklearn.ensemble._gb.GradientBoostingClassifier", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_error_constant_predictor", "sklearn/inspection/_partial_dependence.py::sklearn.inspection._partial_dependence.partial_dependence", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[GradientBoostingClassifier(n_estimators=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GradientBoostingClassifier(n_estimators=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GradientBoostingClassifier(n_estimators=5,n_iter_no_change=1)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-36
1.0
{ "code": "diff --git b/sklearn/dummy.py a/sklearn/dummy.py\nindex 296584836..6332ff43c 100644\n--- b/sklearn/dummy.py\n+++ a/sklearn/dummy.py\n@@ -542,6 +542,7 @@ class DummyRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):\n self.constant = constant\n self.quantile = quantile\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y, sample_weight=None):\n \"\"\"Fit the random regressor.\n \n@@ -561,6 +562,69 @@ class DummyRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):\n self : object\n Fitted estimator.\n \"\"\"\n+ validate_data(self, X, skip_check_array=True)\n+\n+ y = check_array(y, ensure_2d=False, input_name=\"y\")\n+ if len(y) == 0:\n+ raise ValueError(\"y must not be empty.\")\n+\n+ if y.ndim == 1:\n+ y = np.reshape(y, (-1, 1))\n+ self.n_outputs_ = y.shape[1]\n+\n+ check_consistent_length(X, y, sample_weight)\n+\n+ if sample_weight is not None:\n+ sample_weight = _check_sample_weight(sample_weight, X)\n+\n+ if self.strategy == \"mean\":\n+ self.constant_ = np.average(y, axis=0, weights=sample_weight)\n+\n+ elif self.strategy == \"median\":\n+ if sample_weight is None:\n+ self.constant_ = np.median(y, axis=0)\n+ else:\n+ self.constant_ = [\n+ _weighted_percentile(y[:, k], sample_weight, percentile=50.0)\n+ for k in range(self.n_outputs_)\n+ ]\n+\n+ elif self.strategy == \"quantile\":\n+ if self.quantile is None:\n+ raise ValueError(\n+ \"When using `strategy='quantile', you have to specify the desired \"\n+ \"quantile in the range [0, 1].\"\n+ )\n+ percentile = self.quantile * 100.0\n+ if sample_weight is None:\n+ self.constant_ = np.percentile(y, axis=0, q=percentile)\n+ else:\n+ self.constant_ = [\n+ _weighted_percentile(y[:, k], sample_weight, percentile=percentile)\n+ for k in range(self.n_outputs_)\n+ ]\n+\n+ elif self.strategy == \"constant\":\n+ if self.constant is None:\n+ raise TypeError(\n+ \"Constant target value has to be specified \"\n+ \"when the constant strategy is used.\"\n+ )\n+\n+ self.constant_ = check_array(\n+ self.constant,\n+ accept_sparse=[\"csr\", \"csc\", \"coo\"],\n+ ensure_2d=False,\n+ ensure_min_samples=0,\n+ )\n+\n+ if self.n_outputs_ != 1 and self.constant_.shape[0] != y.shape[1]:\n+ raise ValueError(\n+ \"Constant target value should have shape (%d, 1).\" % y.shape[1]\n+ )\n+\n+ self.constant_ = np.reshape(self.constant_, (1, -1))\n+ return self\n \n def predict(self, X, return_std=False):\n \"\"\"Perform classification on test vectors X.\n", "test": null }
null
{ "code": "diff --git a/sklearn/dummy.py b/sklearn/dummy.py\nindex 6332ff43c..296584836 100644\n--- a/sklearn/dummy.py\n+++ b/sklearn/dummy.py\n@@ -542,7 +542,6 @@ class DummyRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):\n self.constant = constant\n self.quantile = quantile\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y, sample_weight=None):\n \"\"\"Fit the random regressor.\n \n@@ -562,69 +561,6 @@ class DummyRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):\n self : object\n Fitted estimator.\n \"\"\"\n- validate_data(self, X, skip_check_array=True)\n-\n- y = check_array(y, ensure_2d=False, input_name=\"y\")\n- if len(y) == 0:\n- raise ValueError(\"y must not be empty.\")\n-\n- if y.ndim == 1:\n- y = np.reshape(y, (-1, 1))\n- self.n_outputs_ = y.shape[1]\n-\n- check_consistent_length(X, y, sample_weight)\n-\n- if sample_weight is not None:\n- sample_weight = _check_sample_weight(sample_weight, X)\n-\n- if self.strategy == \"mean\":\n- self.constant_ = np.average(y, axis=0, weights=sample_weight)\n-\n- elif self.strategy == \"median\":\n- if sample_weight is None:\n- self.constant_ = np.median(y, axis=0)\n- else:\n- self.constant_ = [\n- _weighted_percentile(y[:, k], sample_weight, percentile=50.0)\n- for k in range(self.n_outputs_)\n- ]\n-\n- elif self.strategy == \"quantile\":\n- if self.quantile is None:\n- raise ValueError(\n- \"When using `strategy='quantile', you have to specify the desired \"\n- \"quantile in the range [0, 1].\"\n- )\n- percentile = self.quantile * 100.0\n- if sample_weight is None:\n- self.constant_ = np.percentile(y, axis=0, q=percentile)\n- else:\n- self.constant_ = [\n- _weighted_percentile(y[:, k], sample_weight, percentile=percentile)\n- for k in range(self.n_outputs_)\n- ]\n-\n- elif self.strategy == \"constant\":\n- if self.constant is None:\n- raise TypeError(\n- \"Constant target value has to be specified \"\n- \"when the constant strategy is used.\"\n- )\n-\n- self.constant_ = check_array(\n- self.constant,\n- accept_sparse=[\"csr\", \"csc\", \"coo\"],\n- ensure_2d=False,\n- ensure_min_samples=0,\n- )\n-\n- if self.n_outputs_ != 1 and self.constant_.shape[0] != y.shape[1]:\n- raise ValueError(\n- \"Constant target value should have shape (%d, 1).\" % y.shape[1]\n- )\n-\n- self.constant_ = np.reshape(self.constant_, (1, -1))\n- return self\n \n def predict(self, X, return_std=False):\n \"\"\"Perform classification on test vectors X.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/dummy.py.\nHere is the description for the function:\n def fit(self, X, y, sample_weight=None):\n \"\"\"Fit the random regressor.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n Training data.\n\n y : array-like of shape (n_samples,) or (n_samples, n_outputs)\n Target values.\n\n sample_weight : array-like of shape (n_samples,), default=None\n Sample weights.\n\n Returns\n -------\n self : object\n Fitted estimator.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence[10]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-5-GradientBoostingRegressor-auto-data4]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence[20]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-5-GradientBoostingRegressor-brute-data5]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[average-False-None-shape0]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[individual-False-None-shape1]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[both-False-None-shape2]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[individual-False-20-shape3]", "sklearn/ensemble/tests/test_forest.py::test_poisson_vs_mse", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[both-False-20-shape4]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[individual-False-0.5-shape5]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[both-False-0.5-shape6]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[average-True-None-shape7]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[individual-True-None-shape8]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[both-True-None-shape9]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-10-GradientBoostingRegressor-auto-data4]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[individual-True-20-shape10]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-10-GradientBoostingRegressor-brute-data5]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[both-True-20-shape11]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[dataframe-None]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_regression_dataset[42-1.0-squared_error]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[dataframe-list]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[list-list]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[array-list]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_regression_dataset[42-1.0-absolute_error]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[dataframe-array]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_regression_dataset[42-1.0-huber]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_regression_dataset[42-0.5-squared_error]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[list-array]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_regression_dataset[42-0.5-absolute_error]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_regression_dataset[42-0.5-huber]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[array-array]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-5-GradientBoostingRegressor-auto-data4]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-5-GradientBoostingRegressor-brute-data5]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[dataframe-series]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[list-series]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[array-series]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[dataframe-index]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[list-index]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[array-index]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_custom_axes", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_passing_numpy_axes[average-1]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-10-GradientBoostingRegressor-auto-data4]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_passing_numpy_axes[individual-50]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-10-GradientBoostingRegressor-brute-data5]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_passing_numpy_axes[both-51]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_incorrent_num_axes[2-2]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_incorrent_num_axes[3-1]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_with_same_axes", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_feature_name_reuse", "sklearn/ensemble/tests/test_gradient_boosting.py::test_regression_synthetic[42]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_gamma", "sklearn/ensemble/tests/test_gradient_boosting.py::test_feature_importances[GradientBoostingRegressor-X0-y0]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-5-GradientBoostingRegressor-auto-data4]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_poisson", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-5-GradientBoostingRegressor-brute-data5]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_dataframe", "sklearn/ensemble/tests/test_gradient_boosting.py::test_max_features", "sklearn/ensemble/tests/test_gradient_boosting.py::test_staged_predict", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-10-GradientBoostingRegressor-auto-data4]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-10-GradientBoostingRegressor-brute-data5]", "sklearn/ensemble/tests/test_bagging.py::test_regression", "sklearn/ensemble/tests/test_gradient_boosting.py::test_staged_functions_defensive[42-GradientBoostingRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_degenerate_targets", "sklearn/ensemble/tests/test_gradient_boosting.py::test_quantile_loss[42]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_does_not_override_ylabel", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-5-GradientBoostingRegressor-auto-data4]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-5-GradientBoostingRegressor-brute-data5]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_estimators[estimator1]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_subsampling[average-expected_shape0]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_subsampling[individual-expected_shape1]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_oob_improvement[GradientBoostingRegressor]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_subsampling[both-expected_shape2]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_overwrite_labels[individual-line_kw0-None]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_overwrite_labels[individual-line_kw1-None]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_oob_scores[GradientBoostingRegressor]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_overwrite_labels[average-line_kw2-None]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_overwrite_labels[average-line_kw3-xxx]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_overwrite_labels[both-line_kw4-average]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_overwrite_labels[both-line_kw5-xxx]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-10-GradientBoostingRegressor-auto-data4]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-10-GradientBoostingRegressor-brute-data5]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_plot_limits_one_way[True-individual]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_plot_limits_one_way[True-average]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_plot_limits_one_way[True-both]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_oob_attributes_error[GradientBoostingRegressor-oob_improvement_]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_plot_limits_one_way[False-individual]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_oob_attributes_error[GradientBoostingRegressor-oob_scores_]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_oob_attributes_error[GradientBoostingRegressor-oob_score_]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_plot_limits_one_way[False-average]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_plot_limits_one_way[False-both]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_plot_limits_two_way[True]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-5-GradientBoostingRegressor-auto-data4]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-5-GradientBoostingRegressor-brute-data5]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_plot_limits_two_way[False]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_kind_list", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_kind_error[features0-individual]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_kind_error[features1-both]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_kind_error[features2-individual]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_kind_error[features3-both]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-10-GradientBoostingRegressor-auto-data4]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-10-GradientBoostingRegressor-brute-data5]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_kind_error[features4-kind4]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_kind_error[features5-kind5]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start[42-GradientBoostingRegressor]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_lines_kw[line_kw0-pd_line_kw0-ice_lines_kw0-expected_colors0]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_lines_kw[None-pd_line_kw1-ice_lines_kw1-expected_colors1]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_lines_kw[line_kw2-None-ice_lines_kw2-expected_colors2]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_lines_kw[line_kw3-pd_line_kw3-None-expected_colors3]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-5-GradientBoostingRegressor-auto-data4]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-5-GradientBoostingRegressor-brute-data5]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_lines_kw[line_kw4-None-None-expected_colors4]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_lines_kw[line_kw5-pd_line_kw5-ice_lines_kw5-expected_colors5]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_n_estimators[42-GradientBoostingRegressor]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_display_wrong_len_kind", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-10-GradientBoostingRegressor-auto-data4]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_display_kind_centered_interaction[individual]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_max_depth[GradientBoostingRegressor]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_display_kind_centered_interaction[both]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_display_kind_centered_interaction[average]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_display_kind_centered_interaction[kind3]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_display_kind_centered_interaction[kind4]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-10-GradientBoostingRegressor-brute-data5]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_display_with_constant_sample_weight", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_clear[GradientBoostingRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_state_oob_scores[GradientBoostingRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_smaller_n_estimators[GradientBoostingRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_equal_n_estimators[GradientBoostingRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_oob_switch[GradientBoostingRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_oob[GradientBoostingRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_sparse[coo_matrix-GradientBoostingRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est1-brute-0]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est1-brute-1]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est1-brute-2]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_sparse[coo_array-GradientBoostingRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est1-brute-3]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est1-brute-4]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est2-recursion-0]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est2-recursion-1]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est2-recursion-2]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est2-recursion-3]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_sparse[csc_matrix-GradientBoostingRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est2-recursion-4]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_tree_vs_forest_and_gbdt[0]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_sparse[csc_array-GradientBoostingRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_sparse[csr_matrix-GradientBoostingRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_sparse[csr_array-GradientBoostingRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_fortran[42-GradientBoostingRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_monitor_early_stopping[GradientBoostingRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_complete_regression", "sklearn/ensemble/tests/test_gradient_boosting.py::test_zero_estimator_reg[42]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_max_leaf_nodes_max_depth[GradientBoostingRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_min_impurity_decrease[GradientBoostingRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_easy_target[1-est1]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_non_uniform_weights_toy_edge_case_reg[squared_error-0.5]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_non_uniform_weights_toy_edge_case_reg[absolute_error-0.0]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_easy_target[2-est1]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_non_uniform_weights_toy_edge_case_reg[huber-0.5]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_non_uniform_weights_toy_edge_case_reg[quantile-0.5]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[coo_matrix-GradientBoostingRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[coo_array-GradientBoostingRegressor]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_sample_weight_of_fitted_estimator", "sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[csc_matrix-GradientBoostingRegressor]", "sklearn/tree/tests/test_tree.py::test_poisson_vs_mse", "sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[csc_array-GradientBoostingRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[csr_matrix-GradientBoostingRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[csr_array-GradientBoostingRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_gradient_boosting_early_stopping[GradientBoostingRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_gradient_boosting_without_early_stopping", "sklearn/ensemble/tests/test_gradient_boosting.py::test_gradient_boosting_validation_fraction", "sklearn/ensemble/tests/test_gradient_boosting.py::test_gradient_boosting_with_init[42-regression]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_gbr_degenerate_feature_importances", "sklearn/ensemble/tests/test_gradient_boosting.py::test_huber_vs_mean_and_median", "sklearn/ensemble/tests/test_gradient_boosting.py::test_squared_error_exact_backward_compat", "sklearn/ensemble/tests/test_gradient_boosting.py::test_huber_exact_backward_compat", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_subclass_named_constructors_return_type_is_subclass", "sklearn/tests/test_multioutput.py::test_multi_target_regression", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_estimators_overwrite_params]", "sklearn/tests/test_multioutput.py::test_multi_target_sample_weights_api", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_estimators_dtypes]", "sklearn/tests/test_multioutput.py::test_multi_target_sample_weights", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[False-final_estimator2-predict_params2-3]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_sample_weights_list]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[False-final_estimator2-predict_params2-cv1]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_sample_weights_not_overwritten]", "sklearn/tests/test_dummy.py::test_feature_names_in_and_n_features_in_[42]", "sklearn/tests/test_dummy.py::test_mean_strategy_regressor[42]", "sklearn/tests/test_dummy.py::test_mean_strategy_multioutput_regressor[42]", "sklearn/tests/test_dummy.py::test_median_strategy_regressor[42]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_dummy.py::test_median_strategy_multioutput_regressor[42]", "sklearn/tests/test_dummy.py::test_quantile_strategy_regressor[42]", "sklearn/tests/test_dummy.py::test_quantile_strategy_multioutput_regressor[42]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_dummy.py::test_quantile_invalid", "sklearn/tests/test_dummy.py::test_quantile_strategy_empty_train", "sklearn/tests/test_dummy.py::test_constant_strategy_regressor[42]", "sklearn/tests/test_dummy.py::test_constant_strategy_multioutput_regressor[42]", "sklearn/tests/test_dummy.py::test_y_mean_attribute_regressor", "sklearn/tests/test_dummy.py::test_constants_not_specified_regressor", "sklearn/tests/test_dummy.py::test_constant_size_multioutput_regressor[42]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_dummy.py::test_dummy_regressor_sample_weight[42]", "sklearn/tests/test_dummy.py::test_dummy_regressor_on_3D_array", "sklearn/tests/test_dummy.py::test_dummy_regressor_return_std", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_pipeline_consistency]", "sklearn/tests/test_dummy.py::test_regressor_score_with_None[y0-y_test0]", "sklearn/tests/test_dummy.py::test_regressor_score_with_None[y1-y_test1]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_estimator_sparse_array]", "sklearn/tests/test_dummy.py::test_regressor_prediction_independent_of_X[mean]", "sklearn/tests/test_dummy.py::test_regressor_prediction_independent_of_X[median]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[True-final_estimator2-predict_params2-3]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[True-final_estimator2-predict_params2-cv1]", "sklearn/tests/test_dummy.py::test_regressor_prediction_independent_of_X[quantile]", "sklearn/tests/test_dummy.py::test_regressor_prediction_independent_of_X[constant]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_regressor_multioutput]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_dont_overwrite_parameters]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_prefit[StackingRegressor-DummyRegressor-predict-final_estimator1-X1-y1]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_fit_check_is_fitted]", "sklearn/tests/test_multioutput.py::test_multioutput_estimator_with_fit_params[estimator1-dataset1]", "sklearn/ensemble/tests/test_weight_boosting.py::test_multidimensional_X", "sklearn/ensemble/tests/test_voting.py::test_weights_regressor", "sklearn/metrics/tests/test_regression.py::test_dummy_quantile_parameter_tuning", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_ensure_y_array", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_pass_fit_parameters", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_route_pipeline", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_pass_extra_predict_parameters", "sklearn/inspection/_plot/partial_dependence.py::sklearn.inspection._plot.partial_dependence.PartialDependenceDisplay", "sklearn/dummy.py::sklearn.dummy.DummyRegressor", "sklearn/ensemble/_gb.py::sklearn.ensemble._gb.GradientBoostingRegressor", "sklearn/inspection/_plot/partial_dependence.py::sklearn.inspection._plot.partial_dependence.PartialDependenceDisplay.from_estimator", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[GradientBoostingRegressor(n_estimators=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GradientBoostingRegressor(n_estimators=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GradientBoostingRegressor(n_estimators=5,n_iter_no_change=1)]", "sklearn/tests/test_common.py::test_check_param_validation[DummyRegressor()]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-37
1.0
{ "code": "diff --git b/sklearn/dummy.py a/sklearn/dummy.py\nindex 2da3e5d2d..6332ff43c 100644\n--- b/sklearn/dummy.py\n+++ a/sklearn/dummy.py\n@@ -648,6 +648,21 @@ class DummyRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):\n y_std : array-like of shape (n_samples,) or (n_samples, n_outputs)\n Standard deviation of predictive distribution of query points.\n \"\"\"\n+ check_is_fitted(self)\n+ n_samples = _num_samples(X)\n+\n+ y = np.full(\n+ (n_samples, self.n_outputs_),\n+ self.constant_,\n+ dtype=np.array(self.constant_).dtype,\n+ )\n+ y_std = np.zeros((n_samples, self.n_outputs_))\n+\n+ if self.n_outputs_ == 1:\n+ y = np.ravel(y)\n+ y_std = np.ravel(y_std)\n+\n+ return (y, y_std) if return_std else y\n \n def __sklearn_tags__(self):\n tags = super().__sklearn_tags__()\n", "test": null }
null
{ "code": "diff --git a/sklearn/dummy.py b/sklearn/dummy.py\nindex 6332ff43c..2da3e5d2d 100644\n--- a/sklearn/dummy.py\n+++ b/sklearn/dummy.py\n@@ -648,21 +648,6 @@ class DummyRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):\n y_std : array-like of shape (n_samples,) or (n_samples, n_outputs)\n Standard deviation of predictive distribution of query points.\n \"\"\"\n- check_is_fitted(self)\n- n_samples = _num_samples(X)\n-\n- y = np.full(\n- (n_samples, self.n_outputs_),\n- self.constant_,\n- dtype=np.array(self.constant_).dtype,\n- )\n- y_std = np.zeros((n_samples, self.n_outputs_))\n-\n- if self.n_outputs_ == 1:\n- y = np.ravel(y)\n- y_std = np.ravel(y_std)\n-\n- return (y, y_std) if return_std else y\n \n def __sklearn_tags__(self):\n tags = super().__sklearn_tags__()\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/dummy.py.\nHere is the description for the function:\n def predict(self, X, return_std=False):\n \"\"\"Perform classification on test vectors X.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n Test data.\n\n return_std : bool, default=False\n Whether to return the standard deviation of posterior prediction.\n All zeros in this case.\n\n .. versionadded:: 0.20\n\n Returns\n -------\n y : array-like of shape (n_samples,) or (n_samples, n_outputs)\n Predicted target values for X.\n\n y_std : array-like of shape (n_samples,) or (n_samples, n_outputs)\n Standard deviation of predictive distribution of query points.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-5-GradientBoostingRegressor-auto-data4]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-5-GradientBoostingRegressor-brute-data5]", "sklearn/ensemble/tests/test_forest.py::test_poisson_vs_mse", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-10-GradientBoostingRegressor-auto-data4]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-10-GradientBoostingRegressor-brute-data5]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-5-GradientBoostingRegressor-auto-data4]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-5-GradientBoostingRegressor-brute-data5]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-10-GradientBoostingRegressor-auto-data4]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-10-GradientBoostingRegressor-brute-data5]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-5-GradientBoostingRegressor-auto-data4]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-5-GradientBoostingRegressor-brute-data5]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-10-GradientBoostingRegressor-auto-data4]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-10-GradientBoostingRegressor-brute-data5]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-5-GradientBoostingRegressor-auto-data4]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-5-GradientBoostingRegressor-brute-data5]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_estimators[estimator1]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-10-GradientBoostingRegressor-auto-data4]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-10-GradientBoostingRegressor-brute-data5]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-5-GradientBoostingRegressor-auto-data4]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-5-GradientBoostingRegressor-brute-data5]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-10-GradientBoostingRegressor-auto-data4]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-10-GradientBoostingRegressor-brute-data5]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-5-GradientBoostingRegressor-auto-data4]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-5-GradientBoostingRegressor-brute-data5]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-10-GradientBoostingRegressor-auto-data4]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-10-GradientBoostingRegressor-brute-data5]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est1-brute-0]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est1-brute-1]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est1-brute-2]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est1-brute-3]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est1-brute-4]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est2-recursion-0]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est2-recursion-1]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est2-recursion-2]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est2-recursion-3]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est2-recursion-4]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_tree_vs_forest_and_gbdt[0]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_easy_target[1-est1]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_easy_target[2-est1]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_sample_weight_of_fitted_estimator", "sklearn/tree/tests/test_tree.py::test_poisson_vs_mse", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_gamma", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_poisson", "sklearn/ensemble/tests/test_gradient_boosting.py::test_regression_dataset[42-1.0-squared_error]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_regression_dataset[42-1.0-absolute_error]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_regression_dataset[42-1.0-huber]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_regression_dataset[42-0.5-squared_error]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_regression_dataset[42-0.5-absolute_error]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_regression_dataset[42-0.5-huber]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_estimator_sparse_matrix]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_regression_synthetic[42]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_feature_importances[GradientBoostingRegressor-X0-y0]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_estimators_pickle]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence[10]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence[20]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[average-False-None-shape0]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[individual-False-None-shape1]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[both-False-None-shape2]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_regressors_train(readonly_memmap=True)]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[individual-False-20-shape3]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[both-False-20-shape4]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[individual-False-0.5-shape5]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_max_features", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[both-False-0.5-shape6]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_staged_predict", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_regressor_data_not_an_array]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[average-True-None-shape7]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[individual-True-None-shape8]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[both-True-None-shape9]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_regressor_multioutput]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[individual-True-20-shape10]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_regressors_int]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_kind[both-True-20-shape11]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_estimators_unfitted]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_staged_functions_defensive[42-GradientBoostingRegressor]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[dataframe-None]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[dataframe-list]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_methods_sample_order_invariance]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_degenerate_targets", "sklearn/ensemble/tests/test_gradient_boosting.py::test_quantile_loss[42]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[list-list]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_methods_subset_invariance]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[array-list]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[dataframe-array]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_dict_unchanged]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[list-array]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[array-array]", "sklearn/tests/test_common.py::test_estimators[DummyRegressor()-check_fit_idempotent]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_oob_improvement[GradientBoostingRegressor]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[dataframe-series]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[list-series]", "sklearn/ensemble/tests/test_bagging.py::test_regression", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[array-series]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_oob_scores[GradientBoostingRegressor]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[dataframe-index]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[list-index]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_str_features[array-index]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_custom_axes", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_passing_numpy_axes[average-1]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_passing_numpy_axes[individual-50]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_oob_attributes_error[GradientBoostingRegressor-oob_improvement_]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_passing_numpy_axes[both-51]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_oob_attributes_error[GradientBoostingRegressor-oob_scores_]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_incorrent_num_axes[2-2]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_oob_attributes_error[GradientBoostingRegressor-oob_score_]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_incorrent_num_axes[3-1]", "sklearn/tests/test_multioutput.py::test_multi_target_regression", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_with_same_axes", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_feature_name_reuse", "sklearn/tests/test_multioutput.py::test_multi_target_sample_weights_api", "sklearn/tests/test_multioutput.py::test_multi_target_sample_weights", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start[42-GradientBoostingRegressor]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_dataframe", "sklearn/tests/test_dummy.py::test_mean_strategy_regressor[42]", "sklearn/tests/test_dummy.py::test_mean_strategy_multioutput_regressor[42]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_n_estimators[42-GradientBoostingRegressor]", "sklearn/tests/test_dummy.py::test_regressor_exceptions", "sklearn/tests/test_dummy.py::test_median_strategy_regressor[42]", "sklearn/tests/test_dummy.py::test_median_strategy_multioutput_regressor[42]", "sklearn/tests/test_dummy.py::test_quantile_strategy_regressor[42]", "sklearn/tests/test_dummy.py::test_quantile_strategy_multioutput_regressor[42]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_does_not_override_ylabel", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_max_depth[GradientBoostingRegressor]", "sklearn/tests/test_dummy.py::test_constant_strategy_regressor[42]", "sklearn/tests/test_dummy.py::test_constant_strategy_multioutput_regressor[42]", "sklearn/tests/test_dummy.py::test_dummy_regressor_on_3D_array", "sklearn/tests/test_dummy.py::test_dummy_regressor_return_std", "sklearn/tests/test_dummy.py::test_regressor_score_with_None[y0-y_test0]", "sklearn/tests/test_dummy.py::test_regressor_score_with_None[y1-y_test1]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[False-final_estimator2-predict_params2-3]", "sklearn/tests/test_dummy.py::test_regressor_prediction_independent_of_X[mean]", "sklearn/tests/test_dummy.py::test_regressor_prediction_independent_of_X[median]", "sklearn/tests/test_dummy.py::test_regressor_prediction_independent_of_X[quantile]", "sklearn/tests/test_dummy.py::test_regressor_prediction_independent_of_X[constant]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[False-final_estimator2-predict_params2-cv1]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_clear[GradientBoostingRegressor]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_subsampling[average-expected_shape0]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_subsampling[individual-expected_shape1]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_subsampling[both-expected_shape2]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_overwrite_labels[individual-line_kw0-None]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_overwrite_labels[individual-line_kw1-None]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_overwrite_labels[average-line_kw2-None]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_overwrite_labels[average-line_kw3-xxx]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_state_oob_scores[GradientBoostingRegressor]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_overwrite_labels[both-line_kw4-average]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_smaller_n_estimators[GradientBoostingRegressor]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_overwrite_labels[both-line_kw5-xxx]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_equal_n_estimators[GradientBoostingRegressor]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_plot_limits_one_way[True-individual]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_plot_limits_one_way[True-average]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_oob_switch[GradientBoostingRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_oob[GradientBoostingRegressor]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_plot_limits_one_way[True-both]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[True-final_estimator2-predict_params2-3]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[True-final_estimator2-predict_params2-cv1]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_plot_limits_one_way[False-individual]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_plot_limits_one_way[False-average]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_plot_limits_one_way[False-both]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_plot_limits_two_way[True]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_plot_limits_two_way[False]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_kind_list", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_kind_error[features0-individual]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_sparse[coo_matrix-GradientBoostingRegressor]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_kind_error[features1-both]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_kind_error[features2-individual]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_kind_error[features3-both]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_kind_error[features4-kind4]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_kind_error[features5-kind5]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_sparse[coo_array-GradientBoostingRegressor]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_lines_kw[line_kw0-pd_line_kw0-ice_lines_kw0-expected_colors0]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_lines_kw[None-pd_line_kw1-ice_lines_kw1-expected_colors1]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_lines_kw[line_kw2-None-ice_lines_kw2-expected_colors2]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_lines_kw[line_kw3-pd_line_kw3-None-expected_colors3]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_sparse[csc_matrix-GradientBoostingRegressor]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_lines_kw[line_kw4-None-None-expected_colors4]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_lines_kw[line_kw5-pd_line_kw5-ice_lines_kw5-expected_colors5]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_display_wrong_len_kind", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_display_kind_centered_interaction[individual]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_display_kind_centered_interaction[both]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_display_kind_centered_interaction[average]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_sparse[csc_array-GradientBoostingRegressor]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_display_kind_centered_interaction[kind3]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_display_kind_centered_interaction[kind4]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_partial_dependence_display_with_constant_sample_weight", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_sparse[csr_matrix-GradientBoostingRegressor]", "sklearn/ensemble/tests/test_weight_boosting.py::test_multidimensional_X", "sklearn/ensemble/tests/test_stacking.py::test_stacking_prefit[StackingRegressor-DummyRegressor-predict-final_estimator1-X1-y1]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_sparse[csr_array-GradientBoostingRegressor]", "sklearn/ensemble/tests/test_voting.py::test_weights_regressor", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_fortran[42-GradientBoostingRegressor]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_subclass_named_constructors_return_type_is_subclass", "sklearn/ensemble/tests/test_gradient_boosting.py::test_monitor_early_stopping[GradientBoostingRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_complete_regression", "sklearn/ensemble/tests/test_gradient_boosting.py::test_zero_estimator_reg[42]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_max_leaf_nodes_max_depth[GradientBoostingRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_min_impurity_decrease[GradientBoostingRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_non_uniform_weights_toy_edge_case_reg[squared_error-0.5]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_non_uniform_weights_toy_edge_case_reg[absolute_error-0.0]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_non_uniform_weights_toy_edge_case_reg[huber-0.5]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_non_uniform_weights_toy_edge_case_reg[quantile-0.5]", "sklearn/metrics/tests/test_regression.py::test_dummy_quantile_parameter_tuning", "sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[coo_matrix-GradientBoostingRegressor]", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_ensure_y_array", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_pass_extra_predict_parameters", "sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[coo_array-GradientBoostingRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[csc_matrix-GradientBoostingRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[csc_array-GradientBoostingRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[csr_matrix-GradientBoostingRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[csr_array-GradientBoostingRegressor]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_gradient_boosting_early_stopping[GradientBoostingRegressor]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_fit_score_takes_y]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_gradient_boosting_without_early_stopping", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_estimators_overwrite_params]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_gradient_boosting_validation_fraction", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_estimators_dtypes]", "sklearn/dummy.py::sklearn.dummy.DummyRegressor", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_sample_weights_pandas_series]", "sklearn/inspection/_plot/partial_dependence.py::sklearn.inspection._plot.partial_dependence.PartialDependenceDisplay", "sklearn/inspection/_plot/partial_dependence.py::sklearn.inspection._plot.partial_dependence.PartialDependenceDisplay.from_estimator", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_sample_weights_list]", "sklearn/ensemble/_gb.py::sklearn.ensemble._gb.GradientBoostingRegressor", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_gradient_boosting_with_init[42-regression]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_dtype_object]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_gbr_degenerate_feature_importances", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_pipeline_consistency]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_huber_vs_mean_and_median", "sklearn/ensemble/tests/test_gradient_boosting.py::test_squared_error_exact_backward_compat", "sklearn/ensemble/tests/test_gradient_boosting.py::test_huber_exact_backward_compat", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingRegressor(n_estimators=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[GradientBoostingRegressor(n_estimators=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GradientBoostingRegressor(n_estimators=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GradientBoostingRegressor(n_estimators=5,n_iter_no_change=1)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-38
1.0
{ "code": "diff --git b/sklearn/linear_model/_coordinate_descent.py a/sklearn/linear_model/_coordinate_descent.py\nindex 7b6f855e3..61aaf49a1 100644\n--- b/sklearn/linear_model/_coordinate_descent.py\n+++ a/sklearn/linear_model/_coordinate_descent.py\n@@ -918,6 +918,7 @@ class ElasticNet(MultiOutputMixin, RegressorMixin, LinearModel):\n self.random_state = random_state\n self.selection = selection\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y, sample_weight=None, check_input=True):\n \"\"\"Fit model with coordinate descent.\n \n@@ -956,6 +957,168 @@ class ElasticNet(MultiOutputMixin, RegressorMixin, LinearModel):\n To avoid memory re-allocation it is advised to allocate the\n initial data in memory directly using that format.\n \"\"\"\n+ if self.alpha == 0:\n+ warnings.warn(\n+ (\n+ \"With alpha=0, this algorithm does not converge \"\n+ \"well. You are advised to use the LinearRegression \"\n+ \"estimator\"\n+ ),\n+ stacklevel=2,\n+ )\n+\n+ # Remember if X is copied\n+ X_copied = False\n+ # We expect X and y to be float64 or float32 Fortran ordered arrays\n+ # when bypassing checks\n+ if check_input:\n+ X_copied = self.copy_X and self.fit_intercept\n+ X, y = validate_data(\n+ self,\n+ X,\n+ y,\n+ accept_sparse=\"csc\",\n+ order=\"F\",\n+ dtype=[np.float64, np.float32],\n+ force_writeable=True,\n+ accept_large_sparse=False,\n+ copy=X_copied,\n+ multi_output=True,\n+ y_numeric=True,\n+ )\n+ y = check_array(\n+ y, order=\"F\", copy=False, dtype=X.dtype.type, ensure_2d=False\n+ )\n+\n+ n_samples, n_features = X.shape\n+ alpha = self.alpha\n+\n+ if isinstance(sample_weight, numbers.Number):\n+ sample_weight = None\n+ if sample_weight is not None:\n+ if check_input:\n+ sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)\n+ # TLDR: Rescale sw to sum up to n_samples.\n+ # Long: The objective function of Enet\n+ #\n+ # 1/2 * np.average(squared error, weights=sw)\n+ # + alpha * penalty (1)\n+ #\n+ # is invariant under rescaling of sw.\n+ # But enet_path coordinate descent minimizes\n+ #\n+ # 1/2 * sum(squared error) + alpha' * penalty (2)\n+ #\n+ # and therefore sets\n+ #\n+ # alpha' = n_samples * alpha (3)\n+ #\n+ # inside its function body, which results in objective (2) being\n+ # equivalent to (1) in case of no sw.\n+ # With sw, however, enet_path should set\n+ #\n+ # alpha' = sum(sw) * alpha (4)\n+ #\n+ # Therefore, we use the freedom of Eq. (1) to rescale sw before\n+ # calling enet_path, i.e.\n+ #\n+ # sw *= n_samples / sum(sw)\n+ #\n+ # such that sum(sw) = n_samples. This way, (3) and (4) are the same.\n+ sample_weight = sample_weight * (n_samples / np.sum(sample_weight))\n+ # Note: Alternatively, we could also have rescaled alpha instead\n+ # of sample_weight:\n+ #\n+ # alpha *= np.sum(sample_weight) / n_samples\n+\n+ # Ensure copying happens only once, don't do it again if done above.\n+ # X and y will be rescaled if sample_weight is not None, order='F'\n+ # ensures that the returned X and y are still F-contiguous.\n+ should_copy = self.copy_X and not X_copied\n+ X, y, X_offset, y_offset, X_scale, precompute, Xy = _pre_fit(\n+ X,\n+ y,\n+ None,\n+ self.precompute,\n+ fit_intercept=self.fit_intercept,\n+ copy=should_copy,\n+ check_input=check_input,\n+ sample_weight=sample_weight,\n+ )\n+ # coordinate descent needs F-ordered arrays and _pre_fit might have\n+ # called _rescale_data\n+ if check_input or sample_weight is not None:\n+ X, y = _set_order(X, y, order=\"F\")\n+ if y.ndim == 1:\n+ y = y[:, np.newaxis]\n+ if Xy is not None and Xy.ndim == 1:\n+ Xy = Xy[:, np.newaxis]\n+\n+ n_targets = y.shape[1]\n+\n+ if not self.warm_start or not hasattr(self, \"coef_\"):\n+ coef_ = np.zeros((n_targets, n_features), dtype=X.dtype, order=\"F\")\n+ else:\n+ coef_ = self.coef_\n+ if coef_.ndim == 1:\n+ coef_ = coef_[np.newaxis, :]\n+\n+ dual_gaps_ = np.zeros(n_targets, dtype=X.dtype)\n+ self.n_iter_ = []\n+\n+ for k in range(n_targets):\n+ if Xy is not None:\n+ this_Xy = Xy[:, k]\n+ else:\n+ this_Xy = None\n+ _, this_coef, this_dual_gap, this_iter = self.path(\n+ X,\n+ y[:, k],\n+ l1_ratio=self.l1_ratio,\n+ eps=None,\n+ n_alphas=None,\n+ alphas=[alpha],\n+ precompute=precompute,\n+ Xy=this_Xy,\n+ copy_X=True,\n+ coef_init=coef_[k],\n+ verbose=False,\n+ return_n_iter=True,\n+ positive=self.positive,\n+ check_input=False,\n+ # from here on **params\n+ tol=self.tol,\n+ X_offset=X_offset,\n+ X_scale=X_scale,\n+ max_iter=self.max_iter,\n+ random_state=self.random_state,\n+ selection=self.selection,\n+ sample_weight=sample_weight,\n+ )\n+ coef_[k] = this_coef[:, 0]\n+ dual_gaps_[k] = this_dual_gap[0]\n+ self.n_iter_.append(this_iter[0])\n+\n+ if n_targets == 1:\n+ self.n_iter_ = self.n_iter_[0]\n+ self.coef_ = coef_[0]\n+ self.dual_gap_ = dual_gaps_[0]\n+ else:\n+ self.coef_ = coef_\n+ self.dual_gap_ = dual_gaps_\n+\n+ self._set_intercept(X_offset, y_offset, X_scale)\n+\n+ # check for finiteness of coefficients\n+ if not all(np.isfinite(w).all() for w in [self.coef_, self.intercept_]):\n+ raise ValueError(\n+ \"Coordinate descent iterations resulted in non-finite parameter\"\n+ \" values. The input data may contain large values and need to\"\n+ \" be preprocessed.\"\n+ )\n+\n+ # return self for chaining fit and predict calls\n+ return self\n \n @property\n def sparse_coef_(self):\n", "test": null }
null
{ "code": "diff --git a/sklearn/linear_model/_coordinate_descent.py b/sklearn/linear_model/_coordinate_descent.py\nindex 61aaf49a1..7b6f855e3 100644\n--- a/sklearn/linear_model/_coordinate_descent.py\n+++ b/sklearn/linear_model/_coordinate_descent.py\n@@ -918,7 +918,6 @@ class ElasticNet(MultiOutputMixin, RegressorMixin, LinearModel):\n self.random_state = random_state\n self.selection = selection\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y, sample_weight=None, check_input=True):\n \"\"\"Fit model with coordinate descent.\n \n@@ -957,168 +956,6 @@ class ElasticNet(MultiOutputMixin, RegressorMixin, LinearModel):\n To avoid memory re-allocation it is advised to allocate the\n initial data in memory directly using that format.\n \"\"\"\n- if self.alpha == 0:\n- warnings.warn(\n- (\n- \"With alpha=0, this algorithm does not converge \"\n- \"well. You are advised to use the LinearRegression \"\n- \"estimator\"\n- ),\n- stacklevel=2,\n- )\n-\n- # Remember if X is copied\n- X_copied = False\n- # We expect X and y to be float64 or float32 Fortran ordered arrays\n- # when bypassing checks\n- if check_input:\n- X_copied = self.copy_X and self.fit_intercept\n- X, y = validate_data(\n- self,\n- X,\n- y,\n- accept_sparse=\"csc\",\n- order=\"F\",\n- dtype=[np.float64, np.float32],\n- force_writeable=True,\n- accept_large_sparse=False,\n- copy=X_copied,\n- multi_output=True,\n- y_numeric=True,\n- )\n- y = check_array(\n- y, order=\"F\", copy=False, dtype=X.dtype.type, ensure_2d=False\n- )\n-\n- n_samples, n_features = X.shape\n- alpha = self.alpha\n-\n- if isinstance(sample_weight, numbers.Number):\n- sample_weight = None\n- if sample_weight is not None:\n- if check_input:\n- sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)\n- # TLDR: Rescale sw to sum up to n_samples.\n- # Long: The objective function of Enet\n- #\n- # 1/2 * np.average(squared error, weights=sw)\n- # + alpha * penalty (1)\n- #\n- # is invariant under rescaling of sw.\n- # But enet_path coordinate descent minimizes\n- #\n- # 1/2 * sum(squared error) + alpha' * penalty (2)\n- #\n- # and therefore sets\n- #\n- # alpha' = n_samples * alpha (3)\n- #\n- # inside its function body, which results in objective (2) being\n- # equivalent to (1) in case of no sw.\n- # With sw, however, enet_path should set\n- #\n- # alpha' = sum(sw) * alpha (4)\n- #\n- # Therefore, we use the freedom of Eq. (1) to rescale sw before\n- # calling enet_path, i.e.\n- #\n- # sw *= n_samples / sum(sw)\n- #\n- # such that sum(sw) = n_samples. This way, (3) and (4) are the same.\n- sample_weight = sample_weight * (n_samples / np.sum(sample_weight))\n- # Note: Alternatively, we could also have rescaled alpha instead\n- # of sample_weight:\n- #\n- # alpha *= np.sum(sample_weight) / n_samples\n-\n- # Ensure copying happens only once, don't do it again if done above.\n- # X and y will be rescaled if sample_weight is not None, order='F'\n- # ensures that the returned X and y are still F-contiguous.\n- should_copy = self.copy_X and not X_copied\n- X, y, X_offset, y_offset, X_scale, precompute, Xy = _pre_fit(\n- X,\n- y,\n- None,\n- self.precompute,\n- fit_intercept=self.fit_intercept,\n- copy=should_copy,\n- check_input=check_input,\n- sample_weight=sample_weight,\n- )\n- # coordinate descent needs F-ordered arrays and _pre_fit might have\n- # called _rescale_data\n- if check_input or sample_weight is not None:\n- X, y = _set_order(X, y, order=\"F\")\n- if y.ndim == 1:\n- y = y[:, np.newaxis]\n- if Xy is not None and Xy.ndim == 1:\n- Xy = Xy[:, np.newaxis]\n-\n- n_targets = y.shape[1]\n-\n- if not self.warm_start or not hasattr(self, \"coef_\"):\n- coef_ = np.zeros((n_targets, n_features), dtype=X.dtype, order=\"F\")\n- else:\n- coef_ = self.coef_\n- if coef_.ndim == 1:\n- coef_ = coef_[np.newaxis, :]\n-\n- dual_gaps_ = np.zeros(n_targets, dtype=X.dtype)\n- self.n_iter_ = []\n-\n- for k in range(n_targets):\n- if Xy is not None:\n- this_Xy = Xy[:, k]\n- else:\n- this_Xy = None\n- _, this_coef, this_dual_gap, this_iter = self.path(\n- X,\n- y[:, k],\n- l1_ratio=self.l1_ratio,\n- eps=None,\n- n_alphas=None,\n- alphas=[alpha],\n- precompute=precompute,\n- Xy=this_Xy,\n- copy_X=True,\n- coef_init=coef_[k],\n- verbose=False,\n- return_n_iter=True,\n- positive=self.positive,\n- check_input=False,\n- # from here on **params\n- tol=self.tol,\n- X_offset=X_offset,\n- X_scale=X_scale,\n- max_iter=self.max_iter,\n- random_state=self.random_state,\n- selection=self.selection,\n- sample_weight=sample_weight,\n- )\n- coef_[k] = this_coef[:, 0]\n- dual_gaps_[k] = this_dual_gap[0]\n- self.n_iter_.append(this_iter[0])\n-\n- if n_targets == 1:\n- self.n_iter_ = self.n_iter_[0]\n- self.coef_ = coef_[0]\n- self.dual_gap_ = dual_gaps_[0]\n- else:\n- self.coef_ = coef_\n- self.dual_gap_ = dual_gaps_\n-\n- self._set_intercept(X_offset, y_offset, X_scale)\n-\n- # check for finiteness of coefficients\n- if not all(np.isfinite(w).all() for w in [self.coef_, self.intercept_]):\n- raise ValueError(\n- \"Coordinate descent iterations resulted in non-finite parameter\"\n- \" values. The input data may contain large values and need to\"\n- \" be preprocessed.\"\n- )\n-\n- # return self for chaining fit and predict calls\n- return self\n \n @property\n def sparse_coef_(self):\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/linear_model/_coordinate_descent.py.\nHere is the description for the function:\n def fit(self, X, y, sample_weight=None, check_input=True):\n \"\"\"Fit model with coordinate descent.\n\n Parameters\n ----------\n X : {ndarray, sparse matrix, sparse array} of (n_samples, n_features)\n Data.\n\n Note that large sparse matrices and arrays requiring `int64`\n indices are not accepted.\n\n y : ndarray of shape (n_samples,) or (n_samples, n_targets)\n Target. Will be cast to X's dtype if necessary.\n\n sample_weight : float or array-like of shape (n_samples,), default=None\n Sample weights. Internally, the `sample_weight` vector will be\n rescaled to sum to `n_samples`.\n\n .. versionadded:: 0.23\n\n check_input : bool, default=True\n Allow to bypass several input checking.\n Don't use this parameter unless you know what you do.\n\n Returns\n -------\n self : object\n Fitted estimator.\n\n Notes\n -----\n Coordinate descent is an algorithm that considers each column of\n data at a time hence it will automatically convert the X input\n as a Fortran-contiguous numpy array if necessary.\n\n To avoid memory re-allocation it is advised to allocate the\n initial data in memory directly using that format.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/linear_model/tests/test_sgd.py::test_elasticnet_convergence[SGDRegressor]", "sklearn/linear_model/tests/test_sgd.py::test_elasticnet_convergence[SparseSGDRegressor]", "sklearn/decomposition/tests/test_dict_learning.py::test_sparse_encode_shapes_omp", "sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_zero", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_nonfinite_params", "sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_toy", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_toy", "sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_dual_gap", "sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_cv", "sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_cv_with_some_model_selection", "sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_cv_positive_constraint", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_matrix-Lasso-params0]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_matrix-LassoCV-params1]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_matrix-ElasticNetCV-params2]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_matrix-ElasticNet-params4]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_matrix-ElasticNet-params5]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_array-Lasso-params0]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_array-LassoCV-params1]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_array-ElasticNetCV-params2]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_array-ElasticNet-params4]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_array-ElasticNet-params5]", "sklearn/decomposition/tests/test_dict_learning.py::test_max_iter", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_path", "sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_positivity[False-False-lasso_lars]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_path_parameters", "sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_positivity[False-False-lasso_cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_positivity[False-False-threshold]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_warm_start", "sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_alpha_warning", "sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_positive_constraint", "sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_positivity[False-True-lasso_lars]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_positive_constraint", "sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_positivity[False-True-lasso_cd]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_positive_constraint", "sklearn/linear_model/tests/test_coordinate_descent.py::test_uniform_targets", "sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_readonly_data", "sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_positivity[False-True-threshold]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_multitarget", "sklearn/linear_model/tests/test_coordinate_descent.py::test_1d_multioutput_enet_and_multitask_enet_cv", "sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_positivity[True-False-lasso_lars]", "sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_positivity[True-False-lasso_cd]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_1d_multioutput_lasso_and_multitask_lasso_cv", "sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_positivity[True-False-threshold]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_sparse_input_dtype_enet_and_lassocv[csr_matrix]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_sparse_input_dtype_enet_and_lassocv[csr_array]", "sklearn/tests/test_common.py::test_estimators[ElasticNet(max_iter=5)-check_fit_score_takes_y]", "sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_positivity[True-True-lasso_lars]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_elasticnet_precompute_incorrect_gram", "sklearn/linear_model/tests/test_coordinate_descent.py::test_elasticnet_precompute_gram_weighted_samples", "sklearn/linear_model/tests/test_coordinate_descent.py::test_elasticnet_precompute_gram", "sklearn/tests/test_common.py::test_estimators[ElasticNet(max_iter=5)-check_estimators_overwrite_params]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_warm_start_convergence", "sklearn/linear_model/tests/test_coordinate_descent.py::test_warm_start_convergence_with_regularizer_decrement", "sklearn/linear_model/tests/test_coordinate_descent.py::test_random_descent[csr_matrix]", "sklearn/tests/test_common.py::test_estimators[ElasticNet(max_iter=5)-check_estimators_dtypes]", "sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_positivity[True-True-lasso_cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_positivity[True-True-threshold]", "sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_lars_dict_positivity[False]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_random_descent[csr_array]", "sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_lars_dict_positivity[True]", "sklearn/tests/test_common.py::test_estimators[ElasticNet(max_iter=5)-check_sample_weights_pandas_series]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_check_input_false", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_copy_X_True[True]", "sklearn/tests/test_common.py::test_estimators[ElasticNet(max_iter=5)-check_sample_weights_not_an_array]", "sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_lars_code_positivity", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_copy_X_True[False]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_copy_X_False_check_input_False", "sklearn/tests/test_common.py::test_estimators[ElasticNet(max_iter=5)-check_sample_weights_list]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_overrided_gram_matrix", "sklearn/tests/test_common.py::test_estimators[ElasticNet(max_iter=5)-check_sample_weights_shape]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_non_float_y[ElasticNet]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_lasso_non_float_y[Lasso]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_float_precision", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_l1_ratio", "sklearn/tests/test_common.py::test_estimators[ElasticNet(max_iter=5)-check_sample_weights_not_overwritten]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_lasso_zero[csc_matrix]", "sklearn/tests/test_common.py::test_estimators[ElasticNet(max_iter=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_coef_shape_not_zero", "sklearn/tests/test_common.py::test_estimators[ElasticNet(max_iter=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_coordinate_descent[Lasso-1-kwargs0]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_lasso_zero[csc_array]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_enet_toy_list_input[csc_matrix-True]", "sklearn/tests/test_common.py::test_estimators[ElasticNet(max_iter=5)-check_estimators_fit_returns_self]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_enet_toy_list_input[csc_matrix-False]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_coordinate_descent[Lasso-1-kwargs1]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_enet_toy_list_input[csc_array-True]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_enet_toy_list_input[csc_array-False]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_sparse_input_convergence_warning[csr_matrix]", "sklearn/tests/test_common.py::test_estimators[ElasticNet(max_iter=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_enet_toy_explicit_sparse_input[lil_matrix]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_enet_toy_explicit_sparse_input[lil_array]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_sparse_input_convergence_warning[csr_array]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_enet_not_as_toy_dataset[0.1-False-False-csc_matrix]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_enet_not_as_toy_dataset[0.1-False-False-csc_array]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_enet_not_as_toy_dataset[0.1-True-False-csc_matrix]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_enet_not_as_toy_dataset[0.1-True-False-csc_array]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_lassoCV_does_not_set_precompute[True-True]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_enet_not_as_toy_dataset[0.001-False-True-csc_matrix]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_enet_not_as_toy_dataset[0.001-False-True-csc_array]", "sklearn/tests/test_common.py::test_estimators[ElasticNet(max_iter=5)-check_complex_data]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_enet_not_as_toy_dataset[0.001-True-True-csc_matrix]", "sklearn/tests/test_common.py::test_estimators[ElasticNet(max_iter=5)-check_dtype_object]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_lassoCV_does_not_set_precompute[auto-False]", "sklearn/tests/test_common.py::test_estimators[ElasticNet(max_iter=5)-check_estimators_empty_data_messages]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_lassoCV_does_not_set_precompute[False-False]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_enet_not_as_toy_dataset[0.001-True-True-csc_array]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_lasso_not_as_toy_dataset[csc_matrix]", "sklearn/tests/test_common.py::test_estimators[ElasticNet(max_iter=5)-check_pipeline_consistency]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_lasso_not_as_toy_dataset[csc_array]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_enet_multitarget[csc_matrix]", "sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_lassocd_readonly_data", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_enet_multitarget[csc_array]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_path_parameters[csc_matrix]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_path_parameters[csc_array]", "sklearn/tests/test_common.py::test_estimators[ElasticNet(max_iter=5)-check_estimators_nan_inf]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_matrix-True-24-6-False-Lasso]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[42-None-False-0.01-True]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[42-None-False-0.01-False]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_matrix-True-24-6-False-ElasticNet]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_matrix-True-24-6-False-LassoCV]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[42-None-True-0.01-True]", "sklearn/tests/test_common.py::test_estimators[ElasticNet(max_iter=5)-check_estimator_sparse_array]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[42-None-True-0.01-False]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_matrix-True-24-6-False-ElasticNetCV]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[42-csr_matrix-False-0.01-True]", "sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_online_shapes", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[42-csr_matrix-False-0.01-False]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_matrix-True-24-6-True-Lasso]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[42-csr_matrix-True-0.01-True]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_matrix-True-24-6-True-ElasticNet]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[42-csr_matrix-True-0.01-False]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_matrix-True-24-6-True-LassoCV]", "sklearn/tests/test_common.py::test_estimators[ElasticNet(max_iter=5)-check_estimator_sparse_matrix]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[42-csr_array-False-0.01-True]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_matrix-True-24-6-True-ElasticNetCV]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[42-csr_array-False-0.01-False]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_matrix-True-6-24-False-Lasso]", "sklearn/tests/test_common.py::test_estimators[ElasticNet(max_iter=5)-check_estimators_pickle]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_positivity[False-False-lasso_lars]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_matrix-True-6-24-False-ElasticNet]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_matrix-True-6-24-False-LassoCV]", "sklearn/tests/test_common.py::test_estimators[ElasticNet(max_iter=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_positivity[False-False-lasso_cd]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[42-csr_array-True-0.01-True]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_matrix-True-6-24-False-ElasticNetCV]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency[42-csr_array-True-0.01-False]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_correctness[42-None-True]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_positivity[False-False-threshold]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_correctness[42-None-False]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_positivity[False-True-lasso_lars]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_matrix-True-6-24-True-Lasso]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_positivity[False-True-lasso_cd]", "sklearn/tests/test_common.py::test_estimators[ElasticNet(max_iter=5)-check_f_contiguous_array_estimator]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_correctness[42-csc_matrix-True]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_matrix-True-6-24-True-ElasticNet]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_positivity[False-True-threshold]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_matrix-True-6-24-True-LassoCV]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_correctness[42-csc_matrix-False]", "sklearn/tests/test_common.py::test_estimators[ElasticNet(max_iter=5)-check_regressors_train]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_matrix-True-6-24-True-ElasticNetCV]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_positivity[True-False-lasso_lars]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_correctness[42-csc_array-True]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_matrix-False-24-6-False-Lasso]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_positivity[True-False-lasso_cd]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_matrix-False-24-6-False-ElasticNet]", "sklearn/tests/test_common.py::test_estimators[ElasticNet(max_iter=5)-check_regressors_train(readonly_memmap=True)]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_correctness[42-csc_array-False]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_matrix-False-24-6-False-LassoCV]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_positivity[True-False-threshold]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_matrix-False-24-6-False-ElasticNetCV]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_grid_search[False]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_positivity[True-True-lasso_lars]", "sklearn/tests/test_common.py::test_estimators[ElasticNet(max_iter=5)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_matrix-False-24-6-True-Lasso]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_matrix-False-24-6-True-ElasticNet]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_matrix-False-24-6-True-LassoCV]", "sklearn/tests/test_common.py::test_estimators[ElasticNet(max_iter=5)-check_regressor_data_not_an_array]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_matrix-False-24-6-True-ElasticNetCV]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_grid_search[True]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[None-False-0-True]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_matrix-False-6-24-False-Lasso]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_matrix-False-6-24-False-ElasticNet]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_positivity[True-True-lasso_cd]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_matrix-False-6-24-False-LassoCV]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[None-False-0-False]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_matrix-False-6-24-False-ElasticNetCV]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_positivity[True-True-threshold]", "sklearn/tests/test_common.py::test_estimators[ElasticNet(max_iter=5)-check_regressor_multioutput]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_matrix-False-6-24-True-Lasso]", "sklearn/tests/test_multioutput.py::test_multi_target_sparse_regression[csr_matrix]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[None-False-0.5-True]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_matrix-False-6-24-True-ElasticNet]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_lars[False]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_matrix-False-6-24-True-LassoCV]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[None-False-0.5-False]", "sklearn/tests/test_common.py::test_estimators[ElasticNet(max_iter=5)-check_regressors_no_decision_function]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_matrix-False-6-24-True-ElasticNetCV]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_lars[True]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[None-False-1-True]", "sklearn/linear_model/tests/test_least_angle.py::test_rank_deficient_design", "sklearn/tests/test_common.py::test_estimators[ElasticNet(max_iter=5)-check_supervised_y_2d]", "sklearn/tests/test_multioutput.py::test_multi_target_sparse_regression[csr_array]", "sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_online_positivity[False-False]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[None-False-1-False]", "sklearn/tests/test_common.py::test_estimators[ElasticNet(max_iter=5)-check_supervised_y_no_nan]", "sklearn/tests/test_multioutput.py::test_multi_target_sparse_regression[csc_matrix]", "sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_online_positivity[False-True]", "sklearn/tests/test_multioutput.py::test_multi_target_sparse_regression[csc_array]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[None-True-0-True]", "sklearn/linear_model/tests/test_least_angle.py::test_lasso_lars_vs_lasso_cd", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_array-True-24-6-False-Lasso]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_array-True-24-6-False-ElasticNet]", "sklearn/linear_model/tests/test_least_angle.py::test_lasso_lars_vs_lasso_cd_early_stopping", "sklearn/tests/test_multioutput.py::test_multi_target_sparse_regression[coo_matrix]", "sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_online_positivity[True-False]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[None-True-0-False]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_array-True-24-6-False-LassoCV]", "sklearn/linear_model/tests/test_least_angle.py::test_lasso_lars_vs_lasso_cd_ill_conditioned2", "sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_online_positivity[True-True]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_array-True-24-6-False-ElasticNetCV]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_array-True-24-6-True-Lasso]", "sklearn/linear_model/tests/test_least_angle.py::test_lasso_lars_vs_lasso_cd_positive", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_array-True-24-6-True-ElasticNet]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_array-True-24-6-True-LassoCV]", "sklearn/tests/test_common.py::test_estimators[ElasticNet(max_iter=5)-check_regressors_int]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[None-True-0.5-True]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_array-True-24-6-True-ElasticNetCV]", "sklearn/tests/test_multioutput.py::test_multi_target_sparse_regression[coo_array]", "sklearn/tests/test_common.py::test_estimators[ElasticNet(max_iter=5)-check_non_transformer_estimators_n_iter]", "sklearn/tests/test_multioutput.py::test_multi_target_sparse_regression[lil_matrix]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_array-True-6-24-False-Lasso]", "sklearn/tests/test_common.py::test_estimators[ElasticNet(max_iter=5)-check_methods_sample_order_invariance]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[None-True-0.5-False]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_array-True-6-24-False-ElasticNet]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_array-True-6-24-False-LassoCV]", "sklearn/tests/test_multioutput.py::test_multi_target_sparse_regression[lil_array]", "sklearn/tests/test_common.py::test_estimators[ElasticNet(max_iter=5)-check_methods_subset_invariance]", "sklearn/tests/test_multioutput.py::test_multi_target_sparse_regression[dok_matrix]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[None-True-1-True]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_array-True-6-24-False-ElasticNetCV]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_array-True-6-24-True-Lasso]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[None-True-1-False]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[csc_matrix-False-0-True]", "sklearn/tests/test_multioutput.py::test_multi_target_sparse_regression[dok_array]", "sklearn/tests/test_multiclass.py::test_ovr_multiclass", "sklearn/tests/test_multiclass.py::test_ovr_binary", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[csc_matrix-False-0-False]", "sklearn/decomposition/tests/test_dict_learning.py::test_sparse_encode_shapes", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[csc_matrix-False-0.5-True]", "sklearn/decomposition/tests/test_dict_learning.py::test_sparse_encode_positivity[False-lasso_cd]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_array-True-6-24-True-ElasticNet]", "sklearn/tests/test_multioutput.py::test_multi_target_sparse_regression[bsr_matrix]", "sklearn/tests/test_multioutput.py::test_multi_target_sparse_regression[bsr_array]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_array-True-6-24-True-LassoCV]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[csc_matrix-False-0.5-False]", "sklearn/decomposition/tests/test_dict_learning.py::test_sparse_encode_positivity[True-lasso_cd]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_array-True-6-24-True-ElasticNetCV]", "sklearn/tests/test_common.py::test_estimators[ElasticNet(max_iter=5)-check_fit2d_1sample]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_array-False-24-6-False-Lasso]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_array-False-24-6-False-ElasticNet]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_array-False-24-6-False-LassoCV]", "sklearn/tests/test_common.py::test_estimators[ElasticNet(max_iter=5)-check_fit2d_1feature]", "sklearn/decomposition/tests/test_dict_learning.py::test_sparse_encode_input", "sklearn/tests/test_multiclass.py::test_ovr_multilabel", "sklearn/tests/test_common.py::test_estimators[ElasticNet(max_iter=5)-check_dict_unchanged]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_array-False-24-6-False-ElasticNetCV]", "sklearn/tests/test_common.py::test_estimators[ElasticNet(max_iter=5)-check_dont_overwrite_parameters]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[csc_matrix-False-1-True]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_array-False-24-6-True-Lasso]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[csc_matrix-False-1-False]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[csc_matrix-True-0-True]", "sklearn/tests/test_common.py::test_estimators[ElasticNet(max_iter=5)-check_fit_idempotent]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_array-False-24-6-True-ElasticNet]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_array-False-24-6-True-LassoCV]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[csc_matrix-True-0-False]", "sklearn/tests/test_common.py::test_estimators[ElasticNet(max_iter=5)-check_fit_check_is_fitted]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_array-False-24-6-True-ElasticNetCV]", "sklearn/tests/test_common.py::test_estimators[ElasticNet(max_iter=5)-check_n_features_in]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[csc_matrix-True-0.5-True]", "sklearn/tests/test_common.py::test_estimators[ElasticNet(max_iter=5)-check_fit1d]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_array-False-6-24-False-Lasso]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_array-False-6-24-False-ElasticNet]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[csc_matrix-True-0.5-False]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_array-False-6-24-False-LassoCV]", "sklearn/tests/test_common.py::test_estimators[ElasticNet(max_iter=5)-check_fit2d_predict1d]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_array-False-6-24-False-ElasticNetCV]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_array-False-6-24-True-Lasso]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[csc_matrix-True-1-True]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_array-False-6-24-True-ElasticNet]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_array-False-6-24-True-LassoCV]", "sklearn/feature_selection/tests/test_from_model.py::test_max_features", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_dense_equality[csc_array-False-6-24-True-ElasticNetCV]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[csc_matrix-True-1-False]", "sklearn/tests/test_common.py::test_estimators[ElasticNet(max_iter=5)-check_requires_y_none]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_same_output_sparse_dense_lasso_and_enet_cv[csc_matrix]", "sklearn/tests/test_common.py::test_estimators[ElasticNetCV(cv=3,max_iter=5)-check_fit_score_takes_y]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_same_output_sparse_dense_lasso_and_enet_cv[csc_array]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[csc_array-False-0-True]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_same_multiple_output_sparse_dense[coo_matrix]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_same_multiple_output_sparse_dense[coo_array]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_enet_coordinate_descent[csc_matrix]", "sklearn/tests/test_common.py::test_estimators[ElasticNetCV(cv=3,max_iter=5)-check_estimators_overwrite_params]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_enet_coordinate_descent[csc_array]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_read_only_buffer[True]", "sklearn/decomposition/tests/test_sparse_pca.py::test_fit_transform", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[csc_array-False-0-False]", "sklearn/tests/test_common.py::test_estimators[ElasticNetCV(cv=3,max_iter=5)-check_estimators_dtypes]", "sklearn/linear_model/tests/test_sparse_coordinate_descent.py::test_sparse_read_only_buffer[False]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[csc_array-False-0.5-True]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[csc_array-False-0.5-False]", "sklearn/tests/test_common.py::test_estimators[ElasticNetCV(cv=3,max_iter=5)-check_sample_weights_pandas_series]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[csc_array-False-1-True]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[csc_array-False-1-False]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[csc_array-True-0-True]", "sklearn/tests/test_common.py::test_estimators[ElasticNetCV(cv=3,max_iter=5)-check_sample_weights_not_an_array]", "sklearn/decomposition/tests/test_sparse_pca.py::test_fit_transform_tall", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[csc_array-True-0-False]", "sklearn/feature_selection/tests/test_from_model.py::test_coef_default_threshold[estimator0]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[csc_array-True-0.5-True]", "sklearn/feature_selection/tests/test_from_model.py::test_coef_default_threshold[estimator1]", "sklearn/tests/test_common.py::test_estimators[ElasticNetCV(cv=3,max_iter=5)-check_sample_weights_list]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[csc_array-True-0.5-False]", "sklearn/feature_selection/tests/test_from_model.py::test_coef_default_threshold[estimator2]", "sklearn/feature_selection/tests/test_from_model.py::test_coef_default_threshold[estimator3]", "sklearn/tests/test_common.py::test_estimators[ElasticNetCV(cv=3,max_iter=5)-check_sample_weights_shape]", "sklearn/decomposition/tests/test_dict_learning.py::test_sparse_encode_dtype_match[float32-lasso_cd]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[csc_array-True-1-True]", "sklearn/decomposition/tests/test_sparse_pca.py::test_sparse_pca_dtype_match[float32-float32-cd-SparsePCA]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-False-ElasticNet]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_cv_sample_weight_consistency[csc_array-True-1-False]", "sklearn/decomposition/tests/test_dict_learning.py::test_sparse_encode_dtype_match[float64-lasso_cd]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_alpha_max_sample_weight[sample_weight0-False-False]", "sklearn/decomposition/tests/test_sparse_pca.py::test_sparse_pca_dtype_match[float32-float32-cd-MiniBatchSparsePCA]", "sklearn/tests/test_common.py::test_estimators[ElasticNetCV(cv=3,max_iter=5)-check_sample_weights_not_overwritten]", "sklearn/decomposition/tests/test_dict_learning.py::test_sparse_encode_numerical_consistency[lasso_cd]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_alpha_max_sample_weight[sample_weight0-False-True]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-False-ElasticNetCV]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_alpha_max_sample_weight[sample_weight0-True-False]", "sklearn/decomposition/tests/test_dict_learning.py::test_sparse_coder_dtype_match[float32-lasso_cd]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-False-Lasso]", "sklearn/decomposition/tests/test_sparse_pca.py::test_sparse_pca_dtype_match[float64-float64-cd-SparsePCA]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-False-LassoCV]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_alpha_max_sample_weight[sample_weight0-True-True]", "sklearn/decomposition/tests/test_sparse_pca.py::test_sparse_pca_dtype_match[float64-float64-cd-MiniBatchSparsePCA]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_alpha_max_sample_weight[None-False-False]", "sklearn/tests/test_common.py::test_estimators[ElasticNetCV(cv=3,max_iter=5)-check_estimators_fit_returns_self]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_alpha_max_sample_weight[None-False-True]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-True-ElasticNet]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-True-ElasticNetCV]", "sklearn/decomposition/tests/test_dict_learning.py::test_sparse_coder_dtype_match[float64-lasso_cd]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-True-Lasso]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-True-LassoCV]", "sklearn/tests/test_common.py::test_estimators[ElasticNetCV(cv=3,max_iter=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/decomposition/tests/test_dict_learning.py::test_dictionary_learning_dtype_match[float32-float32-lasso_lars-cd]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_alpha_max_sample_weight[None-True-False]", "sklearn/decomposition/tests/test_sparse_pca.py::test_sparse_pca_dtype_match[int32-float64-cd-SparsePCA]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_alpha_max_sample_weight[None-True-True]", "sklearn/tests/test_common.py::test_estimators[ElasticNetCV(cv=3,max_iter=5)-check_dtype_object]", "sklearn/decomposition/tests/test_sparse_pca.py::test_sparse_pca_dtype_match[int32-float64-cd-MiniBatchSparsePCA]", "sklearn/decomposition/tests/test_dict_learning.py::test_dictionary_learning_dtype_match[float32-float32-lasso_cd-lars]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_models_cv_fit_with_loky[ElasticNetCV]", "sklearn/tests/test_common.py::test_estimators[ElasticNetCV(cv=3,max_iter=5)-check_pipeline_consistency]", "sklearn/decomposition/tests/test_sparse_pca.py::test_sparse_pca_dtype_match[int64-float64-cd-SparsePCA]", "sklearn/decomposition/tests/test_dict_learning.py::test_dictionary_learning_dtype_match[float32-float32-lasso_cd-cd]", "sklearn/decomposition/tests/test_sparse_pca.py::test_sparse_pca_dtype_match[int64-float64-cd-MiniBatchSparsePCA]", "sklearn/decomposition/tests/test_dict_learning.py::test_dictionary_learning_dtype_match[float32-float32-lars-cd]", "sklearn/decomposition/tests/test_sparse_pca.py::test_sparse_pca_numerical_consistency[cd-SparsePCA]", "sklearn/tests/test_common.py::test_estimators[ElasticNetCV(cv=3,max_iter=5)-check_estimators_nan_inf]", "sklearn/decomposition/tests/test_sparse_pca.py::test_sparse_pca_numerical_consistency[cd-MiniBatchSparsePCA]", "sklearn/decomposition/tests/test_dict_learning.py::test_dictionary_learning_dtype_match[float32-float32-threshold-cd]", "sklearn/tests/test_common.py::test_estimators[ElasticNetCV(cv=3,max_iter=5)-check_estimator_sparse_array]", "sklearn/decomposition/tests/test_dict_learning.py::test_dictionary_learning_dtype_match[float32-float32-omp-cd]", "sklearn/tests/test_common.py::test_estimators[ElasticNetCV(cv=3,max_iter=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[ElasticNetCV(cv=3,max_iter=5)-check_estimators_pickle]", "sklearn/decomposition/tests/test_dict_learning.py::test_dictionary_learning_dtype_match[float64-float64-lasso_lars-cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_dictionary_learning_dtype_match[float64-float64-lasso_cd-lars]", "sklearn/tests/test_common.py::test_estimators[ElasticNetCV(cv=3,max_iter=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/decomposition/tests/test_dict_learning.py::test_dictionary_learning_dtype_match[float64-float64-lasso_cd-cd]", "sklearn/tests/test_common.py::test_estimators[ElasticNetCV(cv=3,max_iter=5)-check_f_contiguous_array_estimator]", "sklearn/decomposition/tests/test_dict_learning.py::test_dictionary_learning_dtype_match[float64-float64-lars-cd]", "sklearn/tests/test_common.py::test_estimators[ElasticNetCV(cv=3,max_iter=5)-check_regressors_train]", "sklearn/decomposition/tests/test_dict_learning.py::test_dictionary_learning_dtype_match[float64-float64-threshold-cd]", "sklearn/tests/test_common.py::test_estimators[ElasticNetCV(cv=3,max_iter=5)-check_regressors_train(readonly_memmap=True)]", "sklearn/decomposition/tests/test_dict_learning.py::test_dictionary_learning_dtype_match[float64-float64-omp-cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_dictionary_learning_dtype_match[int32-float64-lasso_lars-cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_dictionary_learning_dtype_match[int32-float64-lasso_cd-lars]", "sklearn/tests/test_common.py::test_estimators[ElasticNetCV(cv=3,max_iter=5)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/linear_model/_coordinate_descent.py::sklearn.linear_model._coordinate_descent.ElasticNet", "sklearn/linear_model/_coordinate_descent.py::sklearn.linear_model._coordinate_descent.ElasticNetCV", "sklearn/tests/test_common.py::test_estimators[ElasticNetCV(cv=3,max_iter=5)-check_regressor_data_not_an_array]", "sklearn/decomposition/tests/test_dict_learning.py::test_dictionary_learning_dtype_match[int32-float64-lasso_cd-cd]", "sklearn/linear_model/_coordinate_descent.py::sklearn.linear_model._coordinate_descent.Lasso", "sklearn/linear_model/_coordinate_descent.py::sklearn.linear_model._coordinate_descent.LassoCV", "sklearn/linear_model/tests/test_coordinate_descent.py::test_linear_models_cv_fit_with_loky[LassoCV]", "sklearn/decomposition/tests/test_dict_learning.py::test_dictionary_learning_dtype_match[int32-float64-lars-cd]", "sklearn/tests/test_common.py::test_estimators[ElasticNetCV(cv=3,max_iter=5)-check_regressors_no_decision_function]", "sklearn/decomposition/tests/test_dict_learning.py::test_dictionary_learning_dtype_match[int32-float64-threshold-cd]", "sklearn/model_selection/_validation.py::sklearn.model_selection._validation.cross_val_predict", "sklearn/model_selection/_validation.py::sklearn.model_selection._validation.cross_val_score", "sklearn/model_selection/_validation.py::sklearn.model_selection._validation.cross_validate", "sklearn/decomposition/tests/test_dict_learning.py::test_dictionary_learning_dtype_match[int32-float64-omp-cd]", "sklearn/tests/test_common.py::test_estimators[ElasticNetCV(cv=3,max_iter=5)-check_supervised_y_2d]", "sklearn/decomposition/tests/test_dict_learning.py::test_dictionary_learning_dtype_match[int64-float64-lasso_lars-cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_dictionary_learning_dtype_match[int64-float64-lasso_cd-lars]", "sklearn/tests/test_common.py::test_estimators[ElasticNetCV(cv=3,max_iter=5)-check_regressors_int]", "sklearn/decomposition/tests/test_dict_learning.py::test_dictionary_learning_dtype_match[int64-float64-lasso_cd-cd]", "sklearn/tests/test_common.py::test_estimators[ElasticNetCV(cv=3,max_iter=5)-check_non_transformer_estimators_n_iter]", "sklearn/decomposition/tests/test_dict_learning.py::test_dictionary_learning_dtype_match[int64-float64-lars-cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_dictionary_learning_dtype_match[int64-float64-threshold-cd]", "sklearn/tests/test_common.py::test_estimators[ElasticNetCV(cv=3,max_iter=5)-check_methods_sample_order_invariance]", "sklearn/decomposition/tests/test_dict_learning.py::test_dictionary_learning_dtype_match[int64-float64-omp-cd]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_does_not_overwrite_sample_weight[True]", "sklearn/tests/test_common.py::test_estimators[ElasticNetCV(cv=3,max_iter=5)-check_methods_subset_invariance]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_does_not_overwrite_sample_weight[False]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_ridge_consistency[0.1]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[float32-float32-lasso_lars-cd]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_ridge_consistency[1.0]", "sklearn/tests/test_common.py::test_estimators[ElasticNetCV(cv=3,max_iter=5)-check_fit2d_1feature]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[float32-float32-lasso_cd-lars]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_ridge_consistency[1000000.0]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_sample_weight_invariance[estimator0]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[float32-float32-lasso_cd-cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[float32-float32-lars-cd]", "sklearn/tests/test_common.py::test_estimators[ElasticNetCV(cv=3,max_iter=5)-check_dict_unchanged]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[float32-float32-threshold-cd]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_sample_weight_invariance[estimator1]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_read_only_buffer", "sklearn/tests/test_common.py::test_estimators[ElasticNetCV(cv=3,max_iter=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[ElasticNetCV(cv=3,max_iter=5)-check_fit_idempotent]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[float32-float32-omp-cd]", "sklearn/tests/test_common.py::test_estimators[ElasticNetCV(cv=3,max_iter=5)-check_fit_check_is_fitted]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[float64-float64-lasso_lars-cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[float64-float64-lasso_cd-lars]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[float64-float64-lasso_cd-cd]", "sklearn/tests/test_common.py::test_estimators[ElasticNetCV(cv=3,max_iter=5)-check_n_features_in]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[float64-float64-lars-cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[float64-float64-threshold-cd]", "sklearn/tests/test_common.py::test_estimators[ElasticNetCV(cv=3,max_iter=5)-check_fit2d_predict1d]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[float64-float64-omp-cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[int32-float64-lasso_lars-cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[int32-float64-lasso_cd-lars]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[int32-float64-lasso_cd-cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[int32-float64-lars-cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[int32-float64-threshold-cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[int32-float64-omp-cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[int64-float64-lasso_lars-cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[int64-float64-lasso_cd-lars]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[int64-float64-lasso_cd-cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[int64-float64-lars-cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[int64-float64-threshold-cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[int64-float64-omp-cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_dtype_match[float32-float32-cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_dtype_match[float64-float64-cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_dtype_match[int32-float64-cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_dtype_match[int64-float64-cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_numerical_consistency[cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_online_dtype_match[float32-float32-cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_online_dtype_match[float64-float64-cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_online_dtype_match[int32-float64-cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_online_dtype_match[int64-float64-cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_online_numerical_consistency[cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_cd_work_on_joblib_memmapped_data", "sklearn/tests/test_metaestimators_metadata_routing.py::test_metadata_is_routed_correctly_to_splitter[ElasticNetCV]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_metadata_is_routed_correctly_to_splitter[LassoCV]", "sklearn/tests/test_common.py::test_estimators[Lasso(max_iter=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[Lasso(max_iter=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[Lasso(max_iter=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[Lasso(max_iter=5)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[Lasso(max_iter=5)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[Lasso(max_iter=5)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[Lasso(max_iter=5)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[Lasso(max_iter=5)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[Lasso(max_iter=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[Lasso(max_iter=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[Lasso(max_iter=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[Lasso(max_iter=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[Lasso(max_iter=5)-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[Lasso(max_iter=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[Lasso(max_iter=5)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[Lasso(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[Lasso(max_iter=5)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[Lasso(max_iter=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[Lasso(max_iter=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[Lasso(max_iter=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[Lasso(max_iter=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[Lasso(max_iter=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[Lasso(max_iter=5)-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[Lasso(max_iter=5)-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[Lasso(max_iter=5)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[Lasso(max_iter=5)-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[Lasso(max_iter=5)-check_regressor_multioutput]", "sklearn/tests/test_common.py::test_estimators[Lasso(max_iter=5)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[Lasso(max_iter=5)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[Lasso(max_iter=5)-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[Lasso(max_iter=5)-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[Lasso(max_iter=5)-check_non_transformer_estimators_n_iter]", "sklearn/tests/test_common.py::test_estimators[Lasso(max_iter=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[Lasso(max_iter=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[Lasso(max_iter=5)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[Lasso(max_iter=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[Lasso(max_iter=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[Lasso(max_iter=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[Lasso(max_iter=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[Lasso(max_iter=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[Lasso(max_iter=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[Lasso(max_iter=5)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[Lasso(max_iter=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[Lasso(max_iter=5)-check_requires_y_none]", "sklearn/tests/test_common.py::test_estimators[LassoCV(cv=3,max_iter=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[LassoCV(cv=3,max_iter=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[LassoCV(cv=3,max_iter=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[LassoCV(cv=3,max_iter=5)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[LassoCV(cv=3,max_iter=5)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[LassoCV(cv=3,max_iter=5)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[LassoCV(cv=3,max_iter=5)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[LassoCV(cv=3,max_iter=5)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[LassoCV(cv=3,max_iter=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[LassoCV(cv=3,max_iter=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[LassoCV(cv=3,max_iter=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[LassoCV(cv=3,max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[LassoCV(cv=3,max_iter=5)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[LassoCV(cv=3,max_iter=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[LassoCV(cv=3,max_iter=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[LassoCV(cv=3,max_iter=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[LassoCV(cv=3,max_iter=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[LassoCV(cv=3,max_iter=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[LassoCV(cv=3,max_iter=5)-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[LassoCV(cv=3,max_iter=5)-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[LassoCV(cv=3,max_iter=5)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[LassoCV(cv=3,max_iter=5)-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[LassoCV(cv=3,max_iter=5)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[LassoCV(cv=3,max_iter=5)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[LassoCV(cv=3,max_iter=5)-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[LassoCV(cv=3,max_iter=5)-check_non_transformer_estimators_n_iter]", "sklearn/tests/test_common.py::test_estimators[LassoCV(cv=3,max_iter=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[LassoCV(cv=3,max_iter=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[LassoCV(cv=3,max_iter=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[LassoCV(cv=3,max_iter=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[LassoCV(cv=3,max_iter=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[LassoCV(cv=3,max_iter=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[LassoCV(cv=3,max_iter=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[LassoCV(cv=3,max_iter=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[LassoCV(cv=3,max_iter=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[ElasticNet(max_iter=5)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[ElasticNetCV(cv=3,max_iter=5)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[Lasso(max_iter=5)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[LassoCV(cv=3,max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[ElasticNet(max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[ElasticNetCV(cv=3,max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[Lasso(max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[LassoCV(cv=3,max_iter=5)]", "sklearn/tests/test_common.py::test_check_param_validation[ElasticNet(max_iter=5)]", "sklearn/tests/test_common.py::test_check_param_validation[Lasso(max_iter=5)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[ElasticNet(max_iter=5)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[ElasticNetCV(cv=3,max_iter=5)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[Lasso(max_iter=5)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[LassoCV(cv=3,max_iter=5)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-39
1.0
{ "code": "diff --git b/sklearn/covariance/_empirical_covariance.py a/sklearn/covariance/_empirical_covariance.py\nindex c97aaab01..fc3d1dc07 100644\n--- b/sklearn/covariance/_empirical_covariance.py\n+++ a/sklearn/covariance/_empirical_covariance.py\n@@ -313,6 +313,27 @@ class EmpiricalCovariance(BaseEstimator):\n The Mean Squared Error (in the sense of the Frobenius norm) between\n `self` and `comp_cov` covariance estimators.\n \"\"\"\n+ # compute the error\n+ error = comp_cov - self.covariance_\n+ # compute the error norm\n+ if norm == \"frobenius\":\n+ squared_norm = np.sum(error**2)\n+ elif norm == \"spectral\":\n+ squared_norm = np.amax(linalg.svdvals(np.dot(error.T, error)))\n+ else:\n+ raise NotImplementedError(\n+ \"Only spectral and frobenius norms are implemented\"\n+ )\n+ # optionally scale the error norm\n+ if scaling:\n+ squared_norm = squared_norm / error.shape[0]\n+ # finally get either the squared norm or the norm\n+ if squared:\n+ result = squared_norm\n+ else:\n+ result = np.sqrt(squared_norm)\n+\n+ return result\n \n def mahalanobis(self, X):\n \"\"\"Compute the squared Mahalanobis distances of given observations.\n", "test": null }
null
{ "code": "diff --git a/sklearn/covariance/_empirical_covariance.py b/sklearn/covariance/_empirical_covariance.py\nindex fc3d1dc07..c97aaab01 100644\n--- a/sklearn/covariance/_empirical_covariance.py\n+++ b/sklearn/covariance/_empirical_covariance.py\n@@ -313,27 +313,6 @@ class EmpiricalCovariance(BaseEstimator):\n The Mean Squared Error (in the sense of the Frobenius norm) between\n `self` and `comp_cov` covariance estimators.\n \"\"\"\n- # compute the error\n- error = comp_cov - self.covariance_\n- # compute the error norm\n- if norm == \"frobenius\":\n- squared_norm = np.sum(error**2)\n- elif norm == \"spectral\":\n- squared_norm = np.amax(linalg.svdvals(np.dot(error.T, error)))\n- else:\n- raise NotImplementedError(\n- \"Only spectral and frobenius norms are implemented\"\n- )\n- # optionally scale the error norm\n- if scaling:\n- squared_norm = squared_norm / error.shape[0]\n- # finally get either the squared norm or the norm\n- if squared:\n- result = squared_norm\n- else:\n- result = np.sqrt(squared_norm)\n-\n- return result\n \n def mahalanobis(self, X):\n \"\"\"Compute the squared Mahalanobis distances of given observations.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/covariance/_empirical_covariance.py.\nHere is the description for the function:\n def error_norm(self, comp_cov, norm=\"frobenius\", scaling=True, squared=True):\n \"\"\"Compute the Mean Squared Error between two covariance estimators.\n\n Parameters\n ----------\n comp_cov : array-like of shape (n_features, n_features)\n The covariance to compare with.\n\n norm : {\"frobenius\", \"spectral\"}, default=\"frobenius\"\n The type of norm used to compute the error. Available error types:\n - 'frobenius' (default): sqrt(tr(A^t.A))\n - 'spectral': sqrt(max(eigenvalues(A^t.A))\n where A is the error ``(comp_cov - self.covariance_)``.\n\n scaling : bool, default=True\n If True (default), the squared error norm is divided by n_features.\n If False, the squared error norm is not rescaled.\n\n squared : bool, default=True\n Whether to compute the squared error norm or the error norm.\n If True (default), the squared error norm is returned.\n If False, the error norm is returned.\n\n Returns\n -------\n result : float\n The Mean Squared Error (in the sense of the Frobenius norm) between\n `self` and `comp_cov` covariance estimators.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/mixture/tests/test_gaussian_mixture.py::test_suffstat_sk_full", "sklearn/mixture/tests/test_gaussian_mixture.py::test_suffstat_sk_tied", "sklearn/mixture/tests/test_gaussian_mixture.py::test_suffstat_sk_diag", "sklearn/mixture/tests/test_gaussian_mixture.py::test_gaussian_mixture_fit", "sklearn/covariance/tests/test_covariance.py::test_covariance" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-40
1.0
{ "code": "diff --git b/sklearn/covariance/_empirical_covariance.py a/sklearn/covariance/_empirical_covariance.py\nindex 380cc72f0..fc3d1dc07 100644\n--- b/sklearn/covariance/_empirical_covariance.py\n+++ a/sklearn/covariance/_empirical_covariance.py\n@@ -225,6 +225,7 @@ class EmpiricalCovariance(BaseEstimator):\n precision = linalg.pinvh(self.covariance_, check_finite=False)\n return precision\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None):\n \"\"\"Fit the maximum likelihood covariance estimator to X.\n \n@@ -242,6 +243,15 @@ class EmpiricalCovariance(BaseEstimator):\n self : object\n Returns the instance itself.\n \"\"\"\n+ X = validate_data(self, X)\n+ if self.assume_centered:\n+ self.location_ = np.zeros(X.shape[1])\n+ else:\n+ self.location_ = X.mean(0)\n+ covariance = empirical_covariance(X, assume_centered=self.assume_centered)\n+ self._set_covariance(covariance)\n+\n+ return self\n \n def score(self, X_test, y=None):\n \"\"\"Compute the log-likelihood of `X_test` under the estimated Gaussian model.\n", "test": null }
null
{ "code": "diff --git a/sklearn/covariance/_empirical_covariance.py b/sklearn/covariance/_empirical_covariance.py\nindex fc3d1dc07..380cc72f0 100644\n--- a/sklearn/covariance/_empirical_covariance.py\n+++ b/sklearn/covariance/_empirical_covariance.py\n@@ -225,7 +225,6 @@ class EmpiricalCovariance(BaseEstimator):\n precision = linalg.pinvh(self.covariance_, check_finite=False)\n return precision\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None):\n \"\"\"Fit the maximum likelihood covariance estimator to X.\n \n@@ -243,15 +242,6 @@ class EmpiricalCovariance(BaseEstimator):\n self : object\n Returns the instance itself.\n \"\"\"\n- X = validate_data(self, X)\n- if self.assume_centered:\n- self.location_ = np.zeros(X.shape[1])\n- else:\n- self.location_ = X.mean(0)\n- covariance = empirical_covariance(X, assume_centered=self.assume_centered)\n- self._set_covariance(covariance)\n-\n- return self\n \n def score(self, X_test, y=None):\n \"\"\"Compute the log-likelihood of `X_test` under the estimated Gaussian model.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/covariance/_empirical_covariance.py.\nHere is the description for the function:\n def fit(self, X, y=None):\n \"\"\"Fit the maximum likelihood covariance estimator to X.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n Training data, where `n_samples` is the number of samples and\n `n_features` is the number of features.\n\n y : Ignored\n Not used, present for API consistency by convention.\n\n Returns\n -------\n self : object\n Returns the instance itself.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/mixture/tests/test_gaussian_mixture.py::test_suffstat_sk_full", "sklearn/tests/test_common.py::test_estimators[EmpiricalCovariance()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[EmpiricalCovariance()-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[EmpiricalCovariance()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[EmpiricalCovariance()-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[EmpiricalCovariance()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[EmpiricalCovariance()-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[EmpiricalCovariance()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[EmpiricalCovariance()-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[EmpiricalCovariance()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[EmpiricalCovariance()-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[EmpiricalCovariance()-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[EmpiricalCovariance()-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[EmpiricalCovariance()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[EmpiricalCovariance()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[EmpiricalCovariance()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[EmpiricalCovariance()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[EmpiricalCovariance()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[EmpiricalCovariance()-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[EmpiricalCovariance()-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[EmpiricalCovariance()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[EmpiricalCovariance()-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[EmpiricalCovariance()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[EmpiricalCovariance()-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[EmpiricalCovariance()-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[EmpiricalCovariance()-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[EmpiricalCovariance()-check_fit2d_predict1d]", "sklearn/covariance/tests/test_graphical_lasso.py::test_graphical_lasso_cv", "sklearn/covariance/tests/test_graphical_lasso.py::test_graphical_lasso_cv_alphas_iterable[list]", "sklearn/covariance/tests/test_graphical_lasso.py::test_graphical_lasso_cv_alphas_iterable[tuple]", "sklearn/covariance/tests/test_graphical_lasso.py::test_graphical_lasso_cv_alphas_iterable[array]", "sklearn/covariance/tests/test_covariance.py::test_covariance", "sklearn/covariance/tests/test_graphical_lasso.py::test_graphical_lasso_cv_scores", "sklearn/covariance/tests/test_covariance.py::test_EmpiricalCovariance_validates_mahalanobis", "sklearn/covariance/tests/test_graphical_lasso.py::test_graphical_lasso_cv_scores_with_routing[42]", "sklearn/covariance/_graph_lasso.py::sklearn.covariance._graph_lasso.GraphicalLassoCV", "sklearn/covariance/_empirical_covariance.py::sklearn.covariance._empirical_covariance.EmpiricalCovariance", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[GraphicalLassoCV(cv=3,max_iter=5)-check_fit2d_predict1d]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_metadata_is_routed_correctly_to_splitter[GraphicalLassoCV]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[EmpiricalCovariance()]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[GraphicalLassoCV(cv=3,max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[EmpiricalCovariance()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GraphicalLassoCV(cv=3,max_iter=5)]", "sklearn/tests/test_common.py::test_check_param_validation[EmpiricalCovariance()]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-41
1.0
{ "code": "diff --git b/sklearn/covariance/_empirical_covariance.py a/sklearn/covariance/_empirical_covariance.py\nindex 69643a032..fc3d1dc07 100644\n--- b/sklearn/covariance/_empirical_covariance.py\n+++ a/sklearn/covariance/_empirical_covariance.py\n@@ -350,3 +350,13 @@ class EmpiricalCovariance(BaseEstimator):\n dist : ndarray of shape (n_samples,)\n Squared Mahalanobis distances of the observations.\n \"\"\"\n+ X = validate_data(self, X, reset=False)\n+\n+ precision = self.get_precision()\n+ with config_context(assume_finite=True):\n+ # compute mahalanobis distances\n+ dist = pairwise_distances(\n+ X, self.location_[np.newaxis, :], metric=\"mahalanobis\", VI=precision\n+ )\n+\n+ return np.reshape(dist, (len(X),)) ** 2\n", "test": null }
null
{ "code": "diff --git a/sklearn/covariance/_empirical_covariance.py b/sklearn/covariance/_empirical_covariance.py\nindex fc3d1dc07..69643a032 100644\n--- a/sklearn/covariance/_empirical_covariance.py\n+++ b/sklearn/covariance/_empirical_covariance.py\n@@ -350,13 +350,3 @@ class EmpiricalCovariance(BaseEstimator):\n dist : ndarray of shape (n_samples,)\n Squared Mahalanobis distances of the observations.\n \"\"\"\n- X = validate_data(self, X, reset=False)\n-\n- precision = self.get_precision()\n- with config_context(assume_finite=True):\n- # compute mahalanobis distances\n- dist = pairwise_distances(\n- X, self.location_[np.newaxis, :], metric=\"mahalanobis\", VI=precision\n- )\n-\n- return np.reshape(dist, (len(X),)) ** 2\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/covariance/_empirical_covariance.py.\nHere is the description for the function:\n def mahalanobis(self, X):\n \"\"\"Compute the squared Mahalanobis distances of given observations.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n The observations, the Mahalanobis distances of the which we\n compute. Observations are assumed to be drawn from the same\n distribution than the data used in fit.\n\n Returns\n -------\n dist : ndarray of shape (n_samples,)\n Squared Mahalanobis distances of the observations.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_common.py::test_estimators[EllipticEnvelope()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[EllipticEnvelope()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[EllipticEnvelope()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[EllipticEnvelope()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[EllipticEnvelope()-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[EllipticEnvelope()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[EllipticEnvelope()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[EllipticEnvelope()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[EllipticEnvelope()-check_outliers_fit_predict]", "sklearn/tests/test_common.py::test_estimators[EllipticEnvelope()-check_outliers_train]", "sklearn/tests/test_common.py::test_estimators[EllipticEnvelope()-check_outliers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[EllipticEnvelope()-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[EllipticEnvelope()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[EllipticEnvelope()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[EllipticEnvelope()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[EllipticEnvelope()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[EllipticEnvelope()-check_fit2d_predict1d]", "sklearn/covariance/tests/test_covariance.py::test_covariance", "sklearn/covariance/tests/test_robust_covariance.py::test_mcd[42]", "sklearn/covariance/tests/test_covariance.py::test_EmpiricalCovariance_validates_mahalanobis", "sklearn/covariance/tests/test_elliptic_envelope.py::test_elliptic_envelope[42]", "sklearn/covariance/tests/test_elliptic_envelope.py::test_score_samples", "sklearn/covariance/_elliptic_envelope.py::sklearn.covariance._elliptic_envelope.EllipticEnvelope", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[EllipticEnvelope()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[EllipticEnvelope()]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-42
1.0
{ "code": "diff --git b/sklearn/decomposition/_factor_analysis.py a/sklearn/decomposition/_factor_analysis.py\nindex cf48d17e1..8f30fe0d0 100644\n--- b/sklearn/decomposition/_factor_analysis.py\n+++ a/sklearn/decomposition/_factor_analysis.py\n@@ -199,6 +199,7 @@ class FactorAnalysis(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEsti\n self.random_state = random_state\n self.rotation = rotation\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None):\n \"\"\"Fit the FactorAnalysis model to X using SVD based approach.\n \n@@ -215,6 +216,97 @@ class FactorAnalysis(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEsti\n self : object\n FactorAnalysis class instance.\n \"\"\"\n+ X = validate_data(\n+ self, X, copy=self.copy, dtype=np.float64, force_writeable=True\n+ )\n+\n+ n_samples, n_features = X.shape\n+ n_components = self.n_components\n+ if n_components is None:\n+ n_components = n_features\n+\n+ self.mean_ = np.mean(X, axis=0)\n+ X -= self.mean_\n+\n+ # some constant terms\n+ nsqrt = sqrt(n_samples)\n+ llconst = n_features * log(2.0 * np.pi) + n_components\n+ var = np.var(X, axis=0)\n+\n+ if self.noise_variance_init is None:\n+ psi = np.ones(n_features, dtype=X.dtype)\n+ else:\n+ if len(self.noise_variance_init) != n_features:\n+ raise ValueError(\n+ \"noise_variance_init dimension does not \"\n+ \"with number of features : %d != %d\"\n+ % (len(self.noise_variance_init), n_features)\n+ )\n+ psi = np.array(self.noise_variance_init)\n+\n+ loglike = []\n+ old_ll = -np.inf\n+ SMALL = 1e-12\n+\n+ # we'll modify svd outputs to return unexplained variance\n+ # to allow for unified computation of loglikelihood\n+ if self.svd_method == \"lapack\":\n+\n+ def my_svd(X):\n+ _, s, Vt = linalg.svd(X, full_matrices=False, check_finite=False)\n+ return (\n+ s[:n_components],\n+ Vt[:n_components],\n+ squared_norm(s[n_components:]),\n+ )\n+\n+ else: # svd_method == \"randomized\"\n+ random_state = check_random_state(self.random_state)\n+\n+ def my_svd(X):\n+ _, s, Vt = randomized_svd(\n+ X,\n+ n_components,\n+ random_state=random_state,\n+ n_iter=self.iterated_power,\n+ )\n+ return s, Vt, squared_norm(X) - squared_norm(s)\n+\n+ for i in range(self.max_iter):\n+ # SMALL helps numerics\n+ sqrt_psi = np.sqrt(psi) + SMALL\n+ s, Vt, unexp_var = my_svd(X / (sqrt_psi * nsqrt))\n+ s **= 2\n+ # Use 'maximum' here to avoid sqrt problems.\n+ W = np.sqrt(np.maximum(s - 1.0, 0.0))[:, np.newaxis] * Vt\n+ del Vt\n+ W *= sqrt_psi\n+\n+ # loglikelihood\n+ ll = llconst + np.sum(np.log(s))\n+ ll += unexp_var + np.sum(np.log(psi))\n+ ll *= -n_samples / 2.0\n+ loglike.append(ll)\n+ if (ll - old_ll) < self.tol:\n+ break\n+ old_ll = ll\n+\n+ psi = np.maximum(var - np.sum(W**2, axis=0), SMALL)\n+ else:\n+ warnings.warn(\n+ \"FactorAnalysis did not converge.\"\n+ + \" You might want\"\n+ + \" to increase the number of iterations.\",\n+ ConvergenceWarning,\n+ )\n+\n+ self.components_ = W\n+ if self.rotation is not None:\n+ self.components_ = self._rotate(W)\n+ self.noise_variance_ = psi\n+ self.loglike_ = loglike\n+ self.n_iter_ = i + 1\n+ return self\n \n def transform(self, X):\n \"\"\"Apply dimensionality reduction to X using the model.\n", "test": null }
null
{ "code": "diff --git a/sklearn/decomposition/_factor_analysis.py b/sklearn/decomposition/_factor_analysis.py\nindex 8f30fe0d0..cf48d17e1 100644\n--- a/sklearn/decomposition/_factor_analysis.py\n+++ b/sklearn/decomposition/_factor_analysis.py\n@@ -199,7 +199,6 @@ class FactorAnalysis(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEsti\n self.random_state = random_state\n self.rotation = rotation\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None):\n \"\"\"Fit the FactorAnalysis model to X using SVD based approach.\n \n@@ -216,97 +215,6 @@ class FactorAnalysis(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEsti\n self : object\n FactorAnalysis class instance.\n \"\"\"\n- X = validate_data(\n- self, X, copy=self.copy, dtype=np.float64, force_writeable=True\n- )\n-\n- n_samples, n_features = X.shape\n- n_components = self.n_components\n- if n_components is None:\n- n_components = n_features\n-\n- self.mean_ = np.mean(X, axis=0)\n- X -= self.mean_\n-\n- # some constant terms\n- nsqrt = sqrt(n_samples)\n- llconst = n_features * log(2.0 * np.pi) + n_components\n- var = np.var(X, axis=0)\n-\n- if self.noise_variance_init is None:\n- psi = np.ones(n_features, dtype=X.dtype)\n- else:\n- if len(self.noise_variance_init) != n_features:\n- raise ValueError(\n- \"noise_variance_init dimension does not \"\n- \"with number of features : %d != %d\"\n- % (len(self.noise_variance_init), n_features)\n- )\n- psi = np.array(self.noise_variance_init)\n-\n- loglike = []\n- old_ll = -np.inf\n- SMALL = 1e-12\n-\n- # we'll modify svd outputs to return unexplained variance\n- # to allow for unified computation of loglikelihood\n- if self.svd_method == \"lapack\":\n-\n- def my_svd(X):\n- _, s, Vt = linalg.svd(X, full_matrices=False, check_finite=False)\n- return (\n- s[:n_components],\n- Vt[:n_components],\n- squared_norm(s[n_components:]),\n- )\n-\n- else: # svd_method == \"randomized\"\n- random_state = check_random_state(self.random_state)\n-\n- def my_svd(X):\n- _, s, Vt = randomized_svd(\n- X,\n- n_components,\n- random_state=random_state,\n- n_iter=self.iterated_power,\n- )\n- return s, Vt, squared_norm(X) - squared_norm(s)\n-\n- for i in range(self.max_iter):\n- # SMALL helps numerics\n- sqrt_psi = np.sqrt(psi) + SMALL\n- s, Vt, unexp_var = my_svd(X / (sqrt_psi * nsqrt))\n- s **= 2\n- # Use 'maximum' here to avoid sqrt problems.\n- W = np.sqrt(np.maximum(s - 1.0, 0.0))[:, np.newaxis] * Vt\n- del Vt\n- W *= sqrt_psi\n-\n- # loglikelihood\n- ll = llconst + np.sum(np.log(s))\n- ll += unexp_var + np.sum(np.log(psi))\n- ll *= -n_samples / 2.0\n- loglike.append(ll)\n- if (ll - old_ll) < self.tol:\n- break\n- old_ll = ll\n-\n- psi = np.maximum(var - np.sum(W**2, axis=0), SMALL)\n- else:\n- warnings.warn(\n- \"FactorAnalysis did not converge.\"\n- + \" You might want\"\n- + \" to increase the number of iterations.\",\n- ConvergenceWarning,\n- )\n-\n- self.components_ = W\n- if self.rotation is not None:\n- self.components_ = self._rotate(W)\n- self.noise_variance_ = psi\n- self.loglike_ = loglike\n- self.n_iter_ = i + 1\n- return self\n \n def transform(self, X):\n \"\"\"Apply dimensionality reduction to X using the model.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/decomposition/_factor_analysis.py.\nHere is the description for the function:\n def fit(self, X, y=None):\n \"\"\"Fit the FactorAnalysis model to X using SVD based approach.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n Training data.\n\n y : Ignored\n Ignored parameter.\n\n Returns\n -------\n self : object\n FactorAnalysis class instance.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_common.py::test_estimators[FactorAnalysis(max_iter=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[FactorAnalysis(max_iter=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[FactorAnalysis(max_iter=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[FactorAnalysis(max_iter=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[FactorAnalysis(max_iter=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[FactorAnalysis(max_iter=5)-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[FactorAnalysis(max_iter=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[FactorAnalysis(max_iter=5)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[FactorAnalysis(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[FactorAnalysis(max_iter=5)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[FactorAnalysis(max_iter=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[FactorAnalysis(max_iter=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[FactorAnalysis(max_iter=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[FactorAnalysis(max_iter=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[FactorAnalysis(max_iter=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[FactorAnalysis(max_iter=5)-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[FactorAnalysis(max_iter=5)-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[FactorAnalysis(max_iter=5)-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[FactorAnalysis(max_iter=5)-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[FactorAnalysis(max_iter=5)-check_transformer_n_iter]", "sklearn/tests/test_common.py::test_estimators[FactorAnalysis(max_iter=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[FactorAnalysis(max_iter=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[FactorAnalysis(max_iter=5)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[FactorAnalysis(max_iter=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[FactorAnalysis(max_iter=5,n_components=1)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[FactorAnalysis(max_iter=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[FactorAnalysis(max_iter=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[FactorAnalysis(max_iter=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[FactorAnalysis(max_iter=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[FactorAnalysis(max_iter=5)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[FactorAnalysis(max_iter=5)-check_fit2d_predict1d]", "sklearn/decomposition/tests/test_factor_analysis.py::test_factor_analysis[42]", "sklearn/decomposition/_factor_analysis.py::sklearn.decomposition._factor_analysis.FactorAnalysis", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[FactorAnalysis(max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[FactorAnalysis(max_iter=5)]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[FactorAnalysis(max_iter=5)]", "sklearn/tests/test_common.py::test_check_param_validation[FactorAnalysis(max_iter=5)]", "sklearn/tests/test_common.py::test_set_output_transform[FactorAnalysis(max_iter=5)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-FactorAnalysis(max_iter=5)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-FactorAnalysis(max_iter=5)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[FactorAnalysis(max_iter=5)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-43
1.0
{ "code": "diff --git b/sklearn/decomposition/_factor_analysis.py a/sklearn/decomposition/_factor_analysis.py\nindex c747a8c2a..8f30fe0d0 100644\n--- b/sklearn/decomposition/_factor_analysis.py\n+++ a/sklearn/decomposition/_factor_analysis.py\n@@ -395,6 +395,14 @@ class FactorAnalysis(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEsti\n ll : ndarray of shape (n_samples,)\n Log-likelihood of each sample under the current model.\n \"\"\"\n+ check_is_fitted(self)\n+ X = validate_data(self, X, reset=False)\n+ Xr = X - self.mean_\n+ precision = self.get_precision()\n+ n_features = X.shape[1]\n+ log_like = -0.5 * (Xr * (np.dot(Xr, precision))).sum(axis=1)\n+ log_like -= 0.5 * (n_features * log(2.0 * np.pi) - fast_logdet(precision))\n+ return log_like\n \n def score(self, X, y=None):\n \"\"\"Compute the average log-likelihood of the samples.\n", "test": null }
null
{ "code": "diff --git a/sklearn/decomposition/_factor_analysis.py b/sklearn/decomposition/_factor_analysis.py\nindex 8f30fe0d0..c747a8c2a 100644\n--- a/sklearn/decomposition/_factor_analysis.py\n+++ b/sklearn/decomposition/_factor_analysis.py\n@@ -395,14 +395,6 @@ class FactorAnalysis(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEsti\n ll : ndarray of shape (n_samples,)\n Log-likelihood of each sample under the current model.\n \"\"\"\n- check_is_fitted(self)\n- X = validate_data(self, X, reset=False)\n- Xr = X - self.mean_\n- precision = self.get_precision()\n- n_features = X.shape[1]\n- log_like = -0.5 * (Xr * (np.dot(Xr, precision))).sum(axis=1)\n- log_like -= 0.5 * (n_features * log(2.0 * np.pi) - fast_logdet(precision))\n- return log_like\n \n def score(self, X, y=None):\n \"\"\"Compute the average log-likelihood of the samples.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/decomposition/_factor_analysis.py.\nHere is the description for the function:\n def score_samples(self, X):\n \"\"\"Compute the log-likelihood of each sample.\n\n Parameters\n ----------\n X : ndarray of shape (n_samples, n_features)\n The data.\n\n Returns\n -------\n ll : ndarray of shape (n_samples,)\n Log-likelihood of each sample under the current model.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_common.py::test_estimators[FactorAnalysis(max_iter=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[FactorAnalysis(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[FactorAnalysis(max_iter=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[FactorAnalysis(max_iter=5)-check_methods_subset_invariance]", "sklearn/decomposition/tests/test_factor_analysis.py::test_factor_analysis[42]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[FactorAnalysis(max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[FactorAnalysis(max_iter=5)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-44
1.0
{ "code": "diff --git b/sklearn/decomposition/_factor_analysis.py a/sklearn/decomposition/_factor_analysis.py\nindex 14eeaf854..8f30fe0d0 100644\n--- b/sklearn/decomposition/_factor_analysis.py\n+++ a/sklearn/decomposition/_factor_analysis.py\n@@ -324,6 +324,19 @@ class FactorAnalysis(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEsti\n X_new : ndarray of shape (n_samples, n_components)\n The latent variables of X.\n \"\"\"\n+ check_is_fitted(self)\n+\n+ X = validate_data(self, X, reset=False)\n+ Ih = np.eye(len(self.components_))\n+\n+ X_transformed = X - self.mean_\n+\n+ Wpsi = self.components_ / self.noise_variance_\n+ cov_z = linalg.inv(Ih + np.dot(Wpsi, self.components_.T))\n+ tmp = np.dot(X_transformed, Wpsi.T)\n+ X_transformed = np.dot(tmp, cov_z)\n+\n+ return X_transformed\n \n def get_covariance(self):\n \"\"\"Compute data covariance with the FactorAnalysis model.\n", "test": null }
null
{ "code": "diff --git a/sklearn/decomposition/_factor_analysis.py b/sklearn/decomposition/_factor_analysis.py\nindex 8f30fe0d0..14eeaf854 100644\n--- a/sklearn/decomposition/_factor_analysis.py\n+++ b/sklearn/decomposition/_factor_analysis.py\n@@ -324,19 +324,6 @@ class FactorAnalysis(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEsti\n X_new : ndarray of shape (n_samples, n_components)\n The latent variables of X.\n \"\"\"\n- check_is_fitted(self)\n-\n- X = validate_data(self, X, reset=False)\n- Ih = np.eye(len(self.components_))\n-\n- X_transformed = X - self.mean_\n-\n- Wpsi = self.components_ / self.noise_variance_\n- cov_z = linalg.inv(Ih + np.dot(Wpsi, self.components_.T))\n- tmp = np.dot(X_transformed, Wpsi.T)\n- X_transformed = np.dot(tmp, cov_z)\n-\n- return X_transformed\n \n def get_covariance(self):\n \"\"\"Compute data covariance with the FactorAnalysis model.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/decomposition/_factor_analysis.py.\nHere is the description for the function:\n def transform(self, X):\n \"\"\"Apply dimensionality reduction to X using the model.\n\n Compute the expected mean of the latent variables.\n See Barber, 21.2.33 (or Bishop, 12.66).\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n Training data.\n\n Returns\n -------\n X_new : ndarray of shape (n_samples, n_components)\n The latent variables of X.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_common.py::test_estimators[FactorAnalysis(max_iter=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[FactorAnalysis(max_iter=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[FactorAnalysis(max_iter=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[FactorAnalysis(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[FactorAnalysis(max_iter=5)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[FactorAnalysis(max_iter=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[FactorAnalysis(max_iter=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[FactorAnalysis(max_iter=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[FactorAnalysis(max_iter=5)-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[FactorAnalysis(max_iter=5)-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[FactorAnalysis(max_iter=5)-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[FactorAnalysis(max_iter=5)-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[FactorAnalysis(max_iter=5)-check_transformers_unfitted]", "sklearn/tests/test_common.py::test_estimators[FactorAnalysis(max_iter=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[FactorAnalysis(max_iter=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[FactorAnalysis(max_iter=5,n_components=1)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[FactorAnalysis(max_iter=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[FactorAnalysis(max_iter=5)-check_fit2d_predict1d]", "sklearn/decomposition/_factor_analysis.py::sklearn.decomposition._factor_analysis.FactorAnalysis", "sklearn/decomposition/tests/test_factor_analysis.py::test_factor_analysis[42]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[FactorAnalysis(max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[FactorAnalysis(max_iter=5)]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[FactorAnalysis(max_iter=5)]", "sklearn/tests/test_common.py::test_set_output_transform[FactorAnalysis(max_iter=5)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-FactorAnalysis(max_iter=5)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-FactorAnalysis(max_iter=5)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[FactorAnalysis(max_iter=5)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-45
1.0
{ "code": "diff --git b/sklearn/decomposition/_fastica.py a/sklearn/decomposition/_fastica.py\nindex 1e43c8105..2ef616294 100644\n--- b/sklearn/decomposition/_fastica.py\n+++ a/sklearn/decomposition/_fastica.py\n@@ -754,6 +754,19 @@ class FastICA(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator):\n Estimated sources obtained by transforming the data with the\n estimated unmixing matrix.\n \"\"\"\n+ check_is_fitted(self)\n+\n+ X = validate_data(\n+ self,\n+ X,\n+ copy=(copy and self.whiten),\n+ dtype=[np.float64, np.float32],\n+ reset=False,\n+ )\n+ if self.whiten:\n+ X -= self.mean_\n+\n+ return np.dot(X, self.components_.T)\n \n def inverse_transform(self, X, copy=True):\n \"\"\"Transform the sources back to the mixed data (apply mixing matrix).\n", "test": null }
null
{ "code": "diff --git a/sklearn/decomposition/_fastica.py b/sklearn/decomposition/_fastica.py\nindex 2ef616294..1e43c8105 100644\n--- a/sklearn/decomposition/_fastica.py\n+++ b/sklearn/decomposition/_fastica.py\n@@ -754,19 +754,6 @@ class FastICA(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator):\n Estimated sources obtained by transforming the data with the\n estimated unmixing matrix.\n \"\"\"\n- check_is_fitted(self)\n-\n- X = validate_data(\n- self,\n- X,\n- copy=(copy and self.whiten),\n- dtype=[np.float64, np.float32],\n- reset=False,\n- )\n- if self.whiten:\n- X -= self.mean_\n-\n- return np.dot(X, self.components_.T)\n \n def inverse_transform(self, X, copy=True):\n \"\"\"Transform the sources back to the mixed data (apply mixing matrix).\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/decomposition/_fastica.py.\nHere is the description for the function:\n def transform(self, X, copy=True):\n \"\"\"Recover the sources from X (apply the unmixing matrix).\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n Data to transform, where `n_samples` is the number of samples\n and `n_features` is the number of features.\n\n copy : bool, default=True\n If False, data passed to fit can be overwritten. Defaults to True.\n\n Returns\n -------\n X_new : ndarray of shape (n_samples, n_components)\n Estimated sources obtained by transforming the data with the\n estimated unmixing matrix.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_common.py::test_estimators[FastICA(max_iter=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[FastICA(max_iter=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[FastICA(max_iter=5)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[FastICA(max_iter=5)-check_estimators_pickle]", "sklearn/decomposition/tests/test_fastica.py::test_fastica_simple[float64-42-True]", "sklearn/tests/test_common.py::test_estimators[FastICA(max_iter=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[FastICA(max_iter=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[FastICA(max_iter=5)-check_transformer_data_not_an_array]", "sklearn/decomposition/tests/test_fastica.py::test_fastica_simple[float64-42-False]", "sklearn/tests/test_common.py::test_estimators[FastICA(max_iter=5)-check_transformer_general]", "sklearn/decomposition/tests/test_fastica.py::test_fit_transform[float64-42]", "sklearn/tests/test_common.py::test_estimators[FastICA(max_iter=5)-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[FastICA(max_iter=5)-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[FastICA(max_iter=5)-check_transformers_unfitted]", "sklearn/tests/test_common.py::test_estimators[FastICA(max_iter=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[FastICA(max_iter=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[FastICA(max_iter=5,n_components=1)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[FastICA(max_iter=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[FastICA(max_iter=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[FastICA(max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[FastICA(max_iter=5)]", "sklearn/tests/test_common.py::test_set_output_transform[FastICA(max_iter=5)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-FastICA(max_iter=5)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-FastICA(max_iter=5)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-46
1.0
{ "code": "diff --git b/sklearn/feature_extraction/_hash.py a/sklearn/feature_extraction/_hash.py\nindex 7f566e2ae..45570a523 100644\n--- b/sklearn/feature_extraction/_hash.py\n+++ a/sklearn/feature_extraction/_hash.py\n@@ -163,6 +163,35 @@ class FeatureHasher(TransformerMixin, BaseEstimator):\n X : sparse matrix of shape (n_samples, n_features)\n Feature matrix, for use with estimators or further transformers.\n \"\"\"\n+ raw_X = iter(raw_X)\n+ if self.input_type == \"dict\":\n+ raw_X = (_iteritems(d) for d in raw_X)\n+ elif self.input_type == \"string\":\n+ first_raw_X = next(raw_X)\n+ if isinstance(first_raw_X, str):\n+ raise ValueError(\n+ \"Samples can not be a single string. The input must be an iterable\"\n+ \" over iterables of strings.\"\n+ )\n+ raw_X_ = chain([first_raw_X], raw_X)\n+ raw_X = (((f, 1) for f in x) for x in raw_X_)\n+\n+ indices, indptr, values = _hashing_transform(\n+ raw_X, self.n_features, self.dtype, self.alternate_sign, seed=0\n+ )\n+ n_samples = indptr.shape[0] - 1\n+\n+ if n_samples == 0:\n+ raise ValueError(\"Cannot vectorize empty sequence.\")\n+\n+ X = sp.csr_matrix(\n+ (values, indices, indptr),\n+ dtype=self.dtype,\n+ shape=(n_samples, self.n_features),\n+ )\n+ X.sum_duplicates() # also sorts the indices\n+\n+ return X\n \n def __sklearn_tags__(self):\n tags = super().__sklearn_tags__()\n", "test": null }
null
{ "code": "diff --git a/sklearn/feature_extraction/_hash.py b/sklearn/feature_extraction/_hash.py\nindex 45570a523..7f566e2ae 100644\n--- a/sklearn/feature_extraction/_hash.py\n+++ b/sklearn/feature_extraction/_hash.py\n@@ -163,35 +163,6 @@ class FeatureHasher(TransformerMixin, BaseEstimator):\n X : sparse matrix of shape (n_samples, n_features)\n Feature matrix, for use with estimators or further transformers.\n \"\"\"\n- raw_X = iter(raw_X)\n- if self.input_type == \"dict\":\n- raw_X = (_iteritems(d) for d in raw_X)\n- elif self.input_type == \"string\":\n- first_raw_X = next(raw_X)\n- if isinstance(first_raw_X, str):\n- raise ValueError(\n- \"Samples can not be a single string. The input must be an iterable\"\n- \" over iterables of strings.\"\n- )\n- raw_X_ = chain([first_raw_X], raw_X)\n- raw_X = (((f, 1) for f in x) for x in raw_X_)\n-\n- indices, indptr, values = _hashing_transform(\n- raw_X, self.n_features, self.dtype, self.alternate_sign, seed=0\n- )\n- n_samples = indptr.shape[0] - 1\n-\n- if n_samples == 0:\n- raise ValueError(\"Cannot vectorize empty sequence.\")\n-\n- X = sp.csr_matrix(\n- (values, indices, indptr),\n- dtype=self.dtype,\n- shape=(n_samples, self.n_features),\n- )\n- X.sum_duplicates() # also sorts the indices\n-\n- return X\n \n def __sklearn_tags__(self):\n tags = super().__sklearn_tags__()\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/feature_extraction/_hash.py.\nHere is the description for the function:\n def transform(self, raw_X):\n \"\"\"Transform a sequence of instances to a scipy.sparse matrix.\n\n Parameters\n ----------\n raw_X : iterable over iterable over raw features, length = n_samples\n Samples. Each sample must be iterable an (e.g., a list or tuple)\n containing/generating feature names (and optionally values, see\n the input_type constructor argument) which will be hashed.\n raw_X need not support the len function, so it can be the result\n of a generator; n_samples is determined on the fly.\n\n Returns\n -------\n X : sparse matrix of shape (n_samples, n_features)\n Feature matrix, for use with estimators or further transformers.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/feature_extraction/tests/test_text.py::test_hashing_vectorizer", "sklearn/feature_extraction/tests/test_text.py::test_hashed_binary_occurrences", "sklearn/feature_extraction/tests/test_text.py::test_vectorizer_unicode", "sklearn/feature_extraction/tests/test_text.py::test_pickling_vectorizer", "sklearn/feature_extraction/tests/test_text.py::test_hashingvectorizer_nan_in_docs", "sklearn/feature_extraction/tests/test_text.py::test_vectorizer_stop_words_inconsistent", "sklearn/feature_extraction/tests/test_text.py::test_stop_word_validation_custom_preprocessor[HashingVectorizer]", "sklearn/feature_extraction/tests/test_text.py::test_callable_analyzer_error[filename-FileNotFoundError--HashingVectorizer]", "sklearn/feature_extraction/tests/test_text.py::test_callable_analyzer_error[file-AttributeError-'str' object has no attribute 'read'-HashingVectorizer]", "sklearn/feature_extraction/tests/test_text.py::test_callable_analyzer_change_behavior[file-<lambda>0-HashingVectorizer]", "sklearn/feature_extraction/tests/test_text.py::test_callable_analyzer_change_behavior[file-<lambda>1-HashingVectorizer]", "sklearn/feature_extraction/tests/test_text.py::test_callable_analyzer_change_behavior[filename-<lambda>0-HashingVectorizer]", "sklearn/feature_extraction/tests/test_text.py::test_callable_analyzer_change_behavior[filename-<lambda>1-HashingVectorizer]", "sklearn/feature_extraction/tests/test_text.py::test_callable_analyzer_reraise_error[HashingVectorizer]", "sklearn/feature_extraction/tests/test_text.py::test_nonnegative_hashing_vectorizer_result_indices", "sklearn/feature_extraction/tests/test_feature_hasher.py::test_feature_hasher_dicts", "sklearn/feature_extraction/tests/test_feature_hasher.py::test_feature_hasher_strings", "sklearn/feature_extraction/tests/test_feature_hasher.py::test_feature_hasher_single_string[list]", "sklearn/feature_extraction/tests/test_feature_hasher.py::test_feature_hasher_single_string[generator]", "sklearn/feature_extraction/tests/test_feature_hasher.py::test_feature_hasher_pairs", "sklearn/feature_extraction/tests/test_feature_hasher.py::test_feature_hasher_pairs_with_string_values", "sklearn/feature_extraction/tests/test_feature_hasher.py::test_hash_empty_input", "sklearn/feature_extraction/tests/test_feature_hasher.py::test_hasher_zeros", "sklearn/feature_extraction/tests/test_feature_hasher.py::test_hasher_alternate_sign", "sklearn/feature_extraction/tests/test_feature_hasher.py::test_hash_collisions", "sklearn/feature_extraction/text.py::sklearn.feature_extraction.text.HashingVectorizer", "sklearn/feature_extraction/_hash.py::sklearn.feature_extraction._hash.FeatureHasher" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-47
1.0
{ "code": "diff --git b/sklearn/pipeline.py a/sklearn/pipeline.py\nindex 76f891d70..6ea44888c 100644\n--- b/sklearn/pipeline.py\n+++ a/sklearn/pipeline.py\n@@ -1639,6 +1639,23 @@ class FeatureUnion(TransformerMixin, _BaseComposition):\n self : object\n FeatureUnion class instance.\n \"\"\"\n+ if _routing_enabled():\n+ routed_params = process_routing(self, \"fit\", **fit_params)\n+ else:\n+ # TODO(SLEP6): remove when metadata routing cannot be disabled.\n+ routed_params = Bunch()\n+ for name, _ in self.transformer_list:\n+ routed_params[name] = Bunch(fit={})\n+ routed_params[name].fit = fit_params\n+\n+ transformers = self._parallel_func(X, y, _fit_one, routed_params)\n+\n+ if not transformers:\n+ # All transformers are None\n+ return self\n+\n+ self._update_transformer_list(transformers)\n+ return self\n \n def fit_transform(self, X, y=None, **params):\n \"\"\"Fit all transformers, transform the data and concatenate results.\n", "test": null }
null
{ "code": "diff --git a/sklearn/pipeline.py b/sklearn/pipeline.py\nindex 6ea44888c..76f891d70 100644\n--- a/sklearn/pipeline.py\n+++ b/sklearn/pipeline.py\n@@ -1639,23 +1639,6 @@ class FeatureUnion(TransformerMixin, _BaseComposition):\n self : object\n FeatureUnion class instance.\n \"\"\"\n- if _routing_enabled():\n- routed_params = process_routing(self, \"fit\", **fit_params)\n- else:\n- # TODO(SLEP6): remove when metadata routing cannot be disabled.\n- routed_params = Bunch()\n- for name, _ in self.transformer_list:\n- routed_params[name] = Bunch(fit={})\n- routed_params[name].fit = fit_params\n-\n- transformers = self._parallel_func(X, y, _fit_one, routed_params)\n-\n- if not transformers:\n- # All transformers are None\n- return self\n-\n- self._update_transformer_list(transformers)\n- return self\n \n def fit_transform(self, X, y=None, **params):\n \"\"\"Fit all transformers, transform the data and concatenate results.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/pipeline.py.\nHere is the description for the function:\n def fit(self, X, y=None, **fit_params):\n \"\"\"Fit all transformers using X.\n\n Parameters\n ----------\n X : iterable or array-like, depending on transformers\n Input data, used to fit transformers.\n\n y : array-like of shape (n_samples, n_outputs), default=None\n Targets for supervised learning.\n\n **fit_params : dict, default=None\n - If `enable_metadata_routing=False` (default):\n Parameters directly passed to the `fit` methods of the\n sub-transformers.\n\n - If `enable_metadata_routing=True`:\n Parameters safely routed to the `fit` methods of the\n sub-transformers. See :ref:`Metadata Routing User Guide\n <metadata_routing>` for more details.\n\n .. versionchanged:: 1.5\n `**fit_params` can be routed via metadata routing API.\n\n Returns\n -------\n self : object\n FeatureUnion class instance.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_pipeline.py::test_feature_union[csr_matrix]", "sklearn/tests/test_pipeline.py::test_feature_union[csr_array]", "sklearn/tests/test_pipeline.py::test_feature_union_weights", "sklearn/tests/test_pipeline.py::test_feature_union_parallel", "sklearn/tests/test_pipeline.py::test_feature_union_feature_names", "sklearn/tests/test_pipeline.py::test_set_feature_union_step_drop", "sklearn/tests/test_pipeline.py::test_set_feature_union_passthrough", "sklearn/tests/test_pipeline.py::test_feature_union_passthrough_get_feature_names_out_true", "sklearn/tests/test_pipeline.py::test_feature_union_passthrough_get_feature_names_out_false", "sklearn/tests/test_pipeline.py::test_feature_union_passthrough_get_feature_names_out_false_errors", "sklearn/tests/test_pipeline.py::test_feature_union_passthrough_get_feature_names_out_false_errors_overlap_over_5", "sklearn/tests/test_pipeline.py::test_step_name_validation", "sklearn/tests/test_pipeline.py::test_verbose[est12-\\\\[FeatureUnion\\\\].*\\\\(step 1 of 2\\\\) Processing mult1.* total=.*\\\\n\\\\[FeatureUnion\\\\].*\\\\(step 2 of 2\\\\) Processing mult2.* total=.*\\\\n$-fit]", "sklearn/tests/test_pipeline.py::test_verbose[est14-\\\\[FeatureUnion\\\\].*\\\\(step 1 of 1\\\\) Processing mult2.* total=.*\\\\n$-fit]", "sklearn/tests/test_pipeline.py::test_n_features_in_feature_union", "sklearn/tests/test_pipeline.py::test_feature_union_fit_params", "sklearn/tests/test_pipeline.py::test_feature_union_warns_unknown_transformer_weight", "sklearn/tests/test_pipeline.py::test_feature_union_check_if_fitted", "sklearn/tests/test_pipeline.py::test_feature_union_set_output", "sklearn/tests/test_pipeline.py::test_feature_union_feature_names_in_", "sklearn/tests/test_pipeline.py::test_feature_union_metadata_routing_error", "sklearn/tests/test_pipeline.py::test_feature_union_metadata_routing[ConsumingTransformer]", "sklearn/tests/test_pipeline.py::test_feature_union_metadata_routing[ConsumingNoFitTransformTransformer]", "sklearn/tests/test_common.py::test_estimators[FeatureUnion(transformer_list=[('trans1',StandardScaler())])-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[FeatureUnion(transformer_list=[('trans1',StandardScaler())])-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[FeatureUnion(transformer_list=[('trans1',StandardScaler())])-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[FeatureUnion(transformer_list=[('trans1',StandardScaler())])-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[FeatureUnion(transformer_list=[('trans1',StandardScaler())])-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[FeatureUnion(transformer_list=[('trans1',StandardScaler())])-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[FeatureUnion(transformer_list=[('trans1',StandardScaler())])-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[FeatureUnion(transformer_list=[('trans1',StandardScaler())])-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[FeatureUnion(transformer_list=[('trans1',StandardScaler())])-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[FeatureUnion(transformer_list=[('trans1',StandardScaler())])-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[FeatureUnion(transformer_list=[('trans1',StandardScaler())])-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[FeatureUnion(transformer_list=[('trans1',StandardScaler())])-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[FeatureUnion(transformer_list=[('trans1',StandardScaler())])-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[FeatureUnion(transformer_list=[('trans1',StandardScaler())])-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[FeatureUnion(transformer_list=[('trans1',StandardScaler())])-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[FeatureUnion(transformer_list=[('trans1',StandardScaler())])-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[FeatureUnion(transformer_list=[('trans1',StandardScaler())])-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[FeatureUnion(transformer_list=[('trans1',StandardScaler())])-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[FeatureUnion(transformer_list=[('trans1',StandardScaler())])-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[FeatureUnion(transformer_list=[('trans1',StandardScaler())])-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[FeatureUnion(transformer_list=[('trans1',StandardScaler())])-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[FeatureUnion(transformer_list=[('trans1',StandardScaler())])-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[FeatureUnion(transformer_list=[('trans1',StandardScaler())])-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[FeatureUnion(transformer_list=[('trans1',StandardScaler())])-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[FeatureUnion(transformer_list=[('trans1',StandardScaler())])-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[FeatureUnion(transformer_list=[('trans1',StandardScaler())])-check_fit1d]", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[FeatureUnion]", "sklearn/tests/test_common.py::test_estimators[FeatureUnion(transformer_list=[('trans1',StandardScaler())])-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[FeatureUnion(transformer_list=[('trans1',StandardScaler())])]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[FeatureUnion(transformer_list=[('trans1',StandardScaler())])]", "sklearn/tests/test_common.py::test_set_output_transform[FeatureUnion(transformer_list=[('trans1',StandardScaler())])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-FeatureUnion(transformer_list=[('trans1',StandardScaler())])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-FeatureUnion(transformer_list=[('trans1',StandardScaler())])]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-48
1.0
{ "code": "diff --git b/sklearn/pipeline.py a/sklearn/pipeline.py\nindex cecaab231..6ea44888c 100644\n--- b/sklearn/pipeline.py\n+++ a/sklearn/pipeline.py\n@@ -1688,6 +1688,29 @@ class FeatureUnion(TransformerMixin, _BaseComposition):\n The `hstack` of results of transformers. `sum_n_components` is the\n sum of `n_components` (output dimension) over transformers.\n \"\"\"\n+ if _routing_enabled():\n+ routed_params = process_routing(self, \"fit_transform\", **params)\n+ else:\n+ # TODO(SLEP6): remove when metadata routing cannot be disabled.\n+ routed_params = Bunch()\n+ for name, obj in self.transformer_list:\n+ if hasattr(obj, \"fit_transform\"):\n+ routed_params[name] = Bunch(fit_transform={})\n+ routed_params[name].fit_transform = params\n+ else:\n+ routed_params[name] = Bunch(fit={})\n+ routed_params[name] = Bunch(transform={})\n+ routed_params[name].fit = params\n+\n+ results = self._parallel_func(X, y, _fit_transform_one, routed_params)\n+ if not results:\n+ # All transformers are None\n+ return np.zeros((X.shape[0], 0))\n+\n+ Xs, transformers = zip(*results)\n+ self._update_transformer_list(transformers)\n+\n+ return self._hstack(Xs)\n \n def _log_message(self, name, idx, total):\n if not self.verbose:\n", "test": null }
null
{ "code": "diff --git a/sklearn/pipeline.py b/sklearn/pipeline.py\nindex 6ea44888c..cecaab231 100644\n--- a/sklearn/pipeline.py\n+++ b/sklearn/pipeline.py\n@@ -1688,29 +1688,6 @@ class FeatureUnion(TransformerMixin, _BaseComposition):\n The `hstack` of results of transformers. `sum_n_components` is the\n sum of `n_components` (output dimension) over transformers.\n \"\"\"\n- if _routing_enabled():\n- routed_params = process_routing(self, \"fit_transform\", **params)\n- else:\n- # TODO(SLEP6): remove when metadata routing cannot be disabled.\n- routed_params = Bunch()\n- for name, obj in self.transformer_list:\n- if hasattr(obj, \"fit_transform\"):\n- routed_params[name] = Bunch(fit_transform={})\n- routed_params[name].fit_transform = params\n- else:\n- routed_params[name] = Bunch(fit={})\n- routed_params[name] = Bunch(transform={})\n- routed_params[name].fit = params\n-\n- results = self._parallel_func(X, y, _fit_transform_one, routed_params)\n- if not results:\n- # All transformers are None\n- return np.zeros((X.shape[0], 0))\n-\n- Xs, transformers = zip(*results)\n- self._update_transformer_list(transformers)\n-\n- return self._hstack(Xs)\n \n def _log_message(self, name, idx, total):\n if not self.verbose:\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/pipeline.py.\nHere is the description for the function:\n def fit_transform(self, X, y=None, **params):\n \"\"\"Fit all transformers, transform the data and concatenate results.\n\n Parameters\n ----------\n X : iterable or array-like, depending on transformers\n Input data to be transformed.\n\n y : array-like of shape (n_samples, n_outputs), default=None\n Targets for supervised learning.\n\n **params : dict, default=None\n - If `enable_metadata_routing=False` (default):\n Parameters directly passed to the `fit` methods of the\n sub-transformers.\n\n - If `enable_metadata_routing=True`:\n Parameters safely routed to the `fit` methods of the\n sub-transformers. See :ref:`Metadata Routing User Guide\n <metadata_routing>` for more details.\n\n .. versionchanged:: 1.5\n `**params` can now be routed via metadata routing API.\n\n Returns\n -------\n X_t : array-like or sparse matrix of \\\n shape (n_samples, sum_n_components)\n The `hstack` of results of transformers. `sum_n_components` is the\n sum of `n_components` (output dimension) over transformers.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/impute/tests/test_impute.py::test_missing_indicator_with_imputer[X0-a-X_trans_exp0]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_with_imputer[X1-nan-X_trans_exp1]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_with_imputer[X2-nan-X_trans_exp2]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_with_imputer[X3-None-X_trans_exp3]", "sklearn/tests/test_pipeline.py::test_feature_union[csr_matrix]", "sklearn/tests/test_pipeline.py::test_feature_union[csr_array]", "sklearn/tests/test_pipeline.py::test_feature_union_weights", "sklearn/tests/test_pipeline.py::test_feature_union_parallel", "sklearn/tests/test_pipeline.py::test_set_feature_union_step_drop", "sklearn/tests/test_pipeline.py::test_set_feature_union_passthrough", "sklearn/tests/test_pipeline.py::test_step_name_validation", "sklearn/tests/test_pipeline.py::test_verbose[est13-\\\\[FeatureUnion\\\\].*\\\\(step 1 of 2\\\\) Processing mult1.* total=.*\\\\n\\\\[FeatureUnion\\\\].*\\\\(step 2 of 2\\\\) Processing mult2.* total=.*\\\\n$-fit_transform]", "sklearn/tests/test_pipeline.py::test_verbose[est15-\\\\[FeatureUnion\\\\].*\\\\(step 1 of 1\\\\) Processing mult2.* total=.*\\\\n$-fit_transform]", "sklearn/tests/test_pipeline.py::test_feature_union_fit_params", "sklearn/tests/test_pipeline.py::test_feature_union_fit_params_without_fit_transform", "sklearn/tests/test_pipeline.py::test_feature_union_metadata_routing[ConsumingTransformer]", "sklearn/tests/test_pipeline.py::test_feature_union_metadata_routing[ConsumingNoFitTransformTransformer]", "sklearn/tests/test_common.py::test_estimators[FeatureUnion(transformer_list=[('trans1',StandardScaler())])-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[FeatureUnion(transformer_list=[('trans1',StandardScaler())])-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[FeatureUnion(transformer_list=[('trans1',StandardScaler())])-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[FeatureUnion(transformer_list=[('trans1',StandardScaler())])-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[FeatureUnion(transformer_list=[('trans1',StandardScaler())])-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[FeatureUnion(transformer_list=[('trans1',StandardScaler())])-check_transformer_general(readonly_memmap=True)]", "sklearn/pipeline.py::sklearn.pipeline.FeatureUnion", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[FeatureUnion(transformer_list=[('trans1',StandardScaler())])]", "sklearn/tests/test_common.py::test_set_output_transform[FeatureUnion(transformer_list=[('trans1',StandardScaler())])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-FeatureUnion(transformer_list=[('trans1',StandardScaler())])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-FeatureUnion(transformer_list=[('trans1',StandardScaler())])]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-49
1.0
{ "code": "diff --git b/sklearn/pipeline.py a/sklearn/pipeline.py\nindex f6e6a1740..6ea44888c 100644\n--- b/sklearn/pipeline.py\n+++ a/sklearn/pipeline.py\n@@ -1547,6 +1547,20 @@ class FeatureUnion(TransformerMixin, _BaseComposition):\n feature_names_out : ndarray of str objects\n Transformed feature names.\n \"\"\"\n+ # List of tuples (name, feature_names_out)\n+ transformer_with_feature_names_out = []\n+ for name, trans, _ in self._iter():\n+ if not hasattr(trans, \"get_feature_names_out\"):\n+ raise AttributeError(\n+ \"Transformer %s (type %s) does not provide get_feature_names_out.\"\n+ % (str(name), type(trans).__name__)\n+ )\n+ feature_names_out = trans.get_feature_names_out(input_features)\n+ transformer_with_feature_names_out.append((name, feature_names_out))\n+\n+ return self._add_prefix_for_feature_names_out(\n+ transformer_with_feature_names_out\n+ )\n \n def _add_prefix_for_feature_names_out(self, transformer_with_feature_names_out):\n \"\"\"Add prefix for feature names out that includes the transformer names.\n", "test": null }
null
{ "code": "diff --git a/sklearn/pipeline.py b/sklearn/pipeline.py\nindex 6ea44888c..f6e6a1740 100644\n--- a/sklearn/pipeline.py\n+++ b/sklearn/pipeline.py\n@@ -1547,20 +1547,6 @@ class FeatureUnion(TransformerMixin, _BaseComposition):\n feature_names_out : ndarray of str objects\n Transformed feature names.\n \"\"\"\n- # List of tuples (name, feature_names_out)\n- transformer_with_feature_names_out = []\n- for name, trans, _ in self._iter():\n- if not hasattr(trans, \"get_feature_names_out\"):\n- raise AttributeError(\n- \"Transformer %s (type %s) does not provide get_feature_names_out.\"\n- % (str(name), type(trans).__name__)\n- )\n- feature_names_out = trans.get_feature_names_out(input_features)\n- transformer_with_feature_names_out.append((name, feature_names_out))\n-\n- return self._add_prefix_for_feature_names_out(\n- transformer_with_feature_names_out\n- )\n \n def _add_prefix_for_feature_names_out(self, transformer_with_feature_names_out):\n \"\"\"Add prefix for feature names out that includes the transformer names.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/pipeline.py.\nHere is the description for the function:\n def get_feature_names_out(self, input_features=None):\n \"\"\"Get output feature names for transformation.\n\n Parameters\n ----------\n input_features : array-like of str or None, default=None\n Input features.\n\n Returns\n -------\n feature_names_out : ndarray of str objects\n Transformed feature names.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_pipeline.py::test_feature_union_feature_names", "sklearn/tests/test_pipeline.py::test_set_feature_union_steps", "sklearn/tests/test_pipeline.py::test_set_feature_union_step_drop", "sklearn/tests/test_pipeline.py::test_set_feature_union_passthrough", "sklearn/tests/test_pipeline.py::test_feature_union_passthrough_get_feature_names_out_true", "sklearn/tests/test_pipeline.py::test_feature_union_passthrough_get_feature_names_out_false", "sklearn/tests/test_pipeline.py::test_feature_union_passthrough_get_feature_names_out_false_errors", "sklearn/tests/test_pipeline.py::test_feature_union_passthrough_get_feature_names_out_false_errors_overlap_over_5", "sklearn/tests/test_pipeline.py::test_feature_union_set_output", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[FeatureUnion(transformer_list=[('trans1',StandardScaler())])]", "sklearn/tests/test_common.py::test_estimators_get_feature_names_out_error[FeatureUnion(transformer_list=[('trans1',StandardScaler())])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-FeatureUnion(transformer_list=[('trans1',StandardScaler())])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-FeatureUnion(transformer_list=[('trans1',StandardScaler())])]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-50
1.0
{ "code": "diff --git b/sklearn/pipeline.py a/sklearn/pipeline.py\nindex c31b9e539..6ea44888c 100644\n--- b/sklearn/pipeline.py\n+++ a/sklearn/pipeline.py\n@@ -1840,6 +1840,20 @@ class FeatureUnion(TransformerMixin, _BaseComposition):\n A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating\n routing information.\n \"\"\"\n+ router = MetadataRouter(owner=self.__class__.__name__)\n+\n+ for name, transformer in self.transformer_list:\n+ router.add(\n+ **{name: transformer},\n+ method_mapping=MethodMapping()\n+ .add(caller=\"fit\", callee=\"fit\")\n+ .add(caller=\"fit_transform\", callee=\"fit_transform\")\n+ .add(caller=\"fit_transform\", callee=\"fit\")\n+ .add(caller=\"fit_transform\", callee=\"transform\")\n+ .add(caller=\"transform\", callee=\"transform\"),\n+ )\n+\n+ return router\n \n def __sklearn_tags__(self):\n tags = super().__sklearn_tags__()\n", "test": null }
null
{ "code": "diff --git a/sklearn/pipeline.py b/sklearn/pipeline.py\nindex 6ea44888c..c31b9e539 100644\n--- a/sklearn/pipeline.py\n+++ b/sklearn/pipeline.py\n@@ -1840,20 +1840,6 @@ class FeatureUnion(TransformerMixin, _BaseComposition):\n A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating\n routing information.\n \"\"\"\n- router = MetadataRouter(owner=self.__class__.__name__)\n-\n- for name, transformer in self.transformer_list:\n- router.add(\n- **{name: transformer},\n- method_mapping=MethodMapping()\n- .add(caller=\"fit\", callee=\"fit\")\n- .add(caller=\"fit_transform\", callee=\"fit_transform\")\n- .add(caller=\"fit_transform\", callee=\"fit\")\n- .add(caller=\"fit_transform\", callee=\"transform\")\n- .add(caller=\"transform\", callee=\"transform\"),\n- )\n-\n- return router\n \n def __sklearn_tags__(self):\n tags = super().__sklearn_tags__()\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/pipeline.py.\nHere is the description for the function:\n def get_metadata_routing(self):\n \"\"\"Get metadata routing of this object.\n\n Please check :ref:`User Guide <metadata_routing>` on how the routing\n mechanism works.\n\n .. versionadded:: 1.5\n\n Returns\n -------\n routing : MetadataRouter\n A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating\n routing information.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_pipeline.py::test_feature_union_metadata_routing_error", "sklearn/tests/test_pipeline.py::test_feature_union_get_metadata_routing_without_fit", "sklearn/tests/test_pipeline.py::test_feature_union_metadata_routing[ConsumingTransformer]", "sklearn/tests/test_pipeline.py::test_feature_union_metadata_routing[ConsumingNoFitTransformTransformer]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-51
1.0
{ "code": "diff --git b/sklearn/pipeline.py a/sklearn/pipeline.py\nindex e83860e29..6ea44888c 100644\n--- b/sklearn/pipeline.py\n+++ a/sklearn/pipeline.py\n@@ -1759,6 +1759,25 @@ class FeatureUnion(TransformerMixin, _BaseComposition):\n The `hstack` of results of transformers. `sum_n_components` is the\n sum of `n_components` (output dimension) over transformers.\n \"\"\"\n+ _raise_for_params(params, self, \"transform\")\n+\n+ if _routing_enabled():\n+ routed_params = process_routing(self, \"transform\", **params)\n+ else:\n+ # TODO(SLEP6): remove when metadata routing cannot be disabled.\n+ routed_params = Bunch()\n+ for name, _ in self.transformer_list:\n+ routed_params[name] = Bunch(transform={})\n+\n+ Xs = Parallel(n_jobs=self.n_jobs)(\n+ delayed(_transform_one)(trans, X, None, weight, params=routed_params[name])\n+ for name, trans, weight in self._iter()\n+ )\n+ if not Xs:\n+ # All transformers are None\n+ return np.zeros((X.shape[0], 0))\n+\n+ return self._hstack(Xs)\n \n def _hstack(self, Xs):\n adapter = _get_container_adapter(\"transform\", self)\n", "test": null }
null
{ "code": "diff --git a/sklearn/pipeline.py b/sklearn/pipeline.py\nindex 6ea44888c..e83860e29 100644\n--- a/sklearn/pipeline.py\n+++ b/sklearn/pipeline.py\n@@ -1759,25 +1759,6 @@ class FeatureUnion(TransformerMixin, _BaseComposition):\n The `hstack` of results of transformers. `sum_n_components` is the\n sum of `n_components` (output dimension) over transformers.\n \"\"\"\n- _raise_for_params(params, self, \"transform\")\n-\n- if _routing_enabled():\n- routed_params = process_routing(self, \"transform\", **params)\n- else:\n- # TODO(SLEP6): remove when metadata routing cannot be disabled.\n- routed_params = Bunch()\n- for name, _ in self.transformer_list:\n- routed_params[name] = Bunch(transform={})\n-\n- Xs = Parallel(n_jobs=self.n_jobs)(\n- delayed(_transform_one)(trans, X, None, weight, params=routed_params[name])\n- for name, trans, weight in self._iter()\n- )\n- if not Xs:\n- # All transformers are None\n- return np.zeros((X.shape[0], 0))\n-\n- return self._hstack(Xs)\n \n def _hstack(self, Xs):\n adapter = _get_container_adapter(\"transform\", self)\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/pipeline.py.\nHere is the description for the function:\n def transform(self, X, **params):\n \"\"\"Transform X separately by each transformer, concatenate results.\n\n Parameters\n ----------\n X : iterable or array-like, depending on transformers\n Input data to be transformed.\n\n **params : dict, default=None\n\n Parameters routed to the `transform` method of the sub-transformers via the\n metadata routing API. See :ref:`Metadata Routing User Guide\n <metadata_routing>` for more details.\n\n .. versionadded:: 1.5\n\n Returns\n -------\n X_t : array-like or sparse matrix of shape (n_samples, sum_n_components)\n The `hstack` of results of transformers. `sum_n_components` is the\n sum of `n_components` (output dimension) over transformers.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_pipeline.py::test_feature_union[csr_matrix]", "sklearn/tests/test_pipeline.py::test_feature_union[csr_array]", "sklearn/tests/test_pipeline.py::test_feature_union_weights", "sklearn/tests/test_pipeline.py::test_feature_union_parallel", "sklearn/tests/test_pipeline.py::test_set_feature_union_steps", "sklearn/tests/test_pipeline.py::test_set_feature_union_step_drop", "sklearn/tests/test_pipeline.py::test_set_feature_union_passthrough", "sklearn/tests/test_pipeline.py::test_feature_union_set_output", "sklearn/tests/test_pipeline.py::test_feature_union_metadata_routing_error", "sklearn/tests/test_pipeline.py::test_feature_union_metadata_routing[ConsumingTransformer]", "sklearn/tests/test_pipeline.py::test_feature_union_metadata_routing[ConsumingNoFitTransformTransformer]", "sklearn/tests/test_common.py::test_estimators[FeatureUnion(transformer_list=[('trans1',StandardScaler())])-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[FeatureUnion(transformer_list=[('trans1',StandardScaler())])-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[FeatureUnion(transformer_list=[('trans1',StandardScaler())])-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[FeatureUnion(transformer_list=[('trans1',StandardScaler())])-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[FeatureUnion(transformer_list=[('trans1',StandardScaler())])-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[FeatureUnion(transformer_list=[('trans1',StandardScaler())])-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[FeatureUnion(transformer_list=[('trans1',StandardScaler())])-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[FeatureUnion(transformer_list=[('trans1',StandardScaler())])-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[FeatureUnion(transformer_list=[('trans1',StandardScaler())])-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[FeatureUnion(transformer_list=[('trans1',StandardScaler())])-check_transformers_unfitted]", "sklearn/tests/test_common.py::test_estimators[FeatureUnion(transformer_list=[('trans1',StandardScaler())])-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[FeatureUnion(transformer_list=[('trans1',StandardScaler())])-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[FeatureUnion(transformer_list=[('trans1',StandardScaler())])-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[FeatureUnion(transformer_list=[('trans1',StandardScaler())])-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[FeatureUnion(transformer_list=[('trans1',StandardScaler())])-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[FeatureUnion(transformer_list=[('trans1',StandardScaler())])]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[FeatureUnion(transformer_list=[('trans1',StandardScaler())])]", "sklearn/tests/test_common.py::test_set_output_transform[FeatureUnion(transformer_list=[('trans1',StandardScaler())])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-FeatureUnion(transformer_list=[('trans1',StandardScaler())])]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-FeatureUnion(transformer_list=[('trans1',StandardScaler())])]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-52
1.0
{ "code": "diff --git b/sklearn/model_selection/_classification_threshold.py a/sklearn/model_selection/_classification_threshold.py\nindex f554f899a..3505d89e1 100644\n--- b/sklearn/model_selection/_classification_threshold.py\n+++ a/sklearn/model_selection/_classification_threshold.py\n@@ -382,6 +382,23 @@ class FixedThresholdClassifier(BaseThresholdClassifier):\n class_labels : ndarray of shape (n_samples,)\n The predicted class.\n \"\"\"\n+ check_is_fitted(self, \"estimator_\")\n+ y_score, _, response_method_used = _get_response_values_binary(\n+ self.estimator_,\n+ X,\n+ self._get_response_method(),\n+ pos_label=self.pos_label,\n+ return_response_method_used=True,\n+ )\n+\n+ if self.threshold == \"auto\":\n+ decision_threshold = 0.5 if response_method_used == \"predict_proba\" else 0.0\n+ else:\n+ decision_threshold = self.threshold\n+\n+ return _threshold_scores_to_class_labels(\n+ y_score, decision_threshold, self.classes_, self.pos_label\n+ )\n \n def get_metadata_routing(self):\n \"\"\"Get metadata routing of this object.\n", "test": null }
null
{ "code": "diff --git a/sklearn/model_selection/_classification_threshold.py b/sklearn/model_selection/_classification_threshold.py\nindex 3505d89e1..f554f899a 100644\n--- a/sklearn/model_selection/_classification_threshold.py\n+++ b/sklearn/model_selection/_classification_threshold.py\n@@ -382,23 +382,6 @@ class FixedThresholdClassifier(BaseThresholdClassifier):\n class_labels : ndarray of shape (n_samples,)\n The predicted class.\n \"\"\"\n- check_is_fitted(self, \"estimator_\")\n- y_score, _, response_method_used = _get_response_values_binary(\n- self.estimator_,\n- X,\n- self._get_response_method(),\n- pos_label=self.pos_label,\n- return_response_method_used=True,\n- )\n-\n- if self.threshold == \"auto\":\n- decision_threshold = 0.5 if response_method_used == \"predict_proba\" else 0.0\n- else:\n- decision_threshold = self.threshold\n-\n- return _threshold_scores_to_class_labels(\n- y_score, decision_threshold, self.classes_, self.pos_label\n- )\n \n def get_metadata_routing(self):\n \"\"\"Get metadata routing of this object.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/model_selection/_classification_threshold.py.\nHere is the description for the function:\n def predict(self, X):\n \"\"\"Predict the target of new samples.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n The samples, as accepted by `estimator.predict`.\n\n Returns\n -------\n class_labels : ndarray of shape (n_samples,)\n The predicted class.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_estimators_unfitted]", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_fit2d_predict1d]", "sklearn/model_selection/_classification_threshold.py::sklearn.model_selection._classification_threshold.FixedThresholdClassifier", "sklearn/model_selection/tests/test_classification_threshold.py::test_fixed_threshold_classifier_equivalence_default[auto]", "sklearn/model_selection/tests/test_classification_threshold.py::test_fixed_threshold_classifier_equivalence_default[predict_proba]", "sklearn/model_selection/tests/test_classification_threshold.py::test_fixed_threshold_classifier_equivalence_default[decision_function]", "sklearn/model_selection/tests/test_classification_threshold.py::test_fixed_threshold_classifier[0-predict_proba-0.7]", "sklearn/model_selection/tests/test_classification_threshold.py::test_fixed_threshold_classifier[0-decision_function-2.0]", "sklearn/model_selection/tests/test_classification_threshold.py::test_fixed_threshold_classifier[1-predict_proba-0.7]", "sklearn/model_selection/tests/test_classification_threshold.py::test_fixed_threshold_classifier[1-decision_function-2.0]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[FixedThresholdClassifier(estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[FixedThresholdClassifier(estimator=LogisticRegression(C=1))]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-53
1.0
{ "code": "diff --git b/sklearn/preprocessing/_function_transformer.py a/sklearn/preprocessing/_function_transformer.py\nindex 6398823bb..02379273e 100644\n--- b/sklearn/preprocessing/_function_transformer.py\n+++ a/sklearn/preprocessing/_function_transformer.py\n@@ -256,6 +256,63 @@ class FunctionTransformer(TransformerMixin, BaseEstimator):\n X_out : array-like, shape (n_samples, n_features)\n Transformed input.\n \"\"\"\n+ X = self._check_input(X, reset=False)\n+ out = self._transform(X, func=self.func, kw_args=self.kw_args)\n+ output_config = _get_output_config(\"transform\", self)[\"dense\"]\n+\n+ if hasattr(out, \"columns\") and self.feature_names_out is not None:\n+ # check the consistency between the column provided by `transform` and\n+ # the the column names provided by `get_feature_names_out`.\n+ feature_names_out = self.get_feature_names_out()\n+ if list(out.columns) != list(feature_names_out):\n+ # we can override the column names of the output if it is inconsistent\n+ # with the column names provided by `get_feature_names_out` in the\n+ # following cases:\n+ # * `func` preserved the column names between the input and the output\n+ # * the input column names are all numbers\n+ # * the output is requested to be a DataFrame (pandas or polars)\n+ feature_names_in = getattr(\n+ X, \"feature_names_in_\", _get_feature_names(X)\n+ )\n+ same_feature_names_in_out = feature_names_in is not None and list(\n+ feature_names_in\n+ ) == list(out.columns)\n+ not_all_str_columns = not all(\n+ isinstance(col, str) for col in out.columns\n+ )\n+ if same_feature_names_in_out or not_all_str_columns:\n+ adapter = _get_adapter_from_container(out)\n+ out = adapter.create_container(\n+ X_output=out,\n+ X_original=out,\n+ columns=feature_names_out,\n+ inplace=False,\n+ )\n+ else:\n+ raise ValueError(\n+ \"The output generated by `func` have different column names \"\n+ \"than the ones provided by `get_feature_names_out`. \"\n+ f\"Got output with columns names: {list(out.columns)} and \"\n+ \"`get_feature_names_out` returned: \"\n+ f\"{list(self.get_feature_names_out())}. \"\n+ \"The column names can be overridden by setting \"\n+ \"`set_output(transform='pandas')` or \"\n+ \"`set_output(transform='polars')` such that the column names \"\n+ \"are set to the names provided by `get_feature_names_out`.\"\n+ )\n+\n+ if self.feature_names_out is None:\n+ warn_msg = (\n+ \"When `set_output` is configured to be '{0}', `func` should return \"\n+ \"a {0} DataFrame to follow the `set_output` API or `feature_names_out`\"\n+ \" should be defined.\"\n+ )\n+ if output_config == \"pandas\" and not _is_pandas_df(out):\n+ warnings.warn(warn_msg.format(\"pandas\"))\n+ elif output_config == \"polars\" and not _is_polars_df(out):\n+ warnings.warn(warn_msg.format(\"polars\"))\n+\n+ return out\n \n def inverse_transform(self, X):\n \"\"\"Transform X using the inverse function.\n", "test": null }
null
{ "code": "diff --git a/sklearn/preprocessing/_function_transformer.py b/sklearn/preprocessing/_function_transformer.py\nindex 02379273e..6398823bb 100644\n--- a/sklearn/preprocessing/_function_transformer.py\n+++ b/sklearn/preprocessing/_function_transformer.py\n@@ -256,63 +256,6 @@ class FunctionTransformer(TransformerMixin, BaseEstimator):\n X_out : array-like, shape (n_samples, n_features)\n Transformed input.\n \"\"\"\n- X = self._check_input(X, reset=False)\n- out = self._transform(X, func=self.func, kw_args=self.kw_args)\n- output_config = _get_output_config(\"transform\", self)[\"dense\"]\n-\n- if hasattr(out, \"columns\") and self.feature_names_out is not None:\n- # check the consistency between the column provided by `transform` and\n- # the the column names provided by `get_feature_names_out`.\n- feature_names_out = self.get_feature_names_out()\n- if list(out.columns) != list(feature_names_out):\n- # we can override the column names of the output if it is inconsistent\n- # with the column names provided by `get_feature_names_out` in the\n- # following cases:\n- # * `func` preserved the column names between the input and the output\n- # * the input column names are all numbers\n- # * the output is requested to be a DataFrame (pandas or polars)\n- feature_names_in = getattr(\n- X, \"feature_names_in_\", _get_feature_names(X)\n- )\n- same_feature_names_in_out = feature_names_in is not None and list(\n- feature_names_in\n- ) == list(out.columns)\n- not_all_str_columns = not all(\n- isinstance(col, str) for col in out.columns\n- )\n- if same_feature_names_in_out or not_all_str_columns:\n- adapter = _get_adapter_from_container(out)\n- out = adapter.create_container(\n- X_output=out,\n- X_original=out,\n- columns=feature_names_out,\n- inplace=False,\n- )\n- else:\n- raise ValueError(\n- \"The output generated by `func` have different column names \"\n- \"than the ones provided by `get_feature_names_out`. \"\n- f\"Got output with columns names: {list(out.columns)} and \"\n- \"`get_feature_names_out` returned: \"\n- f\"{list(self.get_feature_names_out())}. \"\n- \"The column names can be overridden by setting \"\n- \"`set_output(transform='pandas')` or \"\n- \"`set_output(transform='polars')` such that the column names \"\n- \"are set to the names provided by `get_feature_names_out`.\"\n- )\n-\n- if self.feature_names_out is None:\n- warn_msg = (\n- \"When `set_output` is configured to be '{0}', `func` should return \"\n- \"a {0} DataFrame to follow the `set_output` API or `feature_names_out`\"\n- \" should be defined.\"\n- )\n- if output_config == \"pandas\" and not _is_pandas_df(out):\n- warnings.warn(warn_msg.format(\"pandas\"))\n- elif output_config == \"polars\" and not _is_polars_df(out):\n- warnings.warn(warn_msg.format(\"polars\"))\n-\n- return out\n \n def inverse_transform(self, X):\n \"\"\"Transform X using the inverse function.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/preprocessing/_function_transformer.py.\nHere is the description for the function:\n def transform(self, X):\n \"\"\"Transform X using the forward function.\n\n Parameters\n ----------\n X : {array-like, sparse-matrix} of shape (n_samples, n_features) \\\n if `validate=True` else any object that `func` can handle\n Input array.\n\n Returns\n -------\n X_out : array-like, shape (n_samples, n_features)\n Transformed input.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[False-list-pandas]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[False-list-numpy]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[False-bool-pandas]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[False-bool-numpy]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[False-bool_int-pandas]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[False-bool_int-numpy]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[True-list-pandas]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[True-list-numpy]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[True-bool-pandas]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[True-bool-numpy]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[True-bool_int-pandas]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_empty_columns[True-bool_int-numpy]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_output_indices", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_sparse_array[csr_matrix]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_sparse_array[csr_array]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_mixed_cols_sparse", "sklearn/tests/test_pipeline.py::test_set_feature_union_passthrough", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_special_strings", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_dtypes_ints[False-cols10-cols20]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_dtypes_ints[False-cols11-cols21]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_dtypes_ints[False-<lambda>-<lambda>]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_dtypes_ints[True-cols10-cols20]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_dtypes_ints[True-cols11-cols21]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_dtypes_ints[True-<lambda>-<lambda>]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_dtypes[True-cols10-cols20-expected_cols0]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_dtypes[False-cols11-cols21-expected_cols1]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_dtypes[True-cols12-cols22-expected_cols2]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_dtypes[False-cols13-cols23-expected_cols3]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_numpy[key0-expected_cols0]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_numpy[key1-expected_cols1]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_numpy[key2-expected_cols2]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_numpy[key3-expected_cols3]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_pandas[key0-expected_cols0]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_pandas[key1-expected_cols1]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_pandas[key2-expected_cols2]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_pandas[key3-expected_cols3]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_pandas[pd-index-expected_cols4]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_pandas[key5-expected_cols5]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_pandas[key6-expected_cols6]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_pandas[key7-expected_cols7]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_pandas[key8-expected_cols8]", "sklearn/tests/test_pipeline.py::test_pipeline_with_no_last_step[None]", "sklearn/tests/test_pipeline.py::test_pipeline_with_no_last_step[passthrough]", "sklearn/model_selection/tests/test_search.py::test_search_with_estimators_issue_29157", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_verbose[fit-est1-\\\\[ColumnTransformer\\\\].*\\\\(1 of 3\\\\) Processing trans1.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(2 of 3\\\\) Processing trans2.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(3 of 3\\\\) Processing remainder.* total=.*\\\\n$]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_verbose[fit-est2-\\\\[ColumnTransformer\\\\].*\\\\(1 of 2\\\\) Processing trans1.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(2 of 2\\\\) Processing remainder.* total=.*\\\\n$]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_verbose[fit-est3-\\\\[ColumnTransformer\\\\].*\\\\(1 of 3\\\\) Processing trans1.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(2 of 3\\\\) Processing trans2.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(3 of 3\\\\) Processing remainder.* total=.*\\\\n$]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_verbose[fit-est4-\\\\[ColumnTransformer\\\\].*\\\\(1 of 2\\\\) Processing trans1.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(2 of 2\\\\) Processing remainder.* total=.*\\\\n$]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_verbose[fit_transform-est1-\\\\[ColumnTransformer\\\\].*\\\\(1 of 3\\\\) Processing trans1.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(2 of 3\\\\) Processing trans2.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(3 of 3\\\\) Processing remainder.* total=.*\\\\n$]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-True-HistGradientBoostingRegressor-False]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_verbose[fit_transform-est2-\\\\[ColumnTransformer\\\\].*\\\\(1 of 2\\\\) Processing trans1.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(2 of 2\\\\) Processing remainder.* total=.*\\\\n$]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_verbose[fit_transform-est3-\\\\[ColumnTransformer\\\\].*\\\\(1 of 3\\\\) Processing trans1.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(2 of 3\\\\) Processing trans2.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(3 of 3\\\\) Processing remainder.* total=.*\\\\n$]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-True-HistGradientBoostingRegressor-True]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_verbose[fit_transform-est4-\\\\[ColumnTransformer\\\\].*\\\\(1 of 2\\\\) Processing trans1.* total=.*\\\\n\\\\[ColumnTransformer\\\\].*\\\\(2 of 2\\\\) Processing remainder.* total=.*\\\\n$]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-True-HistGradientBoostingClassifier-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-True-HistGradientBoostingClassifier-True]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_negative_column_indexes", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_mask_indexing[asarray]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_mask_indexing[csr_matrix]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-False-HistGradientBoostingRegressor-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-False-HistGradientBoostingRegressor-True]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_mask_indexing[csr_array]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-False-HistGradientBoostingClassifier-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[nan-False-HistGradientBoostingClassifier-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-True-HistGradientBoostingRegressor-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-True-HistGradientBoostingRegressor-True]", "sklearn/ensemble/tests/test_bagging.py::test_bagging_regressor_with_missing_inputs", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-True-HistGradientBoostingClassifier-False]", "sklearn/ensemble/tests/test_bagging.py::test_bagging_classifier_with_missing_inputs", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-True-HistGradientBoostingClassifier-True]", "sklearn/compose/tests/test_column_transformer.py::test_sk_visual_block_remainder_fitted_pandas[passthrough]", "sklearn/compose/tests/test_column_transformer.py::test_sk_visual_block_remainder_fitted_numpy[passthrough]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_reordered_column_names_remainder[passthrough-first]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_reordered_column_names_remainder[passthrough-second]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-False-HistGradientBoostingRegressor-False]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-False-HistGradientBoostingRegressor-True]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_reordered_column_names_remainder[passthrough-0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-False-HistGradientBoostingClassifier-False]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_reordered_column_names_remainder[passthrough-1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_categories_nan[-1-False-HistGradientBoostingClassifier-True]", "sklearn/compose/tests/test_column_transformer.py::test_feature_name_validation_missing_columns_drop_passthough", "sklearn/compose/tests/test_column_transformer.py::test_feature_names_in_", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_encoding_strategies", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_true[transformers0-passthrough-expected_names0]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_true[transformers1-drop-expected_names1]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_spec_errors[categorical_features4-monotonic_cst4-Categorical features cannot have monotonic constraints-HistGradientBoostingClassifier]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_true[transformers2-passthrough-expected_names2]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_categorical_spec_errors[categorical_features4-monotonic_cst4-Categorical features cannot have monotonic constraints-HistGradientBoostingRegressor]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_true[transformers3-passthrough-expected_names3]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_true[transformers4-drop-expected_names4]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_true[transformers5-passthrough-expected_names5]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_true[transformers8-passthrough-expected_names8]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_true[transformers9-passthrough-expected_names9]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_true[transformers11-passthrough-expected_names11]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-integer-column-transformer-passthrough-estimator-brute]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_unknown_category_that_are_negative", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_dataframe_categorical_results_same_as_ndarray[HistGradientBoostingClassifier-pandas]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_true[transformers12-passthrough-expected_names12]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-integer-column-transformer-passthrough-estimator-recursion]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_callable_or_str[transformers0-passthrough-_feature_names_out_callable_name_clash-expected_names0]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_dataframe_categorical_results_same_as_ndarray[HistGradientBoostingRegressor-pandas]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_callable_or_str[transformers1-drop-{feature_name}-{transformer_name}-expected_names1]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_callable_or_str[transformers2-passthrough-_feature_names_out_callable_upper-expected_names2]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false[transformers0-passthrough-expected_names0]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false[transformers1-drop-expected_names1]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false[transformers2-passthrough-expected_names2]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false[transformers3-passthrough-expected_names3]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false[transformers4-drop-expected_names4]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-string-column-transformer-passthrough-estimator-brute]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false[transformers5-passthrough-expected_names5]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-string-column-transformer-passthrough-estimator-recursion]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false[transformers7-passthrough-expected_names7]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false[transformers8-passthrough-expected_names8]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false[transformers9-drop-expected_names9]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false[transformers10-passthrough-expected_names10]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false[transformers11-passthrough-expected_names11]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false[transformers12-drop-expected_names12]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false[transformers13-drop-expected_names13]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false_errors[transformers0-drop-['b']]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false_errors[transformers1-drop-['c']]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false_errors[transformers2-passthrough-['a']]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false_errors[transformers3-passthrough-['a']]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false_errors[transformers4-drop-['b', 'c']]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false_errors[transformers5-passthrough-['a']]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false_errors[transformers6-passthrough-['a', 'b']]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false_errors[transformers7-passthrough-['pca0', 'pca1', 'pca2', 'pca3', 'pca4', ...]]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false_errors[transformers8-passthrough-['a', 'b']]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false_errors[transformers9-passthrough-['a', 'b']]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false_errors[transformers10-passthrough-['a', 'b']]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_error_on_missing_requests_for_sub_estimator[TransformedTargetRegressor]", "sklearn/compose/tests/test_column_transformer.py::test_verbose_feature_names_out_false_errors[transformers11-passthrough-['a', 'b']]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_set_output[passthrough-True]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_set_output[passthrough-False]", "sklearn/compose/tests/test_column_transformer.py::test_column_transform_set_output_mixed[True-passthrough]", "sklearn/compose/tests/test_column_transformer.py::test_column_transform_set_output_mixed[False-passthrough]", "sklearn/compose/tests/test_column_transformer.py::test_column_transform_set_output_after_fitting[passthrough]", "sklearn/compose/tests/test_column_transformer.py::test_transformers_with_pandas_out_but_not_feature_names_out[passthrough-expected_verbose_names2-expected_non_verbose_names2]", "sklearn/compose/tests/test_column_transformer.py::test_raise_error_if_index_not_aligned", "sklearn/compose/tests/test_column_transformer.py::test_transform_pd_na", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_passthrough_naming_consistency[default]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_remainder_passthrough_naming_consistency[pandas]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_column_renaming[pandas]", "sklearn/compose/tests/test_column_transformer.py::test_column_transformer_error_with_duplicated_columns[pandas]", "sklearn/preprocessing/tests/test_function_transformer.py::test_delegate_to_func", "sklearn/preprocessing/tests/test_function_transformer.py::test_np_log", "sklearn/preprocessing/tests/test_function_transformer.py::test_kw_arg", "sklearn/preprocessing/tests/test_function_transformer.py::test_kw_arg_update", "sklearn/preprocessing/tests/test_function_transformer.py::test_kw_arg_reset", "sklearn/preprocessing/tests/test_function_transformer.py::test_inverse_transform", "sklearn/preprocessing/tests/test_function_transformer.py::test_check_inverse[None]", "sklearn/preprocessing/tests/test_function_transformer.py::test_check_inverse[csc_matrix]", "sklearn/preprocessing/tests/test_function_transformer.py::test_check_inverse[csc_array]", "sklearn/preprocessing/tests/test_function_transformer.py::test_check_inverse[csr_matrix]", "sklearn/preprocessing/tests/test_function_transformer.py::test_check_inverse[csr_array]", "sklearn/preprocessing/tests/test_function_transformer.py::test_function_transformer_frame", "sklearn/preprocessing/tests/test_function_transformer.py::test_function_transformer_raise_error_with_mixed_dtype[array]", "sklearn/preprocessing/tests/test_function_transformer.py::test_function_transformer_raise_error_with_mixed_dtype[series]", "sklearn/preprocessing/tests/test_function_transformer.py::test_function_transformer_support_all_nummerical_dataframes_check_inverse_True", "sklearn/preprocessing/tests/test_function_transformer.py::test_function_transformer_with_dataframe_and_check_inverse_True", "sklearn/preprocessing/tests/test_function_transformer.py::test_function_transformer_get_feature_names_out_without_validation", "sklearn/preprocessing/tests/test_function_transformer.py::test_function_transformer_feature_names_out_is_None", "sklearn/preprocessing/tests/test_function_transformer.py::test_function_transformer_feature_names_out_uses_estimator", "sklearn/preprocessing/tests/test_function_transformer.py::test_function_transformer_validate_inverse", "sklearn/preprocessing/tests/test_function_transformer.py::test_get_feature_names_out_dataframe_with_string_data[True-one-to-one-expected0]", "sklearn/preprocessing/tests/test_function_transformer.py::test_get_feature_names_out_dataframe_with_string_data[True-<lambda>-expected1]", "sklearn/preprocessing/tests/test_function_transformer.py::test_get_feature_names_out_dataframe_with_string_data[False-one-to-one-expected0]", "sklearn/preprocessing/tests/test_function_transformer.py::test_get_feature_names_out_dataframe_with_string_data[False-<lambda>-expected1]", "sklearn/preprocessing/tests/test_function_transformer.py::test_set_output_func", "sklearn/preprocessing/tests/test_function_transformer.py::test_consistence_column_name_between_steps", "sklearn/preprocessing/tests/test_function_transformer.py::test_function_transformer_overwrite_column_names[pandas-pandas]", "sklearn/preprocessing/tests/test_function_transformer.py::test_function_transformer_overwrite_column_names_numerical[one-to-one]", "sklearn/preprocessing/tests/test_function_transformer.py::test_function_transformer_overwrite_column_names_numerical[<lambda>]", "sklearn/preprocessing/tests/test_function_transformer.py::test_function_transformer_error_column_inconsistent[one-to-one-pandas]", "sklearn/tests/test_common.py::test_estimators[FunctionTransformer()-check_fit_score_takes_y]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_wrapped_estimator[RFE-5-importance_getter0]", "sklearn/tests/test_common.py::test_estimators[FunctionTransformer()-check_estimators_dtypes]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_wrapped_estimator[RFE-5-regressor_.coef_]", "sklearn/tests/test_common.py::test_estimators[FunctionTransformer()-check_pipeline_consistency]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_wrapped_estimator[RFECV-4-importance_getter0]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_wrapped_estimator[RFECV-4-regressor_.coef_]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_importance_getter_validation[RFE-auto-ValueError]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_importance_getter_validation[RFE-random-AttributeError]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_importance_getter_validation[RFE-<lambda>-AttributeError]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_importance_getter_validation[RFECV-auto-ValueError]", "sklearn/tests/test_common.py::test_estimators[FunctionTransformer()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[FunctionTransformer()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[FunctionTransformer()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[FunctionTransformer()-check_transformer_general]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_importance_getter_validation[RFECV-random-AttributeError]", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_importance_getter_validation[RFECV-<lambda>-AttributeError]", "sklearn/tests/test_common.py::test_estimators[FunctionTransformer()-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[FunctionTransformer()-check_transformer_general(readonly_memmap=True)]", "sklearn/preprocessing/tests/test_function_transformer.py::test_function_transformer_error_column_inconsistent[<lambda>-pandas]", "sklearn/tests/test_common.py::test_estimators[FunctionTransformer()-check_transformers_unfitted_stateless]", "sklearn/tests/test_common.py::test_estimators[FunctionTransformer()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[FunctionTransformer()-check_methods_subset_invariance]", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_invertible", "sklearn/tests/test_common.py::test_estimators[FunctionTransformer()-check_dict_unchanged]", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_functions", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_functions_multioutput", "sklearn/tests/test_common.py::test_estimators[FunctionTransformer()-check_fit_idempotent]", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_1d_transformer[X0-y0]", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_1d_transformer[X1-y1]", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_3d_target", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_multi_to_single", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_not_warns_with_global_output_set[pandas]", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[TransformedTargetRegressor]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_monotonic_constraints.py::test_predictions[42-True]", "sklearn/ensemble/_hist_gradient_boosting/tests/test_monotonic_constraints.py::test_predictions[42-False]", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_not_warns_with_global_output_set[polars]", "sklearn/utils/tests/test_parallel.py::test_dispatch_config_parallel[1]", "sklearn/compose/_target.py::sklearn.compose._target.TransformedTargetRegressor", "sklearn/preprocessing/_function_transformer.py::sklearn.preprocessing._function_transformer.FunctionTransformer", "sklearn/utils/tests/test_parallel.py::test_dispatch_config_parallel[2]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_setting_request_on_sub_estimator_removes_error[TransformedTargetRegressor]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_non_consuming_estimator_works[TransformedTargetRegressor]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_regressor_multioutput]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[TransformedTargetRegressor()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[TransformedTargetRegressor()]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-54
1.0
{ "code": "diff --git b/sklearn/gaussian_process/_gpc.py a/sklearn/gaussian_process/_gpc.py\nindex 32a826352..90266625f 100644\n--- b/sklearn/gaussian_process/_gpc.py\n+++ a/sklearn/gaussian_process/_gpc.py\n@@ -678,6 +678,7 @@ class GaussianProcessClassifier(ClassifierMixin, BaseEstimator):\n self.multi_class = multi_class\n self.n_jobs = n_jobs\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y):\n \"\"\"Fit Gaussian process classification model.\n \n@@ -694,6 +695,63 @@ class GaussianProcessClassifier(ClassifierMixin, BaseEstimator):\n self : object\n Returns an instance of self.\n \"\"\"\n+ if isinstance(self.kernel, CompoundKernel):\n+ raise ValueError(\"kernel cannot be a CompoundKernel\")\n+\n+ if self.kernel is None or self.kernel.requires_vector_input:\n+ X, y = validate_data(\n+ self, X, y, multi_output=False, ensure_2d=True, dtype=\"numeric\"\n+ )\n+ else:\n+ X, y = validate_data(\n+ self, X, y, multi_output=False, ensure_2d=False, dtype=None\n+ )\n+\n+ self.base_estimator_ = _BinaryGaussianProcessClassifierLaplace(\n+ kernel=self.kernel,\n+ optimizer=self.optimizer,\n+ n_restarts_optimizer=self.n_restarts_optimizer,\n+ max_iter_predict=self.max_iter_predict,\n+ warm_start=self.warm_start,\n+ copy_X_train=self.copy_X_train,\n+ random_state=self.random_state,\n+ )\n+\n+ self.classes_ = np.unique(y)\n+ self.n_classes_ = self.classes_.size\n+ if self.n_classes_ == 1:\n+ raise ValueError(\n+ \"GaussianProcessClassifier requires 2 or more \"\n+ \"distinct classes; got %d class (only class %s \"\n+ \"is present)\" % (self.n_classes_, self.classes_[0])\n+ )\n+ if self.n_classes_ > 2:\n+ if self.multi_class == \"one_vs_rest\":\n+ self.base_estimator_ = OneVsRestClassifier(\n+ self.base_estimator_, n_jobs=self.n_jobs\n+ )\n+ elif self.multi_class == \"one_vs_one\":\n+ self.base_estimator_ = OneVsOneClassifier(\n+ self.base_estimator_, n_jobs=self.n_jobs\n+ )\n+ else:\n+ raise ValueError(\"Unknown multi-class mode %s\" % self.multi_class)\n+\n+ self.base_estimator_.fit(X, y)\n+\n+ if self.n_classes_ > 2:\n+ self.log_marginal_likelihood_value_ = np.mean(\n+ [\n+ estimator.log_marginal_likelihood()\n+ for estimator in self.base_estimator_.estimators_\n+ ]\n+ )\n+ else:\n+ self.log_marginal_likelihood_value_ = (\n+ self.base_estimator_.log_marginal_likelihood()\n+ )\n+\n+ return self\n \n def predict(self, X):\n \"\"\"Perform classification on an array of test vectors X.\n", "test": null }
null
{ "code": "diff --git a/sklearn/gaussian_process/_gpc.py b/sklearn/gaussian_process/_gpc.py\nindex 90266625f..32a826352 100644\n--- a/sklearn/gaussian_process/_gpc.py\n+++ b/sklearn/gaussian_process/_gpc.py\n@@ -678,7 +678,6 @@ class GaussianProcessClassifier(ClassifierMixin, BaseEstimator):\n self.multi_class = multi_class\n self.n_jobs = n_jobs\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y):\n \"\"\"Fit Gaussian process classification model.\n \n@@ -695,63 +694,6 @@ class GaussianProcessClassifier(ClassifierMixin, BaseEstimator):\n self : object\n Returns an instance of self.\n \"\"\"\n- if isinstance(self.kernel, CompoundKernel):\n- raise ValueError(\"kernel cannot be a CompoundKernel\")\n-\n- if self.kernel is None or self.kernel.requires_vector_input:\n- X, y = validate_data(\n- self, X, y, multi_output=False, ensure_2d=True, dtype=\"numeric\"\n- )\n- else:\n- X, y = validate_data(\n- self, X, y, multi_output=False, ensure_2d=False, dtype=None\n- )\n-\n- self.base_estimator_ = _BinaryGaussianProcessClassifierLaplace(\n- kernel=self.kernel,\n- optimizer=self.optimizer,\n- n_restarts_optimizer=self.n_restarts_optimizer,\n- max_iter_predict=self.max_iter_predict,\n- warm_start=self.warm_start,\n- copy_X_train=self.copy_X_train,\n- random_state=self.random_state,\n- )\n-\n- self.classes_ = np.unique(y)\n- self.n_classes_ = self.classes_.size\n- if self.n_classes_ == 1:\n- raise ValueError(\n- \"GaussianProcessClassifier requires 2 or more \"\n- \"distinct classes; got %d class (only class %s \"\n- \"is present)\" % (self.n_classes_, self.classes_[0])\n- )\n- if self.n_classes_ > 2:\n- if self.multi_class == \"one_vs_rest\":\n- self.base_estimator_ = OneVsRestClassifier(\n- self.base_estimator_, n_jobs=self.n_jobs\n- )\n- elif self.multi_class == \"one_vs_one\":\n- self.base_estimator_ = OneVsOneClassifier(\n- self.base_estimator_, n_jobs=self.n_jobs\n- )\n- else:\n- raise ValueError(\"Unknown multi-class mode %s\" % self.multi_class)\n-\n- self.base_estimator_.fit(X, y)\n-\n- if self.n_classes_ > 2:\n- self.log_marginal_likelihood_value_ = np.mean(\n- [\n- estimator.log_marginal_likelihood()\n- for estimator in self.base_estimator_.estimators_\n- ]\n- )\n- else:\n- self.log_marginal_likelihood_value_ = (\n- self.base_estimator_.log_marginal_likelihood()\n- )\n-\n- return self\n \n def predict(self, X):\n \"\"\"Perform classification on an array of test vectors X.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/gaussian_process/_gpc.py.\nHere is the description for the function:\n def fit(self, X, y):\n \"\"\"Fit Gaussian process classification model.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features) or list of object\n Feature vectors or other representations of training data.\n\n y : array-like of shape (n_samples,)\n Target values, must be binary.\n\n Returns\n -------\n self : object\n Returns an instance of self.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/gaussian_process/tests/test_gpc.py::test_predict_consistent[kernel0]", "sklearn/gaussian_process/tests/test_gpc.py::test_predict_consistent[kernel1]", "sklearn/gaussian_process/tests/test_gpc.py::test_predict_consistent[kernel2]", "sklearn/gaussian_process/tests/test_gpc.py::test_predict_consistent[kernel3]", "sklearn/gaussian_process/tests/test_gpc.py::test_predict_consistent_structured", "sklearn/gaussian_process/tests/test_gpc.py::test_lml_improving[kernel0]", "sklearn/gaussian_process/tests/test_gpc.py::test_lml_improving[kernel1]", "sklearn/gaussian_process/tests/test_gpc.py::test_lml_improving[kernel2]", "sklearn/gaussian_process/tests/test_gpc.py::test_lml_precomputed[kernel0]", "sklearn/gaussian_process/tests/test_gpc.py::test_lml_precomputed[kernel1]", "sklearn/gaussian_process/tests/test_gpc.py::test_lml_precomputed[kernel2]", "sklearn/gaussian_process/tests/test_gpc.py::test_lml_precomputed[kernel3]", "sklearn/gaussian_process/tests/test_gpc.py::test_lml_without_cloning_kernel[kernel0]", "sklearn/gaussian_process/tests/test_gpc.py::test_lml_without_cloning_kernel[kernel1]", "sklearn/gaussian_process/tests/test_gpc.py::test_lml_without_cloning_kernel[kernel2]", "sklearn/gaussian_process/tests/test_gpc.py::test_lml_without_cloning_kernel[kernel3]", "sklearn/gaussian_process/tests/test_gpc.py::test_converged_to_local_maximum[kernel0]", "sklearn/gaussian_process/tests/test_gpc.py::test_converged_to_local_maximum[kernel1]", "sklearn/gaussian_process/tests/test_gpc.py::test_converged_to_local_maximum[kernel2]", "sklearn/gaussian_process/tests/test_gpc.py::test_lml_gradient[kernel0]", "sklearn/gaussian_process/tests/test_gpc.py::test_lml_gradient[kernel1]", "sklearn/gaussian_process/tests/test_gpc.py::test_lml_gradient[kernel2]", "sklearn/gaussian_process/tests/test_gpc.py::test_lml_gradient[kernel3]", "sklearn/gaussian_process/tests/test_gpc.py::test_random_starts[42]", "sklearn/gaussian_process/tests/test_gpc.py::test_custom_optimizer[42-kernel0]", "sklearn/gaussian_process/tests/test_gpc.py::test_custom_optimizer[42-kernel1]", "sklearn/gaussian_process/tests/test_gpc.py::test_custom_optimizer[42-kernel2]", "sklearn/gaussian_process/tests/test_gpc.py::test_multi_class[kernel0]", "sklearn/gaussian_process/tests/test_gpc.py::test_multi_class[kernel1]", "sklearn/gaussian_process/tests/test_gpc.py::test_multi_class[kernel2]", "sklearn/gaussian_process/tests/test_gpc.py::test_multi_class[kernel3]", "sklearn/gaussian_process/tests/test_gpc.py::test_multi_class_n_jobs[kernel0]", "sklearn/gaussian_process/tests/test_gpc.py::test_multi_class_n_jobs[kernel1]", "sklearn/gaussian_process/tests/test_gpc.py::test_multi_class_n_jobs[kernel2]", "sklearn/gaussian_process/tests/test_gpc.py::test_multi_class_n_jobs[kernel3]", "sklearn/gaussian_process/tests/test_gpc.py::test_warning_bounds", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_estimators_empty_data_messages]", "sklearn/gaussian_process/tests/test_gpc.py::test_gpc_fit_error[params0-ValueError-kernel cannot be a CompoundKernel]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_classifiers_train(readonly_memmap=True)]", "sklearn/gaussian_process/kernels.py::sklearn.gaussian_process.kernels.Matern", "sklearn/gaussian_process/kernels.py::sklearn.gaussian_process.kernels.PairwiseKernel", "sklearn/gaussian_process/kernels.py::sklearn.gaussian_process.kernels.RBF", "sklearn/gaussian_process/kernels.py::sklearn.gaussian_process.kernels.RationalQuadratic", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_classifiers_regression_target]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_n_features_in]", "sklearn/gaussian_process/_gpc.py::sklearn.gaussian_process._gpc.GaussianProcessClassifier", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_requires_y_none]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[GaussianProcessClassifier()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GaussianProcessClassifier()]", "sklearn/tests/test_common.py::test_check_param_validation[GaussianProcessClassifier()]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-55
1.0
{ "code": "diff --git b/sklearn/gaussian_process/_gpc.py a/sklearn/gaussian_process/_gpc.py\nindex 7875c1aa7..90266625f 100644\n--- b/sklearn/gaussian_process/_gpc.py\n+++ a/sklearn/gaussian_process/_gpc.py\n@@ -853,3 +853,49 @@ class GaussianProcessClassifier(ClassifierMixin, BaseEstimator):\n hyperparameters at position theta.\n Only returned when `eval_gradient` is True.\n \"\"\"\n+ check_is_fitted(self)\n+\n+ if theta is None:\n+ if eval_gradient:\n+ raise ValueError(\"Gradient can only be evaluated for theta!=None\")\n+ return self.log_marginal_likelihood_value_\n+\n+ theta = np.asarray(theta)\n+ if self.n_classes_ == 2:\n+ return self.base_estimator_.log_marginal_likelihood(\n+ theta, eval_gradient, clone_kernel=clone_kernel\n+ )\n+ else:\n+ if eval_gradient:\n+ raise NotImplementedError(\n+ \"Gradient of log-marginal-likelihood not implemented for \"\n+ \"multi-class GPC.\"\n+ )\n+ estimators = self.base_estimator_.estimators_\n+ n_dims = estimators[0].kernel_.n_dims\n+ if theta.shape[0] == n_dims: # use same theta for all sub-kernels\n+ return np.mean(\n+ [\n+ estimator.log_marginal_likelihood(\n+ theta, clone_kernel=clone_kernel\n+ )\n+ for i, estimator in enumerate(estimators)\n+ ]\n+ )\n+ elif theta.shape[0] == n_dims * self.classes_.shape[0]:\n+ # theta for compound kernel\n+ return np.mean(\n+ [\n+ estimator.log_marginal_likelihood(\n+ theta[n_dims * i : n_dims * (i + 1)],\n+ clone_kernel=clone_kernel,\n+ )\n+ for i, estimator in enumerate(estimators)\n+ ]\n+ )\n+ else:\n+ raise ValueError(\n+ \"Shape of theta must be either %d or %d. \"\n+ \"Obtained theta with shape %d.\"\n+ % (n_dims, n_dims * self.classes_.shape[0], theta.shape[0])\n+ )\n", "test": null }
null
{ "code": "diff --git a/sklearn/gaussian_process/_gpc.py b/sklearn/gaussian_process/_gpc.py\nindex 90266625f..7875c1aa7 100644\n--- a/sklearn/gaussian_process/_gpc.py\n+++ b/sklearn/gaussian_process/_gpc.py\n@@ -853,49 +853,3 @@ class GaussianProcessClassifier(ClassifierMixin, BaseEstimator):\n hyperparameters at position theta.\n Only returned when `eval_gradient` is True.\n \"\"\"\n- check_is_fitted(self)\n-\n- if theta is None:\n- if eval_gradient:\n- raise ValueError(\"Gradient can only be evaluated for theta!=None\")\n- return self.log_marginal_likelihood_value_\n-\n- theta = np.asarray(theta)\n- if self.n_classes_ == 2:\n- return self.base_estimator_.log_marginal_likelihood(\n- theta, eval_gradient, clone_kernel=clone_kernel\n- )\n- else:\n- if eval_gradient:\n- raise NotImplementedError(\n- \"Gradient of log-marginal-likelihood not implemented for \"\n- \"multi-class GPC.\"\n- )\n- estimators = self.base_estimator_.estimators_\n- n_dims = estimators[0].kernel_.n_dims\n- if theta.shape[0] == n_dims: # use same theta for all sub-kernels\n- return np.mean(\n- [\n- estimator.log_marginal_likelihood(\n- theta, clone_kernel=clone_kernel\n- )\n- for i, estimator in enumerate(estimators)\n- ]\n- )\n- elif theta.shape[0] == n_dims * self.classes_.shape[0]:\n- # theta for compound kernel\n- return np.mean(\n- [\n- estimator.log_marginal_likelihood(\n- theta[n_dims * i : n_dims * (i + 1)],\n- clone_kernel=clone_kernel,\n- )\n- for i, estimator in enumerate(estimators)\n- ]\n- )\n- else:\n- raise ValueError(\n- \"Shape of theta must be either %d or %d. \"\n- \"Obtained theta with shape %d.\"\n- % (n_dims, n_dims * self.classes_.shape[0], theta.shape[0])\n- )\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/gaussian_process/_gpc.py.\nHere is the description for the function:\n def log_marginal_likelihood(\n self, theta=None, eval_gradient=False, clone_kernel=True\n ):\n \"\"\"Return log-marginal likelihood of theta for training data.\n\n In the case of multi-class classification, the mean log-marginal\n likelihood of the one-versus-rest classifiers are returned.\n\n Parameters\n ----------\n theta : array-like of shape (n_kernel_params,), default=None\n Kernel hyperparameters for which the log-marginal likelihood is\n evaluated. In the case of multi-class classification, theta may\n be the hyperparameters of the compound kernel or of an individual\n kernel. In the latter case, all individual kernel get assigned the\n same theta values. If None, the precomputed log_marginal_likelihood\n of ``self.kernel_.theta`` is returned.\n\n eval_gradient : bool, default=False\n If True, the gradient of the log-marginal likelihood with respect\n to the kernel hyperparameters at position theta is returned\n additionally. Note that gradient computation is not supported\n for non-binary classification. If True, theta must not be None.\n\n clone_kernel : bool, default=True\n If True, the kernel attribute is copied. If False, the kernel\n attribute is modified, but may result in a performance improvement.\n\n Returns\n -------\n log_likelihood : float\n Log-marginal likelihood of theta for training data.\n\n log_likelihood_gradient : ndarray of shape (n_kernel_params,), optional\n Gradient of the log-marginal likelihood with respect to the kernel\n hyperparameters at position theta.\n Only returned when `eval_gradient` is True.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/gaussian_process/tests/test_gpc.py::test_lml_improving[kernel0]", "sklearn/gaussian_process/tests/test_gpc.py::test_lml_improving[kernel1]", "sklearn/gaussian_process/tests/test_gpc.py::test_lml_improving[kernel2]", "sklearn/gaussian_process/tests/test_gpc.py::test_lml_precomputed[kernel0]", "sklearn/gaussian_process/tests/test_gpc.py::test_lml_precomputed[kernel1]", "sklearn/gaussian_process/tests/test_gpc.py::test_lml_precomputed[kernel2]", "sklearn/gaussian_process/tests/test_gpc.py::test_lml_precomputed[kernel3]", "sklearn/gaussian_process/tests/test_gpc.py::test_lml_without_cloning_kernel[kernel0]", "sklearn/gaussian_process/tests/test_gpc.py::test_lml_without_cloning_kernel[kernel1]", "sklearn/gaussian_process/tests/test_gpc.py::test_lml_without_cloning_kernel[kernel2]", "sklearn/gaussian_process/tests/test_gpc.py::test_lml_without_cloning_kernel[kernel3]", "sklearn/gaussian_process/tests/test_gpc.py::test_converged_to_local_maximum[kernel0]", "sklearn/gaussian_process/tests/test_gpc.py::test_converged_to_local_maximum[kernel1]", "sklearn/gaussian_process/tests/test_gpc.py::test_converged_to_local_maximum[kernel2]", "sklearn/gaussian_process/tests/test_gpc.py::test_lml_gradient[kernel0]", "sklearn/gaussian_process/tests/test_gpc.py::test_lml_gradient[kernel1]", "sklearn/gaussian_process/tests/test_gpc.py::test_lml_gradient[kernel2]", "sklearn/gaussian_process/tests/test_gpc.py::test_lml_gradient[kernel3]", "sklearn/gaussian_process/tests/test_gpc.py::test_random_starts[42]", "sklearn/gaussian_process/tests/test_gpc.py::test_custom_optimizer[42-kernel0]", "sklearn/gaussian_process/tests/test_gpc.py::test_custom_optimizer[42-kernel1]", "sklearn/gaussian_process/tests/test_gpc.py::test_custom_optimizer[42-kernel2]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-56
1.0
{ "code": "diff --git b/sklearn/gaussian_process/_gpc.py a/sklearn/gaussian_process/_gpc.py\nindex aa4fd013d..90266625f 100644\n--- b/sklearn/gaussian_process/_gpc.py\n+++ a/sklearn/gaussian_process/_gpc.py\n@@ -790,6 +790,20 @@ class GaussianProcessClassifier(ClassifierMixin, BaseEstimator):\n the model. The columns correspond to the classes in sorted\n order, as they appear in the attribute :term:`classes_`.\n \"\"\"\n+ check_is_fitted(self)\n+ if self.n_classes_ > 2 and self.multi_class == \"one_vs_one\":\n+ raise ValueError(\n+ \"one_vs_one multi-class mode does not support \"\n+ \"predicting probability estimates. Use \"\n+ \"one_vs_rest mode instead.\"\n+ )\n+\n+ if self.kernel is None or self.kernel.requires_vector_input:\n+ X = validate_data(self, X, ensure_2d=True, dtype=\"numeric\", reset=False)\n+ else:\n+ X = validate_data(self, X, ensure_2d=False, dtype=None, reset=False)\n+\n+ return self.base_estimator_.predict_proba(X)\n \n @property\n def kernel_(self):\n", "test": null }
null
{ "code": "diff --git a/sklearn/gaussian_process/_gpc.py b/sklearn/gaussian_process/_gpc.py\nindex 90266625f..aa4fd013d 100644\n--- a/sklearn/gaussian_process/_gpc.py\n+++ b/sklearn/gaussian_process/_gpc.py\n@@ -790,20 +790,6 @@ class GaussianProcessClassifier(ClassifierMixin, BaseEstimator):\n the model. The columns correspond to the classes in sorted\n order, as they appear in the attribute :term:`classes_`.\n \"\"\"\n- check_is_fitted(self)\n- if self.n_classes_ > 2 and self.multi_class == \"one_vs_one\":\n- raise ValueError(\n- \"one_vs_one multi-class mode does not support \"\n- \"predicting probability estimates. Use \"\n- \"one_vs_rest mode instead.\"\n- )\n-\n- if self.kernel is None or self.kernel.requires_vector_input:\n- X = validate_data(self, X, ensure_2d=True, dtype=\"numeric\", reset=False)\n- else:\n- X = validate_data(self, X, ensure_2d=False, dtype=None, reset=False)\n-\n- return self.base_estimator_.predict_proba(X)\n \n @property\n def kernel_(self):\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/gaussian_process/_gpc.py.\nHere is the description for the function:\n def predict_proba(self, X):\n \"\"\"Return probability estimates for the test vector X.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features) or list of object\n Query points where the GP is evaluated for classification.\n\n Returns\n -------\n C : array-like of shape (n_samples, n_classes)\n Returns the probability of the samples for each class in\n the model. The columns correspond to the classes in sorted\n order, as they appear in the attribute :term:`classes_`.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/gaussian_process/tests/test_gpc.py::test_predict_consistent[kernel0]", "sklearn/gaussian_process/tests/test_gpc.py::test_predict_consistent[kernel1]", "sklearn/gaussian_process/tests/test_gpc.py::test_predict_consistent[kernel2]", "sklearn/gaussian_process/tests/test_gpc.py::test_predict_consistent[kernel3]", "sklearn/gaussian_process/tests/test_gpc.py::test_predict_consistent_structured", "sklearn/gaussian_process/tests/test_gpc.py::test_multi_class[kernel0]", "sklearn/gaussian_process/tests/test_gpc.py::test_multi_class[kernel1]", "sklearn/gaussian_process/tests/test_gpc.py::test_multi_class[kernel2]", "sklearn/gaussian_process/tests/test_gpc.py::test_multi_class[kernel3]", "sklearn/gaussian_process/tests/test_gpc.py::test_multi_class_n_jobs[kernel0]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_classifiers_train(readonly_memmap=True)]", "sklearn/gaussian_process/tests/test_gpc.py::test_multi_class_n_jobs[kernel1]", "sklearn/gaussian_process/tests/test_gpc.py::test_multi_class_n_jobs[kernel2]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/gaussian_process/tests/test_gpc.py::test_multi_class_n_jobs[kernel3]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_estimators_unfitted]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_fit2d_predict1d]", "sklearn/gaussian_process/kernels.py::sklearn.gaussian_process.kernels.Matern", "sklearn/gaussian_process/kernels.py::sklearn.gaussian_process.kernels.PairwiseKernel", "sklearn/gaussian_process/kernels.py::sklearn.gaussian_process.kernels.RBF", "sklearn/gaussian_process/_gpc.py::sklearn.gaussian_process._gpc.GaussianProcessClassifier", "sklearn/gaussian_process/kernels.py::sklearn.gaussian_process.kernels.RationalQuadratic", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[GaussianProcessClassifier()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GaussianProcessClassifier()]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-57
1.0
{ "code": "diff --git b/sklearn/gaussian_process/_gpr.py a/sklearn/gaussian_process/_gpr.py\nindex 844e8cf10..d30854eae 100644\n--- b/sklearn/gaussian_process/_gpr.py\n+++ a/sklearn/gaussian_process/_gpr.py\n@@ -218,6 +218,7 @@ class GaussianProcessRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):\n self.n_targets = n_targets\n self.random_state = random_state\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y):\n \"\"\"Fit Gaussian process regression model.\n \n@@ -234,6 +235,131 @@ class GaussianProcessRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):\n self : object\n GaussianProcessRegressor class instance.\n \"\"\"\n+ if self.kernel is None: # Use an RBF kernel as default\n+ self.kernel_ = C(1.0, constant_value_bounds=\"fixed\") * RBF(\n+ 1.0, length_scale_bounds=\"fixed\"\n+ )\n+ else:\n+ self.kernel_ = clone(self.kernel)\n+\n+ self._rng = check_random_state(self.random_state)\n+\n+ if self.kernel_.requires_vector_input:\n+ dtype, ensure_2d = \"numeric\", True\n+ else:\n+ dtype, ensure_2d = None, False\n+ X, y = validate_data(\n+ self,\n+ X,\n+ y,\n+ multi_output=True,\n+ y_numeric=True,\n+ ensure_2d=ensure_2d,\n+ dtype=dtype,\n+ )\n+\n+ n_targets_seen = y.shape[1] if y.ndim > 1 else 1\n+ if self.n_targets is not None and n_targets_seen != self.n_targets:\n+ raise ValueError(\n+ \"The number of targets seen in `y` is different from the parameter \"\n+ f\"`n_targets`. Got {n_targets_seen} != {self.n_targets}.\"\n+ )\n+\n+ # Normalize target value\n+ if self.normalize_y:\n+ self._y_train_mean = np.mean(y, axis=0)\n+ self._y_train_std = _handle_zeros_in_scale(np.std(y, axis=0), copy=False)\n+\n+ # Remove mean and make unit variance\n+ y = (y - self._y_train_mean) / self._y_train_std\n+\n+ else:\n+ shape_y_stats = (y.shape[1],) if y.ndim == 2 else 1\n+ self._y_train_mean = np.zeros(shape=shape_y_stats)\n+ self._y_train_std = np.ones(shape=shape_y_stats)\n+\n+ if np.iterable(self.alpha) and self.alpha.shape[0] != y.shape[0]:\n+ if self.alpha.shape[0] == 1:\n+ self.alpha = self.alpha[0]\n+ else:\n+ raise ValueError(\n+ \"alpha must be a scalar or an array with same number of \"\n+ f\"entries as y. ({self.alpha.shape[0]} != {y.shape[0]})\"\n+ )\n+\n+ self.X_train_ = np.copy(X) if self.copy_X_train else X\n+ self.y_train_ = np.copy(y) if self.copy_X_train else y\n+\n+ if self.optimizer is not None and self.kernel_.n_dims > 0:\n+ # Choose hyperparameters based on maximizing the log-marginal\n+ # likelihood (potentially starting from several initial values)\n+ def obj_func(theta, eval_gradient=True):\n+ if eval_gradient:\n+ lml, grad = self.log_marginal_likelihood(\n+ theta, eval_gradient=True, clone_kernel=False\n+ )\n+ return -lml, -grad\n+ else:\n+ return -self.log_marginal_likelihood(theta, clone_kernel=False)\n+\n+ # First optimize starting from theta specified in kernel\n+ optima = [\n+ (\n+ self._constrained_optimization(\n+ obj_func, self.kernel_.theta, self.kernel_.bounds\n+ )\n+ )\n+ ]\n+\n+ # Additional runs are performed from log-uniform chosen initial\n+ # theta\n+ if self.n_restarts_optimizer > 0:\n+ if not np.isfinite(self.kernel_.bounds).all():\n+ raise ValueError(\n+ \"Multiple optimizer restarts (n_restarts_optimizer>0) \"\n+ \"requires that all bounds are finite.\"\n+ )\n+ bounds = self.kernel_.bounds\n+ for iteration in range(self.n_restarts_optimizer):\n+ theta_initial = self._rng.uniform(bounds[:, 0], bounds[:, 1])\n+ optima.append(\n+ self._constrained_optimization(obj_func, theta_initial, bounds)\n+ )\n+ # Select result from run with minimal (negative) log-marginal\n+ # likelihood\n+ lml_values = list(map(itemgetter(1), optima))\n+ self.kernel_.theta = optima[np.argmin(lml_values)][0]\n+ self.kernel_._check_bounds_params()\n+\n+ self.log_marginal_likelihood_value_ = -np.min(lml_values)\n+ else:\n+ self.log_marginal_likelihood_value_ = self.log_marginal_likelihood(\n+ self.kernel_.theta, clone_kernel=False\n+ )\n+\n+ # Precompute quantities required for predictions which are independent\n+ # of actual query points\n+ # Alg. 2.1, page 19, line 2 -> L = cholesky(K + sigma^2 I)\n+ K = self.kernel_(self.X_train_)\n+ K[np.diag_indices_from(K)] += self.alpha\n+ try:\n+ self.L_ = cholesky(K, lower=GPR_CHOLESKY_LOWER, check_finite=False)\n+ except np.linalg.LinAlgError as exc:\n+ exc.args = (\n+ (\n+ f\"The kernel, {self.kernel_}, is not returning a positive \"\n+ \"definite matrix. Try gradually increasing the 'alpha' \"\n+ \"parameter of your GaussianProcessRegressor estimator.\"\n+ ),\n+ ) + exc.args\n+ raise\n+ # Alg 2.1, page 19, line 3 -> alpha = L^T \\ (L \\ y)\n+ self.alpha_ = cho_solve(\n+ (self.L_, GPR_CHOLESKY_LOWER),\n+ self.y_train_,\n+ check_finite=False,\n+ )\n+ return self\n \n def predict(self, X, return_std=False, return_cov=False):\n \"\"\"Predict using the Gaussian process regression model.\n", "test": null }
null
{ "code": "diff --git a/sklearn/gaussian_process/_gpr.py b/sklearn/gaussian_process/_gpr.py\nindex d30854eae..844e8cf10 100644\n--- a/sklearn/gaussian_process/_gpr.py\n+++ b/sklearn/gaussian_process/_gpr.py\n@@ -218,7 +218,6 @@ class GaussianProcessRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):\n self.n_targets = n_targets\n self.random_state = random_state\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y):\n \"\"\"Fit Gaussian process regression model.\n \n@@ -235,131 +234,6 @@ class GaussianProcessRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):\n self : object\n GaussianProcessRegressor class instance.\n \"\"\"\n- if self.kernel is None: # Use an RBF kernel as default\n- self.kernel_ = C(1.0, constant_value_bounds=\"fixed\") * RBF(\n- 1.0, length_scale_bounds=\"fixed\"\n- )\n- else:\n- self.kernel_ = clone(self.kernel)\n-\n- self._rng = check_random_state(self.random_state)\n-\n- if self.kernel_.requires_vector_input:\n- dtype, ensure_2d = \"numeric\", True\n- else:\n- dtype, ensure_2d = None, False\n- X, y = validate_data(\n- self,\n- X,\n- y,\n- multi_output=True,\n- y_numeric=True,\n- ensure_2d=ensure_2d,\n- dtype=dtype,\n- )\n-\n- n_targets_seen = y.shape[1] if y.ndim > 1 else 1\n- if self.n_targets is not None and n_targets_seen != self.n_targets:\n- raise ValueError(\n- \"The number of targets seen in `y` is different from the parameter \"\n- f\"`n_targets`. Got {n_targets_seen} != {self.n_targets}.\"\n- )\n-\n- # Normalize target value\n- if self.normalize_y:\n- self._y_train_mean = np.mean(y, axis=0)\n- self._y_train_std = _handle_zeros_in_scale(np.std(y, axis=0), copy=False)\n-\n- # Remove mean and make unit variance\n- y = (y - self._y_train_mean) / self._y_train_std\n-\n- else:\n- shape_y_stats = (y.shape[1],) if y.ndim == 2 else 1\n- self._y_train_mean = np.zeros(shape=shape_y_stats)\n- self._y_train_std = np.ones(shape=shape_y_stats)\n-\n- if np.iterable(self.alpha) and self.alpha.shape[0] != y.shape[0]:\n- if self.alpha.shape[0] == 1:\n- self.alpha = self.alpha[0]\n- else:\n- raise ValueError(\n- \"alpha must be a scalar or an array with same number of \"\n- f\"entries as y. ({self.alpha.shape[0]} != {y.shape[0]})\"\n- )\n-\n- self.X_train_ = np.copy(X) if self.copy_X_train else X\n- self.y_train_ = np.copy(y) if self.copy_X_train else y\n-\n- if self.optimizer is not None and self.kernel_.n_dims > 0:\n- # Choose hyperparameters based on maximizing the log-marginal\n- # likelihood (potentially starting from several initial values)\n- def obj_func(theta, eval_gradient=True):\n- if eval_gradient:\n- lml, grad = self.log_marginal_likelihood(\n- theta, eval_gradient=True, clone_kernel=False\n- )\n- return -lml, -grad\n- else:\n- return -self.log_marginal_likelihood(theta, clone_kernel=False)\n-\n- # First optimize starting from theta specified in kernel\n- optima = [\n- (\n- self._constrained_optimization(\n- obj_func, self.kernel_.theta, self.kernel_.bounds\n- )\n- )\n- ]\n-\n- # Additional runs are performed from log-uniform chosen initial\n- # theta\n- if self.n_restarts_optimizer > 0:\n- if not np.isfinite(self.kernel_.bounds).all():\n- raise ValueError(\n- \"Multiple optimizer restarts (n_restarts_optimizer>0) \"\n- \"requires that all bounds are finite.\"\n- )\n- bounds = self.kernel_.bounds\n- for iteration in range(self.n_restarts_optimizer):\n- theta_initial = self._rng.uniform(bounds[:, 0], bounds[:, 1])\n- optima.append(\n- self._constrained_optimization(obj_func, theta_initial, bounds)\n- )\n- # Select result from run with minimal (negative) log-marginal\n- # likelihood\n- lml_values = list(map(itemgetter(1), optima))\n- self.kernel_.theta = optima[np.argmin(lml_values)][0]\n- self.kernel_._check_bounds_params()\n-\n- self.log_marginal_likelihood_value_ = -np.min(lml_values)\n- else:\n- self.log_marginal_likelihood_value_ = self.log_marginal_likelihood(\n- self.kernel_.theta, clone_kernel=False\n- )\n-\n- # Precompute quantities required for predictions which are independent\n- # of actual query points\n- # Alg. 2.1, page 19, line 2 -> L = cholesky(K + sigma^2 I)\n- K = self.kernel_(self.X_train_)\n- K[np.diag_indices_from(K)] += self.alpha\n- try:\n- self.L_ = cholesky(K, lower=GPR_CHOLESKY_LOWER, check_finite=False)\n- except np.linalg.LinAlgError as exc:\n- exc.args = (\n- (\n- f\"The kernel, {self.kernel_}, is not returning a positive \"\n- \"definite matrix. Try gradually increasing the 'alpha' \"\n- \"parameter of your GaussianProcessRegressor estimator.\"\n- ),\n- ) + exc.args\n- raise\n- # Alg 2.1, page 19, line 3 -> alpha = L^T \\ (L \\ y)\n- self.alpha_ = cho_solve(\n- (self.L_, GPR_CHOLESKY_LOWER),\n- self.y_train_,\n- check_finite=False,\n- )\n- return self\n \n def predict(self, X, return_std=False, return_cov=False):\n \"\"\"Predict using the Gaussian process regression model.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/gaussian_process/_gpr.py.\nHere is the description for the function:\n def fit(self, X, y):\n \"\"\"Fit Gaussian process regression model.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features) or list of object\n Feature vectors or other representations of training data.\n\n y : array-like of shape (n_samples,) or (n_samples, n_targets)\n Target values.\n\n Returns\n -------\n self : object\n GaussianProcessRegressor class instance.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/gaussian_process/tests/test_gpr.py::test_gpr_interpolation[kernel0]", "sklearn/gaussian_process/tests/test_gpr.py::test_gpr_interpolation[kernel1]", "sklearn/gaussian_process/tests/test_gpr.py::test_gpr_interpolation[kernel2]", "sklearn/gaussian_process/tests/test_gpr.py::test_gpr_interpolation[kernel3]", "sklearn/gaussian_process/tests/test_gpr.py::test_gpr_interpolation[kernel4]", "sklearn/gaussian_process/tests/test_gpr.py::test_gpr_interpolation[kernel5]", "sklearn/gaussian_process/tests/test_gpr.py::test_gpr_interpolation_structured", "sklearn/gaussian_process/tests/test_gpr.py::test_lml_improving[kernel0]", "sklearn/gaussian_process/tests/test_gpr.py::test_lml_improving[kernel1]", "sklearn/gaussian_process/tests/test_gpr.py::test_lml_improving[kernel2]", "sklearn/gaussian_process/tests/test_gpr.py::test_lml_improving[kernel3]", "sklearn/gaussian_process/tests/test_gpr.py::test_lml_improving[kernel4]", "sklearn/gaussian_process/tests/test_gpr.py::test_lml_precomputed[kernel0]", "sklearn/gaussian_process/tests/test_gpr.py::test_lml_precomputed[kernel1]", "sklearn/gaussian_process/tests/test_gpr.py::test_lml_precomputed[kernel2]", "sklearn/gaussian_process/tests/test_gpr.py::test_lml_precomputed[kernel3]", "sklearn/gaussian_process/tests/test_gpr.py::test_lml_precomputed[kernel4]", "sklearn/gaussian_process/tests/test_gpr.py::test_lml_precomputed[kernel5]", "sklearn/gaussian_process/tests/test_gpr.py::test_lml_without_cloning_kernel[kernel0]", "sklearn/gaussian_process/tests/test_gpr.py::test_lml_without_cloning_kernel[kernel1]", "sklearn/gaussian_process/tests/test_gpr.py::test_lml_without_cloning_kernel[kernel2]", "sklearn/gaussian_process/tests/test_gpr.py::test_lml_without_cloning_kernel[kernel3]", "sklearn/gaussian_process/tests/test_gpr.py::test_lml_without_cloning_kernel[kernel4]", "sklearn/gaussian_process/tests/test_gpr.py::test_lml_without_cloning_kernel[kernel5]", "sklearn/gaussian_process/tests/test_gpr.py::test_converged_to_local_maximum[kernel0]", "sklearn/gaussian_process/tests/test_gpr.py::test_converged_to_local_maximum[kernel1]", "sklearn/gaussian_process/tests/test_gpr.py::test_converged_to_local_maximum[kernel2]", "sklearn/gaussian_process/tests/test_gpr.py::test_converged_to_local_maximum[kernel3]", "sklearn/gaussian_process/tests/test_gpr.py::test_converged_to_local_maximum[kernel4]", "sklearn/gaussian_process/tests/test_gpr.py::test_solution_inside_bounds[kernel0]", "sklearn/gaussian_process/tests/test_gpr.py::test_solution_inside_bounds[kernel1]", "sklearn/gaussian_process/tests/test_gpr.py::test_solution_inside_bounds[kernel2]", "sklearn/gaussian_process/tests/test_gpr.py::test_solution_inside_bounds[kernel3]", "sklearn/gaussian_process/tests/test_gpr.py::test_solution_inside_bounds[kernel4]", "sklearn/gaussian_process/tests/test_gpr.py::test_lml_gradient[kernel0]", "sklearn/gaussian_process/tests/test_gpr.py::test_lml_gradient[kernel1]", "sklearn/gaussian_process/tests/test_gpr.py::test_lml_gradient[kernel2]", "sklearn/gaussian_process/tests/test_gpr.py::test_lml_gradient[kernel3]", "sklearn/gaussian_process/tests/test_gpr.py::test_lml_gradient[kernel4]", "sklearn/gaussian_process/tests/test_gpr.py::test_lml_gradient[kernel5]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_statistics[kernel0]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_statistics[kernel1]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_statistics[kernel2]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_statistics[kernel3]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_statistics[kernel4]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_statistics[kernel5]", "sklearn/gaussian_process/tests/test_gpr.py::test_no_optimizer", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_cov_vs_std[target0-kernel0]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_cov_vs_std[target0-kernel1]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_cov_vs_std[target0-kernel2]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_cov_vs_std[target0-kernel3]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_cov_vs_std[target0-kernel4]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_cov_vs_std[target0-kernel5]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_cov_vs_std[target1-kernel0]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_cov_vs_std[target1-kernel1]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_cov_vs_std[target1-kernel2]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_cov_vs_std[target1-kernel3]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_cov_vs_std[target1-kernel4]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_cov_vs_std[target1-kernel5]", "sklearn/gaussian_process/tests/test_gpr.py::test_anisotropic_kernel", "sklearn/gaussian_process/tests/test_gpr.py::test_random_starts", "sklearn/gaussian_process/tests/test_gpr.py::test_y_normalization[kernel0]", "sklearn/gaussian_process/tests/test_gpr.py::test_y_normalization[kernel1]", "sklearn/gaussian_process/tests/test_gpr.py::test_y_normalization[kernel2]", "sklearn/gaussian_process/tests/test_gpr.py::test_y_normalization[kernel3]", "sklearn/gaussian_process/tests/test_gpr.py::test_y_normalization[kernel4]", "sklearn/gaussian_process/tests/test_gpr.py::test_y_normalization[kernel5]", "sklearn/gaussian_process/tests/test_gpr.py::test_large_variance_y", "sklearn/gaussian_process/tests/test_gpr.py::test_y_multioutput", "sklearn/gaussian_process/tests/test_gpr.py::test_custom_optimizer[kernel0]", "sklearn/gaussian_process/tests/test_gpr.py::test_custom_optimizer[kernel1]", "sklearn/gaussian_process/tests/test_gpr.py::test_custom_optimizer[kernel2]", "sklearn/gaussian_process/tests/test_gpr.py::test_custom_optimizer[kernel3]", "sklearn/gaussian_process/tests/test_gpr.py::test_custom_optimizer[kernel4]", "sklearn/gaussian_process/tests/test_gpr.py::test_gpr_correct_error_message", "sklearn/gaussian_process/tests/test_gpr.py::test_duplicate_input[kernel0]", "sklearn/gaussian_process/tests/test_gpr.py::test_duplicate_input[kernel1]", "sklearn/gaussian_process/tests/test_gpr.py::test_duplicate_input[kernel2]", "sklearn/gaussian_process/tests/test_gpr.py::test_duplicate_input[kernel3]", "sklearn/gaussian_process/tests/test_gpr.py::test_duplicate_input[kernel4]", "sklearn/gaussian_process/tests/test_gpr.py::test_duplicate_input[kernel5]", "sklearn/gaussian_process/tests/test_gpr.py::test_warning_bounds", "sklearn/gaussian_process/tests/test_gpr.py::test_bound_check_fixed_hyperparameter", "sklearn/gaussian_process/tests/test_gpr.py::test_constant_target[kernel0]", "sklearn/gaussian_process/tests/test_gpr.py::test_constant_target[kernel1]", "sklearn/gaussian_process/tests/test_gpr.py::test_constant_target[kernel2]", "sklearn/gaussian_process/tests/test_gpr.py::test_constant_target[kernel3]", "sklearn/gaussian_process/tests/test_gpr.py::test_constant_target[kernel4]", "sklearn/gaussian_process/tests/test_gpr.py::test_constant_target[kernel5]", "sklearn/gaussian_process/tests/test_gpr.py::test_gpr_consistency_std_cov_non_invertible_kernel", "sklearn/gaussian_process/tests/test_gpr.py::test_gpr_fit_error[params0-ValueError-alpha must be a scalar or an array with same number of entries as y]", "sklearn/gaussian_process/tests/test_gpr.py::test_gpr_fit_error[params1-ValueError-requires that all bounds are finite]", "sklearn/gaussian_process/tests/test_gpr.py::test_gpr_lml_error", "sklearn/gaussian_process/tests/test_gpr.py::test_gpr_predict_error", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_shapes[None-True]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_shapes[None-False]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_shapes[1-True]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_shapes[1-False]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_shapes[10-True]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_shapes[10-False]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_y_shapes[None-True]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_y_shapes[None-False]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_y_shapes[1-True]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_y_shapes[1-False]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_y_shapes[10-True]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_y_shapes[10-False]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_y_shape_with_prior[1-None]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_y_shape_with_prior[1-1]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_y_shape_with_prior[1-2]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_y_shape_with_prior[1-3]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_y_shape_with_prior[5-None]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_y_shape_with_prior[5-1]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_y_shape_with_prior[5-2]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_y_shape_with_prior[5-3]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_shape_with_prior[None]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_shape_with_prior[1]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_shape_with_prior[2]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_shape_with_prior[3]", "sklearn/gaussian_process/tests/test_gpr.py::test_n_targets_error", "sklearn/gaussian_process/tests/test_gpr.py::test_gpr_predict_input_not_modified", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_estimators_pickle]", "sklearn/gaussian_process/kernels.py::sklearn.gaussian_process.kernels.ConstantKernel", "sklearn/gaussian_process/kernels.py::sklearn.gaussian_process.kernels.DotProduct", "sklearn/gaussian_process/kernels.py::sklearn.gaussian_process.kernels.ExpSineSquared", "sklearn/gaussian_process/kernels.py::sklearn.gaussian_process.kernels.Exponentiation", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/gaussian_process/kernels.py::sklearn.gaussian_process.kernels.Product", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_regressor_multioutput]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_supervised_y_no_nan]", "sklearn/gaussian_process/kernels.py::sklearn.gaussian_process.kernels.Sum", "sklearn/gaussian_process/_gpr.py::sklearn.gaussian_process._gpr.GaussianProcessRegressor", "sklearn/gaussian_process/kernels.py::sklearn.gaussian_process.kernels.WhiteKernel", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_requires_y_none]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[GaussianProcessRegressor()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GaussianProcessRegressor()]", "sklearn/tests/test_common.py::test_check_param_validation[GaussianProcessRegressor()]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-58
1.0
{ "code": "diff --git b/sklearn/gaussian_process/_gpr.py a/sklearn/gaussian_process/_gpr.py\nindex cf68e678a..d30854eae 100644\n--- b/sklearn/gaussian_process/_gpr.py\n+++ a/sklearn/gaussian_process/_gpr.py\n@@ -562,6 +562,91 @@ class GaussianProcessRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):\n hyperparameters at position theta.\n Only returned when eval_gradient is True.\n \"\"\"\n+ if theta is None:\n+ if eval_gradient:\n+ raise ValueError(\"Gradient can only be evaluated for theta!=None\")\n+ return self.log_marginal_likelihood_value_\n+\n+ if clone_kernel:\n+ kernel = self.kernel_.clone_with_theta(theta)\n+ else:\n+ kernel = self.kernel_\n+ kernel.theta = theta\n+\n+ if eval_gradient:\n+ K, K_gradient = kernel(self.X_train_, eval_gradient=True)\n+ else:\n+ K = kernel(self.X_train_)\n+\n+ # Alg. 2.1, page 19, line 2 -> L = cholesky(K + sigma^2 I)\n+ K[np.diag_indices_from(K)] += self.alpha\n+ try:\n+ L = cholesky(K, lower=GPR_CHOLESKY_LOWER, check_finite=False)\n+ except np.linalg.LinAlgError:\n+ return (-np.inf, np.zeros_like(theta)) if eval_gradient else -np.inf\n+\n+ # Support multi-dimensional output of self.y_train_\n+ y_train = self.y_train_\n+ if y_train.ndim == 1:\n+ y_train = y_train[:, np.newaxis]\n+\n+ # Alg 2.1, page 19, line 3 -> alpha = L^T \\ (L \\ y)\n+ alpha = cho_solve((L, GPR_CHOLESKY_LOWER), y_train, check_finite=False)\n+\n+ # Alg 2.1, page 19, line 7\n+ # -0.5 . y^T . alpha - sum(log(diag(L))) - n_samples / 2 log(2*pi)\n+ # y is originally thought to be a (1, n_samples) row vector. However,\n+ # in multioutputs, y is of shape (n_samples, 2) and we need to compute\n+ # y^T . alpha for each output, independently using einsum. Thus, it\n+ # is equivalent to:\n+ # for output_idx in range(n_outputs):\n+ # log_likelihood_dims[output_idx] = (\n+ # y_train[:, [output_idx]] @ alpha[:, [output_idx]]\n+ # )\n+ log_likelihood_dims = -0.5 * np.einsum(\"ik,ik->k\", y_train, alpha)\n+ log_likelihood_dims -= np.log(np.diag(L)).sum()\n+ log_likelihood_dims -= K.shape[0] / 2 * np.log(2 * np.pi)\n+ # the log likehood is sum-up across the outputs\n+ log_likelihood = log_likelihood_dims.sum(axis=-1)\n+\n+ if eval_gradient:\n+ # Eq. 5.9, p. 114, and footnote 5 in p. 114\n+ # 0.5 * trace((alpha . alpha^T - K^-1) . K_gradient)\n+ # alpha is supposed to be a vector of (n_samples,) elements. With\n+ # multioutputs, alpha is a matrix of size (n_samples, n_outputs).\n+ # Therefore, we want to construct a matrix of\n+ # (n_samples, n_samples, n_outputs) equivalent to\n+ # for output_idx in range(n_outputs):\n+ # output_alpha = alpha[:, [output_idx]]\n+ # inner_term[..., output_idx] = output_alpha @ output_alpha.T\n+ inner_term = np.einsum(\"ik,jk->ijk\", alpha, alpha)\n+ # compute K^-1 of shape (n_samples, n_samples)\n+ K_inv = cho_solve(\n+ (L, GPR_CHOLESKY_LOWER), np.eye(K.shape[0]), check_finite=False\n+ )\n+ # create a new axis to use broadcasting between inner_term and\n+ # K_inv\n+ inner_term -= K_inv[..., np.newaxis]\n+ # Since we are interested about the trace of\n+ # inner_term @ K_gradient, we don't explicitly compute the\n+ # matrix-by-matrix operation and instead use an einsum. Therefore\n+ # it is equivalent to:\n+ # for param_idx in range(n_kernel_params):\n+ # for output_idx in range(n_output):\n+ # log_likehood_gradient_dims[param_idx, output_idx] = (\n+ # inner_term[..., output_idx] @\n+ # K_gradient[..., param_idx]\n+ # )\n+ log_likelihood_gradient_dims = 0.5 * np.einsum(\n+ \"ijl,jik->kl\", inner_term, K_gradient\n+ )\n+ # the log likehood gradient is the sum-up across the outputs\n+ log_likelihood_gradient = log_likelihood_gradient_dims.sum(axis=-1)\n+\n+ if eval_gradient:\n+ return log_likelihood, log_likelihood_gradient\n+ else:\n+ return log_likelihood\n \n def _constrained_optimization(self, obj_func, initial_theta, bounds):\n if self.optimizer == \"fmin_l_bfgs_b\":\n", "test": null }
null
{ "code": "diff --git a/sklearn/gaussian_process/_gpr.py b/sklearn/gaussian_process/_gpr.py\nindex d30854eae..cf68e678a 100644\n--- a/sklearn/gaussian_process/_gpr.py\n+++ b/sklearn/gaussian_process/_gpr.py\n@@ -562,91 +562,6 @@ class GaussianProcessRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):\n hyperparameters at position theta.\n Only returned when eval_gradient is True.\n \"\"\"\n- if theta is None:\n- if eval_gradient:\n- raise ValueError(\"Gradient can only be evaluated for theta!=None\")\n- return self.log_marginal_likelihood_value_\n-\n- if clone_kernel:\n- kernel = self.kernel_.clone_with_theta(theta)\n- else:\n- kernel = self.kernel_\n- kernel.theta = theta\n-\n- if eval_gradient:\n- K, K_gradient = kernel(self.X_train_, eval_gradient=True)\n- else:\n- K = kernel(self.X_train_)\n-\n- # Alg. 2.1, page 19, line 2 -> L = cholesky(K + sigma^2 I)\n- K[np.diag_indices_from(K)] += self.alpha\n- try:\n- L = cholesky(K, lower=GPR_CHOLESKY_LOWER, check_finite=False)\n- except np.linalg.LinAlgError:\n- return (-np.inf, np.zeros_like(theta)) if eval_gradient else -np.inf\n-\n- # Support multi-dimensional output of self.y_train_\n- y_train = self.y_train_\n- if y_train.ndim == 1:\n- y_train = y_train[:, np.newaxis]\n-\n- # Alg 2.1, page 19, line 3 -> alpha = L^T \\ (L \\ y)\n- alpha = cho_solve((L, GPR_CHOLESKY_LOWER), y_train, check_finite=False)\n-\n- # Alg 2.1, page 19, line 7\n- # -0.5 . y^T . alpha - sum(log(diag(L))) - n_samples / 2 log(2*pi)\n- # y is originally thought to be a (1, n_samples) row vector. However,\n- # in multioutputs, y is of shape (n_samples, 2) and we need to compute\n- # y^T . alpha for each output, independently using einsum. Thus, it\n- # is equivalent to:\n- # for output_idx in range(n_outputs):\n- # log_likelihood_dims[output_idx] = (\n- # y_train[:, [output_idx]] @ alpha[:, [output_idx]]\n- # )\n- log_likelihood_dims = -0.5 * np.einsum(\"ik,ik->k\", y_train, alpha)\n- log_likelihood_dims -= np.log(np.diag(L)).sum()\n- log_likelihood_dims -= K.shape[0] / 2 * np.log(2 * np.pi)\n- # the log likehood is sum-up across the outputs\n- log_likelihood = log_likelihood_dims.sum(axis=-1)\n-\n- if eval_gradient:\n- # Eq. 5.9, p. 114, and footnote 5 in p. 114\n- # 0.5 * trace((alpha . alpha^T - K^-1) . K_gradient)\n- # alpha is supposed to be a vector of (n_samples,) elements. With\n- # multioutputs, alpha is a matrix of size (n_samples, n_outputs).\n- # Therefore, we want to construct a matrix of\n- # (n_samples, n_samples, n_outputs) equivalent to\n- # for output_idx in range(n_outputs):\n- # output_alpha = alpha[:, [output_idx]]\n- # inner_term[..., output_idx] = output_alpha @ output_alpha.T\n- inner_term = np.einsum(\"ik,jk->ijk\", alpha, alpha)\n- # compute K^-1 of shape (n_samples, n_samples)\n- K_inv = cho_solve(\n- (L, GPR_CHOLESKY_LOWER), np.eye(K.shape[0]), check_finite=False\n- )\n- # create a new axis to use broadcasting between inner_term and\n- # K_inv\n- inner_term -= K_inv[..., np.newaxis]\n- # Since we are interested about the trace of\n- # inner_term @ K_gradient, we don't explicitly compute the\n- # matrix-by-matrix operation and instead use an einsum. Therefore\n- # it is equivalent to:\n- # for param_idx in range(n_kernel_params):\n- # for output_idx in range(n_output):\n- # log_likehood_gradient_dims[param_idx, output_idx] = (\n- # inner_term[..., output_idx] @\n- # K_gradient[..., param_idx]\n- # )\n- log_likelihood_gradient_dims = 0.5 * np.einsum(\n- \"ijl,jik->kl\", inner_term, K_gradient\n- )\n- # the log likehood gradient is the sum-up across the outputs\n- log_likelihood_gradient = log_likelihood_gradient_dims.sum(axis=-1)\n-\n- if eval_gradient:\n- return log_likelihood, log_likelihood_gradient\n- else:\n- return log_likelihood\n \n def _constrained_optimization(self, obj_func, initial_theta, bounds):\n if self.optimizer == \"fmin_l_bfgs_b\":\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/gaussian_process/_gpr.py.\nHere is the description for the function:\n def log_marginal_likelihood(\n self, theta=None, eval_gradient=False, clone_kernel=True\n ):\n \"\"\"Return log-marginal likelihood of theta for training data.\n\n Parameters\n ----------\n theta : array-like of shape (n_kernel_params,) default=None\n Kernel hyperparameters for which the log-marginal likelihood is\n evaluated. If None, the precomputed log_marginal_likelihood\n of ``self.kernel_.theta`` is returned.\n\n eval_gradient : bool, default=False\n If True, the gradient of the log-marginal likelihood with respect\n to the kernel hyperparameters at position theta is returned\n additionally. If True, theta must not be None.\n\n clone_kernel : bool, default=True\n If True, the kernel attribute is copied. If False, the kernel\n attribute is modified, but may result in a performance improvement.\n\n Returns\n -------\n log_likelihood : float\n Log-marginal likelihood of theta for training data.\n\n log_likelihood_gradient : ndarray of shape (n_kernel_params,), optional\n Gradient of the log-marginal likelihood with respect to the kernel\n hyperparameters at position theta.\n Only returned when eval_gradient is True.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/gaussian_process/tests/test_gpr.py::test_gpr_interpolation[kernel0]", "sklearn/gaussian_process/tests/test_gpr.py::test_gpr_interpolation[kernel1]", "sklearn/gaussian_process/tests/test_gpr.py::test_gpr_interpolation[kernel2]", "sklearn/gaussian_process/tests/test_gpr.py::test_gpr_interpolation[kernel3]", "sklearn/gaussian_process/tests/test_gpr.py::test_gpr_interpolation[kernel4]", "sklearn/gaussian_process/tests/test_gpr.py::test_gpr_interpolation[kernel5]", "sklearn/gaussian_process/tests/test_gpr.py::test_gpr_interpolation_structured", "sklearn/gaussian_process/tests/test_gpr.py::test_lml_improving[kernel0]", "sklearn/gaussian_process/tests/test_gpr.py::test_lml_improving[kernel1]", "sklearn/gaussian_process/tests/test_gpr.py::test_lml_improving[kernel2]", "sklearn/gaussian_process/tests/test_gpr.py::test_lml_improving[kernel3]", "sklearn/gaussian_process/tests/test_gpr.py::test_lml_improving[kernel4]", "sklearn/gaussian_process/tests/test_gpr.py::test_lml_precomputed[kernel0]", "sklearn/gaussian_process/tests/test_gpr.py::test_lml_precomputed[kernel1]", "sklearn/gaussian_process/tests/test_gpr.py::test_lml_precomputed[kernel2]", "sklearn/gaussian_process/tests/test_gpr.py::test_lml_precomputed[kernel3]", "sklearn/gaussian_process/tests/test_gpr.py::test_lml_precomputed[kernel4]", "sklearn/gaussian_process/tests/test_gpr.py::test_lml_precomputed[kernel5]", "sklearn/gaussian_process/tests/test_gpr.py::test_lml_without_cloning_kernel[kernel0]", "sklearn/gaussian_process/tests/test_gpr.py::test_lml_without_cloning_kernel[kernel1]", "sklearn/gaussian_process/tests/test_gpr.py::test_lml_without_cloning_kernel[kernel2]", "sklearn/gaussian_process/tests/test_gpr.py::test_lml_without_cloning_kernel[kernel3]", "sklearn/gaussian_process/tests/test_gpr.py::test_lml_without_cloning_kernel[kernel4]", "sklearn/gaussian_process/tests/test_gpr.py::test_lml_without_cloning_kernel[kernel5]", "sklearn/gaussian_process/tests/test_gpr.py::test_converged_to_local_maximum[kernel0]", "sklearn/gaussian_process/tests/test_gpr.py::test_converged_to_local_maximum[kernel1]", "sklearn/gaussian_process/tests/test_gpr.py::test_converged_to_local_maximum[kernel2]", "sklearn/gaussian_process/tests/test_gpr.py::test_converged_to_local_maximum[kernel3]", "sklearn/gaussian_process/tests/test_gpr.py::test_converged_to_local_maximum[kernel4]", "sklearn/gaussian_process/tests/test_gpr.py::test_solution_inside_bounds[kernel0]", "sklearn/gaussian_process/tests/test_gpr.py::test_solution_inside_bounds[kernel1]", "sklearn/gaussian_process/tests/test_gpr.py::test_solution_inside_bounds[kernel2]", "sklearn/gaussian_process/tests/test_gpr.py::test_solution_inside_bounds[kernel3]", "sklearn/gaussian_process/tests/test_gpr.py::test_solution_inside_bounds[kernel4]", "sklearn/gaussian_process/tests/test_gpr.py::test_lml_gradient[kernel0]", "sklearn/gaussian_process/tests/test_gpr.py::test_lml_gradient[kernel1]", "sklearn/gaussian_process/tests/test_gpr.py::test_lml_gradient[kernel2]", "sklearn/gaussian_process/tests/test_gpr.py::test_lml_gradient[kernel3]", "sklearn/gaussian_process/tests/test_gpr.py::test_lml_gradient[kernel4]", "sklearn/gaussian_process/tests/test_gpr.py::test_lml_gradient[kernel5]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_statistics[kernel0]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_statistics[kernel1]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_statistics[kernel2]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_statistics[kernel3]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_statistics[kernel4]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_statistics[kernel5]", "sklearn/gaussian_process/tests/test_gpr.py::test_no_optimizer", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_cov_vs_std[target0-kernel0]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_cov_vs_std[target0-kernel1]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_cov_vs_std[target0-kernel2]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_cov_vs_std[target0-kernel3]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_cov_vs_std[target0-kernel4]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_cov_vs_std[target0-kernel5]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_cov_vs_std[target1-kernel0]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_cov_vs_std[target1-kernel1]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_cov_vs_std[target1-kernel2]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_cov_vs_std[target1-kernel3]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_fit_score_takes_y]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_cov_vs_std[target1-kernel4]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_cov_vs_std[target1-kernel5]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_estimators_dtypes]", "sklearn/gaussian_process/tests/test_gpr.py::test_anisotropic_kernel", "sklearn/gaussian_process/tests/test_gpr.py::test_random_starts", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_estimators_fit_returns_self]", "sklearn/gaussian_process/tests/test_gpr.py::test_y_normalization[kernel0]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_estimators_nan_inf]", "sklearn/gaussian_process/tests/test_gpr.py::test_y_normalization[kernel1]", "sklearn/gaussian_process/tests/test_gpr.py::test_y_normalization[kernel2]", "sklearn/gaussian_process/tests/test_gpr.py::test_y_normalization[kernel3]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/gaussian_process/tests/test_gpr.py::test_y_normalization[kernel4]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_f_contiguous_array_estimator]", "sklearn/gaussian_process/tests/test_gpr.py::test_y_normalization[kernel5]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_regressors_train]", "sklearn/gaussian_process/tests/test_gpr.py::test_large_variance_y", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/gaussian_process/tests/test_gpr.py::test_y_multioutput", "sklearn/gaussian_process/tests/test_gpr.py::test_custom_optimizer[kernel0]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_regressor_data_not_an_array]", "sklearn/gaussian_process/tests/test_gpr.py::test_custom_optimizer[kernel1]", "sklearn/gaussian_process/tests/test_gpr.py::test_custom_optimizer[kernel2]", "sklearn/gaussian_process/tests/test_gpr.py::test_custom_optimizer[kernel3]", "sklearn/gaussian_process/tests/test_gpr.py::test_custom_optimizer[kernel4]", "sklearn/gaussian_process/tests/test_gpr.py::test_gpr_correct_error_message", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_regressor_multioutput]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_regressors_no_decision_function]", "sklearn/gaussian_process/tests/test_gpr.py::test_duplicate_input[kernel0]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_regressors_int]", "sklearn/gaussian_process/tests/test_gpr.py::test_duplicate_input[kernel1]", "sklearn/gaussian_process/tests/test_gpr.py::test_duplicate_input[kernel2]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_methods_sample_order_invariance]", "sklearn/gaussian_process/kernels.py::sklearn.gaussian_process.kernels.ConstantKernel", "sklearn/gaussian_process/kernels.py::sklearn.gaussian_process.kernels.DotProduct", "sklearn/gaussian_process/kernels.py::sklearn.gaussian_process.kernels.ExpSineSquared", "sklearn/gaussian_process/kernels.py::sklearn.gaussian_process.kernels.Exponentiation", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_methods_subset_invariance]", "sklearn/gaussian_process/tests/test_gpr.py::test_duplicate_input[kernel3]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_fit2d_1feature]", "sklearn/gaussian_process/tests/test_gpr.py::test_duplicate_input[kernel4]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_dont_overwrite_parameters]", "sklearn/gaussian_process/tests/test_gpr.py::test_duplicate_input[kernel5]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_fit_idempotent]", "sklearn/gaussian_process/kernels.py::sklearn.gaussian_process.kernels.Product", "sklearn/gaussian_process/tests/test_gpr.py::test_warning_bounds", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_n_features_in]", "sklearn/gaussian_process/tests/test_gpr.py::test_bound_check_fixed_hyperparameter", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_fit2d_predict1d]", "sklearn/gaussian_process/tests/test_gpr.py::test_constant_target[kernel0]", "sklearn/gaussian_process/tests/test_gpr.py::test_constant_target[kernel1]", "sklearn/gaussian_process/kernels.py::sklearn.gaussian_process.kernels.Sum", "sklearn/gaussian_process/kernels.py::sklearn.gaussian_process.kernels.WhiteKernel", "sklearn/gaussian_process/tests/test_gpr.py::test_constant_target[kernel2]", "sklearn/gaussian_process/tests/test_gpr.py::test_constant_target[kernel3]", "sklearn/gaussian_process/tests/test_gpr.py::test_constant_target[kernel4]", "sklearn/gaussian_process/tests/test_gpr.py::test_constant_target[kernel5]", "sklearn/gaussian_process/_gpr.py::sklearn.gaussian_process._gpr.GaussianProcessRegressor", "sklearn/gaussian_process/tests/test_gpr.py::test_gpr_consistency_std_cov_non_invertible_kernel", "sklearn/gaussian_process/tests/test_gpr.py::test_gpr_fit_error[params1-ValueError-requires that all bounds are finite]", "sklearn/gaussian_process/tests/test_gpr.py::test_gpr_lml_error", "sklearn/gaussian_process/tests/test_gpr.py::test_gpr_predict_error", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_shapes[None-True]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_shapes[None-False]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_shapes[1-True]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_shapes[1-False]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_shapes[10-True]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_shapes[10-False]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_y_shapes[None-True]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_y_shapes[None-False]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_y_shapes[1-True]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_y_shapes[1-False]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_y_shapes[10-True]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_y_shapes[10-False]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_y_shape_with_prior[1-None]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_y_shape_with_prior[1-1]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_y_shape_with_prior[1-2]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_y_shape_with_prior[1-3]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_y_shape_with_prior[5-None]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_y_shape_with_prior[5-1]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_y_shape_with_prior[5-2]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_y_shape_with_prior[5-3]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_shape_with_prior[None]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_shape_with_prior[1]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_shape_with_prior[2]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_shape_with_prior[3]", "sklearn/gaussian_process/tests/test_gpr.py::test_gpr_predict_input_not_modified", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[GaussianProcessRegressor()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GaussianProcessRegressor()]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-59
1.0
{ "code": "diff --git b/sklearn/gaussian_process/_gpr.py a/sklearn/gaussian_process/_gpr.py\nindex bd088d4d8..d30854eae 100644\n--- b/sklearn/gaussian_process/_gpr.py\n+++ a/sklearn/gaussian_process/_gpr.py\n@@ -396,6 +396,101 @@ class GaussianProcessRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):\n Covariance of joint predictive distribution at query points.\n Only returned when `return_cov` is True.\n \"\"\"\n+ if return_std and return_cov:\n+ raise RuntimeError(\n+ \"At most one of return_std or return_cov can be requested.\"\n+ )\n+\n+ if self.kernel is None or self.kernel.requires_vector_input:\n+ dtype, ensure_2d = \"numeric\", True\n+ else:\n+ dtype, ensure_2d = None, False\n+\n+ X = validate_data(self, X, ensure_2d=ensure_2d, dtype=dtype, reset=False)\n+\n+ if not hasattr(self, \"X_train_\"): # Unfitted;predict based on GP prior\n+ if self.kernel is None:\n+ kernel = C(1.0, constant_value_bounds=\"fixed\") * RBF(\n+ 1.0, length_scale_bounds=\"fixed\"\n+ )\n+ else:\n+ kernel = self.kernel\n+\n+ n_targets = self.n_targets if self.n_targets is not None else 1\n+ y_mean = np.zeros(shape=(X.shape[0], n_targets)).squeeze()\n+\n+ if return_cov:\n+ y_cov = kernel(X)\n+ if n_targets > 1:\n+ y_cov = np.repeat(\n+ np.expand_dims(y_cov, -1), repeats=n_targets, axis=-1\n+ )\n+ return y_mean, y_cov\n+ elif return_std:\n+ y_var = kernel.diag(X)\n+ if n_targets > 1:\n+ y_var = np.repeat(\n+ np.expand_dims(y_var, -1), repeats=n_targets, axis=-1\n+ )\n+ return y_mean, np.sqrt(y_var)\n+ else:\n+ return y_mean\n+ else: # Predict based on GP posterior\n+ # Alg 2.1, page 19, line 4 -> f*_bar = K(X_test, X_train) . alpha\n+ K_trans = self.kernel_(X, self.X_train_)\n+ y_mean = K_trans @ self.alpha_\n+\n+ # undo normalisation\n+ y_mean = self._y_train_std * y_mean + self._y_train_mean\n+\n+ # if y_mean has shape (n_samples, 1), reshape to (n_samples,)\n+ if y_mean.ndim > 1 and y_mean.shape[1] == 1:\n+ y_mean = np.squeeze(y_mean, axis=1)\n+\n+ # Alg 2.1, page 19, line 5 -> v = L \\ K(X_test, X_train)^T\n+ V = solve_triangular(\n+ self.L_, K_trans.T, lower=GPR_CHOLESKY_LOWER, check_finite=False\n+ )\n+\n+ if return_cov:\n+ # Alg 2.1, page 19, line 6 -> K(X_test, X_test) - v^T. v\n+ y_cov = self.kernel_(X) - V.T @ V\n+\n+ # undo normalisation\n+ y_cov = np.outer(y_cov, self._y_train_std**2).reshape(*y_cov.shape, -1)\n+ # if y_cov has shape (n_samples, n_samples, 1), reshape to\n+ # (n_samples, n_samples)\n+ if y_cov.shape[2] == 1:\n+ y_cov = np.squeeze(y_cov, axis=2)\n+\n+ return y_mean, y_cov\n+ elif return_std:\n+ # Compute variance of predictive distribution\n+ # Use einsum to avoid explicitly forming the large matrix\n+ # V^T @ V just to extract its diagonal afterward.\n+ y_var = self.kernel_.diag(X).copy()\n+ y_var -= np.einsum(\"ij,ji->i\", V.T, V)\n+\n+ # Check if any of the variances is negative because of\n+ # numerical issues. If yes: set the variance to 0.\n+ y_var_negative = y_var < 0\n+ if np.any(y_var_negative):\n+ warnings.warn(\n+ \"Predicted variances smaller than 0. \"\n+ \"Setting those variances to 0.\"\n+ )\n+ y_var[y_var_negative] = 0.0\n+\n+ # undo normalisation\n+ y_var = np.outer(y_var, self._y_train_std**2).reshape(*y_var.shape, -1)\n+\n+ # if y_var has shape (n_samples, 1), reshape to (n_samples,)\n+ if y_var.shape[1] == 1:\n+ y_var = np.squeeze(y_var, axis=1)\n+\n+ return y_mean, np.sqrt(y_var)\n+ else:\n+ return y_mean\n \n def sample_y(self, X, n_samples=1, random_state=0):\n \"\"\"Draw samples from Gaussian process and evaluate at X.\n", "test": null }
null
{ "code": "diff --git a/sklearn/gaussian_process/_gpr.py b/sklearn/gaussian_process/_gpr.py\nindex d30854eae..bd088d4d8 100644\n--- a/sklearn/gaussian_process/_gpr.py\n+++ b/sklearn/gaussian_process/_gpr.py\n@@ -396,101 +396,6 @@ class GaussianProcessRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):\n Covariance of joint predictive distribution at query points.\n Only returned when `return_cov` is True.\n \"\"\"\n- if return_std and return_cov:\n- raise RuntimeError(\n- \"At most one of return_std or return_cov can be requested.\"\n- )\n-\n- if self.kernel is None or self.kernel.requires_vector_input:\n- dtype, ensure_2d = \"numeric\", True\n- else:\n- dtype, ensure_2d = None, False\n-\n- X = validate_data(self, X, ensure_2d=ensure_2d, dtype=dtype, reset=False)\n-\n- if not hasattr(self, \"X_train_\"): # Unfitted;predict based on GP prior\n- if self.kernel is None:\n- kernel = C(1.0, constant_value_bounds=\"fixed\") * RBF(\n- 1.0, length_scale_bounds=\"fixed\"\n- )\n- else:\n- kernel = self.kernel\n-\n- n_targets = self.n_targets if self.n_targets is not None else 1\n- y_mean = np.zeros(shape=(X.shape[0], n_targets)).squeeze()\n-\n- if return_cov:\n- y_cov = kernel(X)\n- if n_targets > 1:\n- y_cov = np.repeat(\n- np.expand_dims(y_cov, -1), repeats=n_targets, axis=-1\n- )\n- return y_mean, y_cov\n- elif return_std:\n- y_var = kernel.diag(X)\n- if n_targets > 1:\n- y_var = np.repeat(\n- np.expand_dims(y_var, -1), repeats=n_targets, axis=-1\n- )\n- return y_mean, np.sqrt(y_var)\n- else:\n- return y_mean\n- else: # Predict based on GP posterior\n- # Alg 2.1, page 19, line 4 -> f*_bar = K(X_test, X_train) . alpha\n- K_trans = self.kernel_(X, self.X_train_)\n- y_mean = K_trans @ self.alpha_\n-\n- # undo normalisation\n- y_mean = self._y_train_std * y_mean + self._y_train_mean\n-\n- # if y_mean has shape (n_samples, 1), reshape to (n_samples,)\n- if y_mean.ndim > 1 and y_mean.shape[1] == 1:\n- y_mean = np.squeeze(y_mean, axis=1)\n-\n- # Alg 2.1, page 19, line 5 -> v = L \\ K(X_test, X_train)^T\n- V = solve_triangular(\n- self.L_, K_trans.T, lower=GPR_CHOLESKY_LOWER, check_finite=False\n- )\n-\n- if return_cov:\n- # Alg 2.1, page 19, line 6 -> K(X_test, X_test) - v^T. v\n- y_cov = self.kernel_(X) - V.T @ V\n-\n- # undo normalisation\n- y_cov = np.outer(y_cov, self._y_train_std**2).reshape(*y_cov.shape, -1)\n- # if y_cov has shape (n_samples, n_samples, 1), reshape to\n- # (n_samples, n_samples)\n- if y_cov.shape[2] == 1:\n- y_cov = np.squeeze(y_cov, axis=2)\n-\n- return y_mean, y_cov\n- elif return_std:\n- # Compute variance of predictive distribution\n- # Use einsum to avoid explicitly forming the large matrix\n- # V^T @ V just to extract its diagonal afterward.\n- y_var = self.kernel_.diag(X).copy()\n- y_var -= np.einsum(\"ij,ji->i\", V.T, V)\n-\n- # Check if any of the variances is negative because of\n- # numerical issues. If yes: set the variance to 0.\n- y_var_negative = y_var < 0\n- if np.any(y_var_negative):\n- warnings.warn(\n- \"Predicted variances smaller than 0. \"\n- \"Setting those variances to 0.\"\n- )\n- y_var[y_var_negative] = 0.0\n-\n- # undo normalisation\n- y_var = np.outer(y_var, self._y_train_std**2).reshape(*y_var.shape, -1)\n-\n- # if y_var has shape (n_samples, 1), reshape to (n_samples,)\n- if y_var.shape[1] == 1:\n- y_var = np.squeeze(y_var, axis=1)\n-\n- return y_mean, np.sqrt(y_var)\n- else:\n- return y_mean\n \n def sample_y(self, X, n_samples=1, random_state=0):\n \"\"\"Draw samples from Gaussian process and evaluate at X.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/gaussian_process/_gpr.py.\nHere is the description for the function:\n def predict(self, X, return_std=False, return_cov=False):\n \"\"\"Predict using the Gaussian process regression model.\n\n We can also predict based on an unfitted model by using the GP prior.\n In addition to the mean of the predictive distribution, optionally also\n returns its standard deviation (`return_std=True`) or covariance\n (`return_cov=True`). Note that at most one of the two can be requested.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features) or list of object\n Query points where the GP is evaluated.\n\n return_std : bool, default=False\n If True, the standard-deviation of the predictive distribution at\n the query points is returned along with the mean.\n\n return_cov : bool, default=False\n If True, the covariance of the joint predictive distribution at\n the query points is returned along with the mean.\n\n Returns\n -------\n y_mean : ndarray of shape (n_samples,) or (n_samples, n_targets)\n Mean of predictive distribution at query points.\n\n y_std : ndarray of shape (n_samples,) or (n_samples, n_targets), optional\n Standard deviation of predictive distribution at query points.\n Only returned when `return_std` is True.\n\n y_cov : ndarray of shape (n_samples, n_samples) or \\\n (n_samples, n_samples, n_targets), optional\n Covariance of joint predictive distribution at query points.\n Only returned when `return_cov` is True.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/gaussian_process/tests/test_gpr.py::test_gpr_interpolation[kernel0]", "sklearn/gaussian_process/tests/test_gpr.py::test_gpr_interpolation[kernel1]", "sklearn/gaussian_process/tests/test_gpr.py::test_gpr_interpolation[kernel2]", "sklearn/gaussian_process/tests/test_gpr.py::test_gpr_interpolation[kernel3]", "sklearn/gaussian_process/tests/test_gpr.py::test_gpr_interpolation[kernel4]", "sklearn/gaussian_process/tests/test_gpr.py::test_gpr_interpolation[kernel5]", "sklearn/gaussian_process/tests/test_gpr.py::test_gpr_interpolation_structured", "sklearn/gaussian_process/tests/test_gpr.py::test_prior[kernel0]", "sklearn/gaussian_process/tests/test_gpr.py::test_prior[kernel1]", "sklearn/gaussian_process/tests/test_gpr.py::test_prior[kernel2]", "sklearn/gaussian_process/tests/test_gpr.py::test_prior[kernel3]", "sklearn/gaussian_process/tests/test_gpr.py::test_prior[kernel4]", "sklearn/gaussian_process/tests/test_gpr.py::test_prior[kernel5]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_statistics[kernel0]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_statistics[kernel1]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_statistics[kernel2]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_statistics[kernel3]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_statistics[kernel4]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_statistics[kernel5]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_cov_vs_std[target0-kernel0]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_cov_vs_std[target0-kernel1]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_cov_vs_std[target0-kernel2]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_cov_vs_std[target0-kernel3]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_cov_vs_std[target0-kernel4]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_cov_vs_std[target0-kernel5]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_cov_vs_std[target1-kernel0]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_cov_vs_std[target1-kernel1]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_cov_vs_std[target1-kernel2]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_cov_vs_std[target1-kernel3]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_cov_vs_std[target1-kernel4]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_cov_vs_std[target1-kernel5]", "sklearn/gaussian_process/tests/test_gpr.py::test_y_normalization[kernel0]", "sklearn/gaussian_process/tests/test_gpr.py::test_y_normalization[kernel1]", "sklearn/gaussian_process/tests/test_gpr.py::test_y_normalization[kernel2]", "sklearn/gaussian_process/tests/test_gpr.py::test_y_normalization[kernel3]", "sklearn/gaussian_process/tests/test_gpr.py::test_y_normalization[kernel4]", "sklearn/gaussian_process/tests/test_gpr.py::test_y_normalization[kernel5]", "sklearn/gaussian_process/tests/test_gpr.py::test_large_variance_y", "sklearn/gaussian_process/tests/test_gpr.py::test_y_multioutput", "sklearn/gaussian_process/tests/test_gpr.py::test_duplicate_input[kernel0]", "sklearn/gaussian_process/tests/test_gpr.py::test_duplicate_input[kernel1]", "sklearn/gaussian_process/tests/test_gpr.py::test_duplicate_input[kernel2]", "sklearn/gaussian_process/tests/test_gpr.py::test_duplicate_input[kernel3]", "sklearn/gaussian_process/tests/test_gpr.py::test_duplicate_input[kernel4]", "sklearn/gaussian_process/tests/test_gpr.py::test_duplicate_input[kernel5]", "sklearn/gaussian_process/tests/test_gpr.py::test_no_fit_default_predict", "sklearn/gaussian_process/tests/test_gpr.py::test_constant_target[kernel0]", "sklearn/gaussian_process/tests/test_gpr.py::test_constant_target[kernel1]", "sklearn/gaussian_process/tests/test_gpr.py::test_constant_target[kernel2]", "sklearn/gaussian_process/tests/test_gpr.py::test_constant_target[kernel3]", "sklearn/gaussian_process/tests/test_gpr.py::test_constant_target[kernel4]", "sklearn/gaussian_process/tests/test_gpr.py::test_constant_target[kernel5]", "sklearn/gaussian_process/tests/test_gpr.py::test_gpr_consistency_std_cov_non_invertible_kernel", "sklearn/gaussian_process/tests/test_gpr.py::test_gpr_predict_error", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_shapes[None-True]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_shapes[None-False]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_shapes[1-True]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_shapes[1-False]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_shapes[10-True]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_shapes[10-False]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_y_shapes[None-True]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_y_shapes[None-False]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_y_shapes[1-True]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_y_shapes[1-False]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_y_shapes[10-True]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_y_shapes[10-False]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_y_shape_with_prior[1-None]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_y_shape_with_prior[1-1]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_y_shape_with_prior[1-2]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_y_shape_with_prior[1-3]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_y_shape_with_prior[5-None]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_y_shape_with_prior[5-1]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_y_shape_with_prior[5-2]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_y_shape_with_prior[5-3]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_shape_with_prior[None]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_shape_with_prior[1]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_shape_with_prior[2]", "sklearn/gaussian_process/tests/test_gpr.py::test_predict_shape_with_prior[3]", "sklearn/gaussian_process/tests/test_gpr.py::test_gpr_predict_input_not_modified", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_regressor_multioutput]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessRegressor()-check_fit2d_predict1d]", "sklearn/gaussian_process/kernels.py::sklearn.gaussian_process.kernels.ConstantKernel", "sklearn/gaussian_process/kernels.py::sklearn.gaussian_process.kernels.DotProduct", "sklearn/gaussian_process/kernels.py::sklearn.gaussian_process.kernels.ExpSineSquared", "sklearn/gaussian_process/kernels.py::sklearn.gaussian_process.kernels.Exponentiation", "sklearn/gaussian_process/kernels.py::sklearn.gaussian_process.kernels.Product", "sklearn/gaussian_process/kernels.py::sklearn.gaussian_process.kernels.Sum", "sklearn/gaussian_process/kernels.py::sklearn.gaussian_process.kernels.WhiteKernel", "sklearn/gaussian_process/_gpr.py::sklearn.gaussian_process._gpr.GaussianProcessRegressor", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[GaussianProcessRegressor()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GaussianProcessRegressor()]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-60
1.0
{ "code": "diff --git b/sklearn/gaussian_process/_gpr.py a/sklearn/gaussian_process/_gpr.py\nindex 9d133253f..d30854eae 100644\n--- b/sklearn/gaussian_process/_gpr.py\n+++ a/sklearn/gaussian_process/_gpr.py\n@@ -516,6 +516,20 @@ class GaussianProcessRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):\n Values of n_samples samples drawn from Gaussian process and\n evaluated at query points.\n \"\"\"\n+ rng = check_random_state(random_state)\n+\n+ y_mean, y_cov = self.predict(X, return_cov=True)\n+ if y_mean.ndim == 1:\n+ y_samples = rng.multivariate_normal(y_mean, y_cov, n_samples).T\n+ else:\n+ y_samples = [\n+ rng.multivariate_normal(\n+ y_mean[:, target], y_cov[..., target], n_samples\n+ ).T[:, np.newaxis]\n+ for target in range(y_mean.shape[1])\n+ ]\n+ y_samples = np.hstack(y_samples)\n+ return y_samples\n \n def log_marginal_likelihood(\n self, theta=None, eval_gradient=False, clone_kernel=True\n", "test": null }
null
{ "code": "diff --git a/sklearn/gaussian_process/_gpr.py b/sklearn/gaussian_process/_gpr.py\nindex d30854eae..9d133253f 100644\n--- a/sklearn/gaussian_process/_gpr.py\n+++ b/sklearn/gaussian_process/_gpr.py\n@@ -516,20 +516,6 @@ class GaussianProcessRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):\n Values of n_samples samples drawn from Gaussian process and\n evaluated at query points.\n \"\"\"\n- rng = check_random_state(random_state)\n-\n- y_mean, y_cov = self.predict(X, return_cov=True)\n- if y_mean.ndim == 1:\n- y_samples = rng.multivariate_normal(y_mean, y_cov, n_samples).T\n- else:\n- y_samples = [\n- rng.multivariate_normal(\n- y_mean[:, target], y_cov[..., target], n_samples\n- ).T[:, np.newaxis]\n- for target in range(y_mean.shape[1])\n- ]\n- y_samples = np.hstack(y_samples)\n- return y_samples\n \n def log_marginal_likelihood(\n self, theta=None, eval_gradient=False, clone_kernel=True\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/gaussian_process/_gpr.py.\nHere is the description for the function:\n def sample_y(self, X, n_samples=1, random_state=0):\n \"\"\"Draw samples from Gaussian process and evaluate at X.\n\n Parameters\n ----------\n X : array-like of shape (n_samples_X, n_features) or list of object\n Query points where the GP is evaluated.\n\n n_samples : int, default=1\n Number of samples drawn from the Gaussian process per query point.\n\n random_state : int, RandomState instance or None, default=0\n Determines random number generation to randomly draw samples.\n Pass an int for reproducible results across multiple function\n calls.\n See :term:`Glossary <random_state>`.\n\n Returns\n -------\n y_samples : ndarray of shape (n_samples_X, n_samples), or \\\n (n_samples_X, n_targets, n_samples)\n Values of n_samples samples drawn from Gaussian process and\n evaluated at query points.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/gaussian_process/tests/test_gpr.py::test_sample_statistics[kernel0]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_statistics[kernel1]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_statistics[kernel2]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_statistics[kernel3]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_statistics[kernel4]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_statistics[kernel5]", "sklearn/gaussian_process/tests/test_gpr.py::test_y_multioutput", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_y_shapes[None-True]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_y_shapes[None-False]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_y_shapes[1-True]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_y_shapes[1-False]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_y_shapes[10-True]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_y_shapes[10-False]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_y_shape_with_prior[1-None]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_y_shape_with_prior[1-1]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_y_shape_with_prior[1-2]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_y_shape_with_prior[1-3]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_y_shape_with_prior[5-None]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_y_shape_with_prior[5-1]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_y_shape_with_prior[5-2]", "sklearn/gaussian_process/tests/test_gpr.py::test_sample_y_shape_with_prior[5-3]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-61
1.0
{ "code": "diff --git b/sklearn/ensemble/_gb.py a/sklearn/ensemble/_gb.py\nindex 54d516d34..15b76e04f 100644\n--- b/sklearn/ensemble/_gb.py\n+++ a/sklearn/ensemble/_gb.py\n@@ -1566,6 +1566,13 @@ class GradientBoostingClassifier(ClassifierMixin, BaseGradientBoosting):\n :term:`classes_`. Regression and binary classification produce an\n array of shape (n_samples,).\n \"\"\"\n+ X = validate_data(\n+ self, X, dtype=DTYPE, order=\"C\", accept_sparse=\"csr\", reset=False\n+ )\n+ raw_predictions = self._raw_predict(X)\n+ if raw_predictions.shape[1] == 1:\n+ return raw_predictions.ravel()\n+ return raw_predictions\n \n def staged_decision_function(self, X):\n \"\"\"Compute decision function of ``X`` for each iteration.\n", "test": null }
null
{ "code": "diff --git a/sklearn/ensemble/_gb.py b/sklearn/ensemble/_gb.py\nindex 15b76e04f..54d516d34 100644\n--- a/sklearn/ensemble/_gb.py\n+++ b/sklearn/ensemble/_gb.py\n@@ -1566,13 +1566,6 @@ class GradientBoostingClassifier(ClassifierMixin, BaseGradientBoosting):\n :term:`classes_`. Regression and binary classification produce an\n array of shape (n_samples,).\n \"\"\"\n- X = validate_data(\n- self, X, dtype=DTYPE, order=\"C\", accept_sparse=\"csr\", reset=False\n- )\n- raw_predictions = self._raw_predict(X)\n- if raw_predictions.shape[1] == 1:\n- return raw_predictions.ravel()\n- return raw_predictions\n \n def staged_decision_function(self, X):\n \"\"\"Compute decision function of ``X`` for each iteration.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/ensemble/_gb.py.\nHere is the description for the function:\n def decision_function(self, X):\n \"\"\"Compute the decision function of ``X``.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n The input samples. Internally, it will be converted to\n ``dtype=np.float32`` and if a sparse matrix is provided\n to a sparse ``csr_matrix``.\n\n Returns\n -------\n score : ndarray of shape (n_samples, n_classes) or (n_samples,)\n The decision function of the input samples, which corresponds to\n the raw values predicted from the trees of the ensemble . The\n order of the classes corresponds to that in the attribute\n :term:`classes_`. Regression and binary classification produce an\n array of shape (n_samples,).\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-5-GradientBoostingClassifier-brute-data2]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-5-GradientBoostingClassifier-brute-data3]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-10-GradientBoostingClassifier-brute-data2]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-10-GradientBoostingClassifier-brute-data3]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-5-GradientBoostingClassifier-brute-data2]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-5-GradientBoostingClassifier-brute-data3]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-10-GradientBoostingClassifier-brute-data2]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-10-GradientBoostingClassifier-brute-data3]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-5-GradientBoostingClassifier-auto-data0]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-5-GradientBoostingClassifier-auto-data1]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-5-GradientBoostingClassifier-brute-data2]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-5-GradientBoostingClassifier-brute-data3]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-10-GradientBoostingClassifier-auto-data0]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-10-GradientBoostingClassifier-auto-data1]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-10-GradientBoostingClassifier-brute-data2]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-10-GradientBoostingClassifier-brute-data3]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-5-GradientBoostingClassifier-auto-data0]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-5-GradientBoostingClassifier-auto-data1]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-5-GradientBoostingClassifier-brute-data2]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-5-GradientBoostingClassifier-brute-data3]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-10-GradientBoostingClassifier-auto-data0]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-10-GradientBoostingClassifier-auto-data1]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-10-GradientBoostingClassifier-brute-data2]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-10-GradientBoostingClassifier-brute-data3]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-5-GradientBoostingClassifier-auto-data0]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-5-GradientBoostingClassifier-auto-data1]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-5-GradientBoostingClassifier-brute-data2]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-5-GradientBoostingClassifier-brute-data3]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-10-GradientBoostingClassifier-auto-data0]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-10-GradientBoostingClassifier-auto-data1]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-10-GradientBoostingClassifier-brute-data2]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-10-GradientBoostingClassifier-brute-data3]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-5-GradientBoostingClassifier-auto-data0]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-5-GradientBoostingClassifier-auto-data1]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-5-GradientBoostingClassifier-brute-data2]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-5-GradientBoostingClassifier-brute-data3]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-10-GradientBoostingClassifier-auto-data0]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-10-GradientBoostingClassifier-auto-data1]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-10-GradientBoostingClassifier-brute-data2]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-10-GradientBoostingClassifier-brute-data3]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[0-est0]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[1-est0]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[2-est0]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[3-est0]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[4-est0]", "sklearn/inspection/tests/test_partial_dependence.py::test_recursion_decision_function[5-est0]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-integer-None-estimator-recursion]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-integer-column-transformer-estimator-recursion]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-integer-column-transformer-passthrough-estimator-recursion]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-string-None-estimator-recursion]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-string-column-transformer-estimator-recursion]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-string-column-transformer-passthrough-estimator-recursion]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[0-estimator3]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[1-estimator3]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[-1-estimator3]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_classification_toy[42-log_loss]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_classification_toy[42-exponential]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_classification_synthetic[42-log_loss]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_classification_synthetic[42-exponential]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_iris[42-None-1.0]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_iris[42-None-0.5]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_iris[42-1-1.0]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_iris[42-1-0.5]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_probability_log[42]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_max_feature_regression[42]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_staged_predict_proba", "sklearn/ensemble/tests/test_gradient_boosting.py::test_serialization", "sklearn/ensemble/tests/test_gradient_boosting.py::test_symbol_labels", "sklearn/ensemble/tests/test_gradient_boosting.py::test_float_class_labels", "sklearn/ensemble/tests/test_gradient_boosting.py::test_shape_y", "sklearn/ensemble/tests/test_gradient_boosting.py::test_mem_layout", "sklearn/ensemble/tests/test_gradient_boosting.py::test_oob_multilcass_iris", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start[42-GradientBoostingClassifier]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_n_estimators[42-GradientBoostingClassifier]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_clear[GradientBoostingClassifier]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_equal_n_estimators[GradientBoostingClassifier]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[FixedThresholdClassifier-predict_proba-estimator2]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[FixedThresholdClassifier-predict_log_proba-estimator2]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[FixedThresholdClassifier-decision_function-estimator2]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_sparse[coo_matrix-GradientBoostingClassifier]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[TunedThresholdClassifierCV-predict_proba-estimator2]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_sparse[coo_array-GradientBoostingClassifier]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_sparse[csc_matrix-GradientBoostingClassifier]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_sparse[csc_array-GradientBoostingClassifier]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[TunedThresholdClassifierCV-predict_log_proba-estimator2]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_sparse[csr_matrix-GradientBoostingClassifier]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_sparse[csr_array-GradientBoostingClassifier]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[TunedThresholdClassifierCV-decision_function-estimator2]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_warm_start_fortran[42-GradientBoostingClassifier]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_zero_estimator_clf[42]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_estimators_nan_inf]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_non_uniform_weights_toy_edge_case_clf", "sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[coo_matrix-GradientBoostingClassifier]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_estimator_sparse_array]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[coo_array-GradientBoostingClassifier]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_estimators_pickle]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[csc_matrix-GradientBoostingClassifier]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[csc_array-GradientBoostingClassifier]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_classifier_data_not_an_array]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[csr_matrix-GradientBoostingClassifier]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_classifiers_train]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_sparse_input[csr_array-GradientBoostingClassifier]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_classifiers_train(readonly_memmap=True)]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_gradient_boosting_early_stopping[GradientBoostingClassifier]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_estimators_unfitted]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_fit_idempotent]", "sklearn/ensemble/_gb.py::sklearn.ensemble._gb.GradientBoostingClassifier", "sklearn/tests/test_common.py::test_estimators[GradientBoostingClassifier(n_estimators=5)-check_fit2d_predict1d]", "sklearn/ensemble/tests/test_gradient_boosting.py::test_binomial_error_exact_backward_compat", "sklearn/ensemble/tests/test_gradient_boosting.py::test_multinomial_error_exact_backward_compat", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[GradientBoostingClassifier(n_estimators=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GradientBoostingClassifier(n_estimators=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GradientBoostingClassifier(n_estimators=5,n_iter_no_change=1)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-62
1.0
{ "code": "diff --git b/sklearn/ensemble/_gb.py a/sklearn/ensemble/_gb.py\nindex 45cae8924..15b76e04f 100644\n--- b/sklearn/ensemble/_gb.py\n+++ a/sklearn/ensemble/_gb.py\n@@ -1638,6 +1638,14 @@ class GradientBoostingClassifier(ClassifierMixin, BaseGradientBoosting):\n y : generator of ndarray of shape (n_samples,)\n The predicted value of the input samples.\n \"\"\"\n+ if self.n_classes_ == 2: # n_trees_per_iteration_ = 1\n+ for raw_predictions in self._staged_raw_predict(X):\n+ encoded_classes = (raw_predictions.squeeze() >= 0).astype(int)\n+ yield self.classes_.take(encoded_classes, axis=0)\n+ else:\n+ for raw_predictions in self._staged_raw_predict(X):\n+ encoded_classes = np.argmax(raw_predictions, axis=1)\n+ yield self.classes_.take(encoded_classes, axis=0)\n \n def predict_proba(self, X):\n \"\"\"Predict class probabilities for X.\n", "test": null }
null
{ "code": "diff --git a/sklearn/ensemble/_gb.py b/sklearn/ensemble/_gb.py\nindex 15b76e04f..45cae8924 100644\n--- a/sklearn/ensemble/_gb.py\n+++ b/sklearn/ensemble/_gb.py\n@@ -1638,14 +1638,6 @@ class GradientBoostingClassifier(ClassifierMixin, BaseGradientBoosting):\n y : generator of ndarray of shape (n_samples,)\n The predicted value of the input samples.\n \"\"\"\n- if self.n_classes_ == 2: # n_trees_per_iteration_ = 1\n- for raw_predictions in self._staged_raw_predict(X):\n- encoded_classes = (raw_predictions.squeeze() >= 0).astype(int)\n- yield self.classes_.take(encoded_classes, axis=0)\n- else:\n- for raw_predictions in self._staged_raw_predict(X):\n- encoded_classes = np.argmax(raw_predictions, axis=1)\n- yield self.classes_.take(encoded_classes, axis=0)\n \n def predict_proba(self, X):\n \"\"\"Predict class probabilities for X.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/ensemble/_gb.py.\nHere is the description for the function:\n def staged_predict(self, X):\n \"\"\"Predict class at each stage for X.\n\n This method allows monitoring (i.e. determine error on testing set)\n after each stage.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n The input samples. Internally, it will be converted to\n ``dtype=np.float32`` and if a sparse matrix is provided\n to a sparse ``csr_matrix``.\n\n Yields\n ------\n y : generator of ndarray of shape (n_samples,)\n The predicted value of the input samples.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/ensemble/tests/test_gradient_boosting.py::test_staged_predict_proba", "sklearn/ensemble/tests/test_gradient_boosting.py::test_staged_functions_defensive[42-GradientBoostingClassifier]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-63
1.0
{ "code": "diff --git b/sklearn/ensemble/_gb.py a/sklearn/ensemble/_gb.py\nindex 6520f9f62..15b76e04f 100644\n--- b/sklearn/ensemble/_gb.py\n+++ a/sklearn/ensemble/_gb.py\n@@ -1713,6 +1713,15 @@ class GradientBoostingClassifier(ClassifierMixin, BaseGradientBoosting):\n y : generator of ndarray of shape (n_samples,)\n The predicted value of the input samples.\n \"\"\"\n+ try:\n+ for raw_predictions in self._staged_raw_predict(X):\n+ yield self._loss.predict_proba(raw_predictions)\n+ except NotFittedError:\n+ raise\n+ except AttributeError as e:\n+ raise AttributeError(\n+ \"loss=%r does not support predict_proba\" % self.loss\n+ ) from e\n \n \n class GradientBoostingRegressor(RegressorMixin, BaseGradientBoosting):\n", "test": null }
null
{ "code": "diff --git a/sklearn/ensemble/_gb.py b/sklearn/ensemble/_gb.py\nindex 15b76e04f..6520f9f62 100644\n--- a/sklearn/ensemble/_gb.py\n+++ b/sklearn/ensemble/_gb.py\n@@ -1713,15 +1713,6 @@ class GradientBoostingClassifier(ClassifierMixin, BaseGradientBoosting):\n y : generator of ndarray of shape (n_samples,)\n The predicted value of the input samples.\n \"\"\"\n- try:\n- for raw_predictions in self._staged_raw_predict(X):\n- yield self._loss.predict_proba(raw_predictions)\n- except NotFittedError:\n- raise\n- except AttributeError as e:\n- raise AttributeError(\n- \"loss=%r does not support predict_proba\" % self.loss\n- ) from e\n \n \n class GradientBoostingRegressor(RegressorMixin, BaseGradientBoosting):\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/ensemble/_gb.py.\nHere is the description for the function:\n def staged_predict_proba(self, X):\n \"\"\"Predict class probabilities at each stage for X.\n\n This method allows monitoring (i.e. determine error on testing set)\n after each stage.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n The input samples. Internally, it will be converted to\n ``dtype=np.float32`` and if a sparse matrix is provided\n to a sparse ``csr_matrix``.\n\n Yields\n ------\n y : generator of ndarray of shape (n_samples,)\n The predicted value of the input samples.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/ensemble/tests/test_gradient_boosting.py::test_staged_predict_proba", "sklearn/ensemble/tests/test_gradient_boosting.py::test_staged_functions_defensive[42-GradientBoostingClassifier]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-64
1.0
{ "code": "diff --git b/sklearn/linear_model/_huber.py a/sklearn/linear_model/_huber.py\nindex 14015c769..9e41cc4ea 100644\n--- b/sklearn/linear_model/_huber.py\n+++ a/sklearn/linear_model/_huber.py\n@@ -273,6 +273,7 @@ class HuberRegressor(LinearModel, RegressorMixin, BaseEstimator):\n self.fit_intercept = fit_intercept\n self.tol = tol\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y, sample_weight=None):\n \"\"\"Fit the model according to the given training data.\n \n@@ -293,3 +294,60 @@ class HuberRegressor(LinearModel, RegressorMixin, BaseEstimator):\n self : object\n Fitted `HuberRegressor` estimator.\n \"\"\"\n+ X, y = validate_data(\n+ self,\n+ X,\n+ y,\n+ copy=False,\n+ accept_sparse=[\"csr\"],\n+ y_numeric=True,\n+ dtype=[np.float64, np.float32],\n+ )\n+\n+ sample_weight = _check_sample_weight(sample_weight, X)\n+\n+ if self.warm_start and hasattr(self, \"coef_\"):\n+ parameters = np.concatenate((self.coef_, [self.intercept_, self.scale_]))\n+ else:\n+ if self.fit_intercept:\n+ parameters = np.zeros(X.shape[1] + 2)\n+ else:\n+ parameters = np.zeros(X.shape[1] + 1)\n+ # Make sure to initialize the scale parameter to a strictly\n+ # positive value:\n+ parameters[-1] = 1\n+\n+ # Sigma or the scale factor should be non-negative.\n+ # Setting it to be zero might cause undefined bounds hence we set it\n+ # to a value close to zero.\n+ bounds = np.tile([-np.inf, np.inf], (parameters.shape[0], 1))\n+ bounds[-1][0] = np.finfo(np.float64).eps * 10\n+\n+ opt_res = optimize.minimize(\n+ _huber_loss_and_gradient,\n+ parameters,\n+ method=\"L-BFGS-B\",\n+ jac=True,\n+ args=(X, y, self.epsilon, self.alpha, sample_weight),\n+ options={\"maxiter\": self.max_iter, \"gtol\": self.tol, \"iprint\": -1},\n+ bounds=bounds,\n+ )\n+\n+ parameters = opt_res.x\n+\n+ if opt_res.status == 2:\n+ raise ValueError(\n+ \"HuberRegressor convergence failed: l-BFGS-b solver terminated with %s\"\n+ % opt_res.message\n+ )\n+ self.n_iter_ = _check_optimize_result(\"lbfgs\", opt_res, self.max_iter)\n+ self.scale_ = parameters[-1]\n+ if self.fit_intercept:\n+ self.intercept_ = parameters[-2]\n+ else:\n+ self.intercept_ = 0.0\n+ self.coef_ = parameters[: X.shape[1]]\n+\n+ residual = np.abs(y - safe_sparse_dot(X, self.coef_) - self.intercept_)\n+ self.outliers_ = residual > self.scale_ * self.epsilon\n+ return self\n", "test": null }
null
{ "code": "diff --git a/sklearn/linear_model/_huber.py b/sklearn/linear_model/_huber.py\nindex 9e41cc4ea..14015c769 100644\n--- a/sklearn/linear_model/_huber.py\n+++ b/sklearn/linear_model/_huber.py\n@@ -273,7 +273,6 @@ class HuberRegressor(LinearModel, RegressorMixin, BaseEstimator):\n self.fit_intercept = fit_intercept\n self.tol = tol\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y, sample_weight=None):\n \"\"\"Fit the model according to the given training data.\n \n@@ -294,60 +293,3 @@ class HuberRegressor(LinearModel, RegressorMixin, BaseEstimator):\n self : object\n Fitted `HuberRegressor` estimator.\n \"\"\"\n- X, y = validate_data(\n- self,\n- X,\n- y,\n- copy=False,\n- accept_sparse=[\"csr\"],\n- y_numeric=True,\n- dtype=[np.float64, np.float32],\n- )\n-\n- sample_weight = _check_sample_weight(sample_weight, X)\n-\n- if self.warm_start and hasattr(self, \"coef_\"):\n- parameters = np.concatenate((self.coef_, [self.intercept_, self.scale_]))\n- else:\n- if self.fit_intercept:\n- parameters = np.zeros(X.shape[1] + 2)\n- else:\n- parameters = np.zeros(X.shape[1] + 1)\n- # Make sure to initialize the scale parameter to a strictly\n- # positive value:\n- parameters[-1] = 1\n-\n- # Sigma or the scale factor should be non-negative.\n- # Setting it to be zero might cause undefined bounds hence we set it\n- # to a value close to zero.\n- bounds = np.tile([-np.inf, np.inf], (parameters.shape[0], 1))\n- bounds[-1][0] = np.finfo(np.float64).eps * 10\n-\n- opt_res = optimize.minimize(\n- _huber_loss_and_gradient,\n- parameters,\n- method=\"L-BFGS-B\",\n- jac=True,\n- args=(X, y, self.epsilon, self.alpha, sample_weight),\n- options={\"maxiter\": self.max_iter, \"gtol\": self.tol, \"iprint\": -1},\n- bounds=bounds,\n- )\n-\n- parameters = opt_res.x\n-\n- if opt_res.status == 2:\n- raise ValueError(\n- \"HuberRegressor convergence failed: l-BFGS-b solver terminated with %s\"\n- % opt_res.message\n- )\n- self.n_iter_ = _check_optimize_result(\"lbfgs\", opt_res, self.max_iter)\n- self.scale_ = parameters[-1]\n- if self.fit_intercept:\n- self.intercept_ = parameters[-2]\n- else:\n- self.intercept_ = 0.0\n- self.coef_ = parameters[: X.shape[1]]\n-\n- residual = np.abs(y - safe_sparse_dot(X, self.coef_) - self.intercept_)\n- self.outliers_ = residual > self.scale_ * self.epsilon\n- return self\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/linear_model/_huber.py.\nHere is the description for the function:\n def fit(self, X, y, sample_weight=None):\n \"\"\"Fit the model according to the given training data.\n\n Parameters\n ----------\n X : array-like, shape (n_samples, n_features)\n Training vector, where `n_samples` is the number of samples and\n `n_features` is the number of features.\n\n y : array-like, shape (n_samples,)\n Target vector relative to X.\n\n sample_weight : array-like, shape (n_samples,)\n Weight given to each sample.\n\n Returns\n -------\n self : object\n Fitted `HuberRegressor` estimator.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/linear_model/tests/test_quantile.py::test_quantile_equals_huber_for_low_epsilon[True]", "sklearn/linear_model/tests/test_quantile.py::test_quantile_equals_huber_for_low_epsilon[False]", "sklearn/linear_model/tests/test_huber.py::test_huber_equals_lr_for_high_epsilon", "sklearn/linear_model/tests/test_huber.py::test_huber_max_iter", "sklearn/linear_model/tests/test_huber.py::test_huber_sample_weights[csr_matrix]", "sklearn/linear_model/tests/test_huber.py::test_huber_sample_weights[csr_array]", "sklearn/linear_model/tests/test_huber.py::test_huber_sparse[csr_matrix]", "sklearn/linear_model/tests/test_huber.py::test_huber_sparse[csr_array]", "sklearn/linear_model/tests/test_huber.py::test_huber_scaling_invariant", "sklearn/linear_model/tests/test_huber.py::test_huber_and_sgd_same_results", "sklearn/linear_model/tests/test_huber.py::test_huber_warm_start", "sklearn/linear_model/tests/test_huber.py::test_huber_better_r2_score", "sklearn/linear_model/tests/test_huber.py::test_huber_bool", "sklearn/linear_model/_huber.py::sklearn.linear_model._huber.HuberRegressor", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_non_transformer_estimators_n_iter]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[HuberRegressor(max_iter=5)-check_requires_y_none]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[HuberRegressor(max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HuberRegressor(max_iter=5)]", "sklearn/tests/test_common.py::test_check_param_validation[HuberRegressor(max_iter=5)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-65
1.0
{ "code": "diff --git b/sklearn/decomposition/_incremental_pca.py a/sklearn/decomposition/_incremental_pca.py\nindex 474e2437c..fa4421018 100644\n--- b/sklearn/decomposition/_incremental_pca.py\n+++ a/sklearn/decomposition/_incremental_pca.py\n@@ -197,6 +197,7 @@ class IncrementalPCA(_BasePCA):\n self.copy = copy\n self.batch_size = batch_size\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None):\n \"\"\"Fit the model with X, using minibatches of size batch_size.\n \n@@ -214,6 +215,39 @@ class IncrementalPCA(_BasePCA):\n self : object\n Returns the instance itself.\n \"\"\"\n+ self.components_ = None\n+ self.n_samples_seen_ = 0\n+ self.mean_ = 0.0\n+ self.var_ = 0.0\n+ self.singular_values_ = None\n+ self.explained_variance_ = None\n+ self.explained_variance_ratio_ = None\n+ self.noise_variance_ = None\n+\n+ X = validate_data(\n+ self,\n+ X,\n+ accept_sparse=[\"csr\", \"csc\", \"lil\"],\n+ copy=self.copy,\n+ dtype=[np.float64, np.float32],\n+ force_writeable=True,\n+ )\n+ n_samples, n_features = X.shape\n+\n+ if self.batch_size is None:\n+ self.batch_size_ = 5 * n_features\n+ else:\n+ self.batch_size_ = self.batch_size\n+\n+ for batch in gen_batches(\n+ n_samples, self.batch_size_, min_batch_size=self.n_components or 0\n+ ):\n+ X_batch = X[batch]\n+ if sparse.issparse(X_batch):\n+ X_batch = X_batch.toarray()\n+ self.partial_fit(X_batch, check_input=False)\n+\n+ return self\n \n @_fit_context(prefer_skip_nested_validation=True)\n def partial_fit(self, X, y=None, check_input=True):\n", "test": null }
null
{ "code": "diff --git a/sklearn/decomposition/_incremental_pca.py b/sklearn/decomposition/_incremental_pca.py\nindex fa4421018..474e2437c 100644\n--- a/sklearn/decomposition/_incremental_pca.py\n+++ b/sklearn/decomposition/_incremental_pca.py\n@@ -197,7 +197,6 @@ class IncrementalPCA(_BasePCA):\n self.copy = copy\n self.batch_size = batch_size\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None):\n \"\"\"Fit the model with X, using minibatches of size batch_size.\n \n@@ -215,39 +214,6 @@ class IncrementalPCA(_BasePCA):\n self : object\n Returns the instance itself.\n \"\"\"\n- self.components_ = None\n- self.n_samples_seen_ = 0\n- self.mean_ = 0.0\n- self.var_ = 0.0\n- self.singular_values_ = None\n- self.explained_variance_ = None\n- self.explained_variance_ratio_ = None\n- self.noise_variance_ = None\n-\n- X = validate_data(\n- self,\n- X,\n- accept_sparse=[\"csr\", \"csc\", \"lil\"],\n- copy=self.copy,\n- dtype=[np.float64, np.float32],\n- force_writeable=True,\n- )\n- n_samples, n_features = X.shape\n-\n- if self.batch_size is None:\n- self.batch_size_ = 5 * n_features\n- else:\n- self.batch_size_ = self.batch_size\n-\n- for batch in gen_batches(\n- n_samples, self.batch_size_, min_batch_size=self.n_components or 0\n- ):\n- X_batch = X[batch]\n- if sparse.issparse(X_batch):\n- X_batch = X_batch.toarray()\n- self.partial_fit(X_batch, check_input=False)\n-\n- return self\n \n @_fit_context(prefer_skip_nested_validation=True)\n def partial_fit(self, X, y=None, check_input=True):\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/decomposition/_incremental_pca.py.\nHere is the description for the function:\n def fit(self, X, y=None):\n \"\"\"Fit the model with X, using minibatches of size batch_size.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n Training data, where `n_samples` is the number of samples and\n `n_features` is the number of features.\n\n y : Ignored\n Not used, present for API consistency by convention.\n\n Returns\n -------\n self : object\n Returns the instance itself.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca", "sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_sparse[csc_matrix]", "sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_sparse[csc_array]", "sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_sparse[csr_matrix]", "sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_sparse[csr_array]", "sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_sparse[lil_matrix]", "sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_sparse[lil_array]", "sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_check_projection", "sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_inverse", "sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_validation", "sklearn/decomposition/tests/test_incremental_pca.py::test_n_samples_equal_n_components", "sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_set_params", "sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_num_features_change", "sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_batch_signs", "sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_batch_values", "sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_batch_rank", "sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_partial_fit", "sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_against_pca_iris", "sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_against_pca_random_data", "sklearn/decomposition/tests/test_incremental_pca.py::test_explained_variances", "sklearn/decomposition/tests/test_incremental_pca.py::test_singular_values", "sklearn/decomposition/tests/test_incremental_pca.py::test_whitening[42]", "sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_fit_overflow_error", "sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_feature_names_out", "sklearn/decomposition/_incremental_pca.py::sklearn.decomposition._incremental_pca.IncrementalPCA", "sklearn/decomposition/_incremental_pca.py::sklearn.decomposition._incremental_pca.IncrementalPCA.transform", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10)-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10)-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10)-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10)-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10)-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10,n_components=1)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[IncrementalPCA(batch_size=10)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[IncrementalPCA(batch_size=10)]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[IncrementalPCA(batch_size=10)]", "sklearn/tests/test_common.py::test_check_param_validation[IncrementalPCA(batch_size=10)]", "sklearn/tests/test_common.py::test_set_output_transform[IncrementalPCA(batch_size=10)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-IncrementalPCA(batch_size=10)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-IncrementalPCA(batch_size=10)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[IncrementalPCA(batch_size=10)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-66
1.0
{ "code": "diff --git b/sklearn/decomposition/_incremental_pca.py a/sklearn/decomposition/_incremental_pca.py\nindex 72bd81d46..fa4421018 100644\n--- b/sklearn/decomposition/_incremental_pca.py\n+++ a/sklearn/decomposition/_incremental_pca.py\n@@ -249,6 +249,7 @@ class IncrementalPCA(_BasePCA):\n \n return self\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def partial_fit(self, X, y=None, check_input=True):\n \"\"\"Incremental fit with X. All of X is processed as a single batch.\n \n@@ -269,6 +270,109 @@ class IncrementalPCA(_BasePCA):\n self : object\n Returns the instance itself.\n \"\"\"\n+ first_pass = not hasattr(self, \"components_\")\n+\n+ if check_input:\n+ if sparse.issparse(X):\n+ raise TypeError(\n+ \"IncrementalPCA.partial_fit does not support \"\n+ \"sparse input. Either convert data to dense \"\n+ \"or use IncrementalPCA.fit to do so in batches.\"\n+ )\n+ X = validate_data(\n+ self,\n+ X,\n+ copy=self.copy,\n+ dtype=[np.float64, np.float32],\n+ force_writeable=True,\n+ reset=first_pass,\n+ )\n+ n_samples, n_features = X.shape\n+ if first_pass:\n+ self.components_ = None\n+\n+ if self.n_components is None:\n+ if self.components_ is None:\n+ self.n_components_ = min(n_samples, n_features)\n+ else:\n+ self.n_components_ = self.components_.shape[0]\n+ elif not self.n_components <= n_features:\n+ raise ValueError(\n+ \"n_components=%r invalid for n_features=%d, need \"\n+ \"more rows than columns for IncrementalPCA \"\n+ \"processing\" % (self.n_components, n_features)\n+ )\n+ elif not self.n_components <= n_samples:\n+ raise ValueError(\n+ \"n_components=%r must be less or equal to \"\n+ \"the batch number of samples \"\n+ \"%d.\" % (self.n_components, n_samples)\n+ )\n+ else:\n+ self.n_components_ = self.n_components\n+\n+ if (self.components_ is not None) and (\n+ self.components_.shape[0] != self.n_components_\n+ ):\n+ raise ValueError(\n+ \"Number of input features has changed from %i \"\n+ \"to %i between calls to partial_fit! Try \"\n+ \"setting n_components to a fixed value.\"\n+ % (self.components_.shape[0], self.n_components_)\n+ )\n+\n+ # This is the first partial_fit\n+ if not hasattr(self, \"n_samples_seen_\"):\n+ self.n_samples_seen_ = 0\n+ self.mean_ = 0.0\n+ self.var_ = 0.0\n+\n+ # Update stats - they are 0 if this is the first step\n+ col_mean, col_var, n_total_samples = _incremental_mean_and_var(\n+ X,\n+ last_mean=self.mean_,\n+ last_variance=self.var_,\n+ last_sample_count=np.repeat(self.n_samples_seen_, X.shape[1]),\n+ )\n+ n_total_samples = n_total_samples[0]\n+\n+ # Whitening\n+ if self.n_samples_seen_ == 0:\n+ # If it is the first step, simply whiten X\n+ X -= col_mean\n+ else:\n+ col_batch_mean = np.mean(X, axis=0)\n+ X -= col_batch_mean\n+ # Build matrix of combined previous basis and new data\n+ mean_correction = np.sqrt(\n+ (self.n_samples_seen_ / n_total_samples) * n_samples\n+ ) * (self.mean_ - col_batch_mean)\n+ X = np.vstack(\n+ (\n+ self.singular_values_.reshape((-1, 1)) * self.components_,\n+ X,\n+ mean_correction,\n+ )\n+ )\n+\n+ U, S, Vt = linalg.svd(X, full_matrices=False, check_finite=False)\n+ U, Vt = svd_flip(U, Vt, u_based_decision=False)\n+ explained_variance = S**2 / (n_total_samples - 1)\n+ explained_variance_ratio = S**2 / np.sum(col_var * n_total_samples)\n+\n+ self.n_samples_seen_ = n_total_samples\n+ self.components_ = Vt[: self.n_components_]\n+ self.singular_values_ = S[: self.n_components_]\n+ self.mean_ = col_mean\n+ self.var_ = col_var\n+ self.explained_variance_ = explained_variance[: self.n_components_]\n+ self.explained_variance_ratio_ = explained_variance_ratio[: self.n_components_]\n+ # we already checked `self.n_components <= n_samples` above\n+ if self.n_components_ not in (n_samples, n_features):\n+ self.noise_variance_ = explained_variance[self.n_components_ :].mean()\n+ else:\n+ self.noise_variance_ = 0.0\n+ return self\n \n def transform(self, X):\n \"\"\"Apply dimensionality reduction to X.\n", "test": null }
null
{ "code": "diff --git a/sklearn/decomposition/_incremental_pca.py b/sklearn/decomposition/_incremental_pca.py\nindex fa4421018..72bd81d46 100644\n--- a/sklearn/decomposition/_incremental_pca.py\n+++ b/sklearn/decomposition/_incremental_pca.py\n@@ -249,7 +249,6 @@ class IncrementalPCA(_BasePCA):\n \n return self\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def partial_fit(self, X, y=None, check_input=True):\n \"\"\"Incremental fit with X. All of X is processed as a single batch.\n \n@@ -270,109 +269,6 @@ class IncrementalPCA(_BasePCA):\n self : object\n Returns the instance itself.\n \"\"\"\n- first_pass = not hasattr(self, \"components_\")\n-\n- if check_input:\n- if sparse.issparse(X):\n- raise TypeError(\n- \"IncrementalPCA.partial_fit does not support \"\n- \"sparse input. Either convert data to dense \"\n- \"or use IncrementalPCA.fit to do so in batches.\"\n- )\n- X = validate_data(\n- self,\n- X,\n- copy=self.copy,\n- dtype=[np.float64, np.float32],\n- force_writeable=True,\n- reset=first_pass,\n- )\n- n_samples, n_features = X.shape\n- if first_pass:\n- self.components_ = None\n-\n- if self.n_components is None:\n- if self.components_ is None:\n- self.n_components_ = min(n_samples, n_features)\n- else:\n- self.n_components_ = self.components_.shape[0]\n- elif not self.n_components <= n_features:\n- raise ValueError(\n- \"n_components=%r invalid for n_features=%d, need \"\n- \"more rows than columns for IncrementalPCA \"\n- \"processing\" % (self.n_components, n_features)\n- )\n- elif not self.n_components <= n_samples:\n- raise ValueError(\n- \"n_components=%r must be less or equal to \"\n- \"the batch number of samples \"\n- \"%d.\" % (self.n_components, n_samples)\n- )\n- else:\n- self.n_components_ = self.n_components\n-\n- if (self.components_ is not None) and (\n- self.components_.shape[0] != self.n_components_\n- ):\n- raise ValueError(\n- \"Number of input features has changed from %i \"\n- \"to %i between calls to partial_fit! Try \"\n- \"setting n_components to a fixed value.\"\n- % (self.components_.shape[0], self.n_components_)\n- )\n-\n- # This is the first partial_fit\n- if not hasattr(self, \"n_samples_seen_\"):\n- self.n_samples_seen_ = 0\n- self.mean_ = 0.0\n- self.var_ = 0.0\n-\n- # Update stats - they are 0 if this is the first step\n- col_mean, col_var, n_total_samples = _incremental_mean_and_var(\n- X,\n- last_mean=self.mean_,\n- last_variance=self.var_,\n- last_sample_count=np.repeat(self.n_samples_seen_, X.shape[1]),\n- )\n- n_total_samples = n_total_samples[0]\n-\n- # Whitening\n- if self.n_samples_seen_ == 0:\n- # If it is the first step, simply whiten X\n- X -= col_mean\n- else:\n- col_batch_mean = np.mean(X, axis=0)\n- X -= col_batch_mean\n- # Build matrix of combined previous basis and new data\n- mean_correction = np.sqrt(\n- (self.n_samples_seen_ / n_total_samples) * n_samples\n- ) * (self.mean_ - col_batch_mean)\n- X = np.vstack(\n- (\n- self.singular_values_.reshape((-1, 1)) * self.components_,\n- X,\n- mean_correction,\n- )\n- )\n-\n- U, S, Vt = linalg.svd(X, full_matrices=False, check_finite=False)\n- U, Vt = svd_flip(U, Vt, u_based_decision=False)\n- explained_variance = S**2 / (n_total_samples - 1)\n- explained_variance_ratio = S**2 / np.sum(col_var * n_total_samples)\n-\n- self.n_samples_seen_ = n_total_samples\n- self.components_ = Vt[: self.n_components_]\n- self.singular_values_ = S[: self.n_components_]\n- self.mean_ = col_mean\n- self.var_ = col_var\n- self.explained_variance_ = explained_variance[: self.n_components_]\n- self.explained_variance_ratio_ = explained_variance_ratio[: self.n_components_]\n- # we already checked `self.n_components <= n_samples` above\n- if self.n_components_ not in (n_samples, n_features):\n- self.noise_variance_ = explained_variance[self.n_components_ :].mean()\n- else:\n- self.noise_variance_ = 0.0\n- return self\n \n def transform(self, X):\n \"\"\"Apply dimensionality reduction to X.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/decomposition/_incremental_pca.py.\nHere is the description for the function:\n def partial_fit(self, X, y=None, check_input=True):\n \"\"\"Incremental fit with X. All of X is processed as a single batch.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n Training data, where `n_samples` is the number of samples and\n `n_features` is the number of features.\n\n y : Ignored\n Not used, present for API consistency by convention.\n\n check_input : bool, default=True\n Run check_array on X.\n\n Returns\n -------\n self : object\n Returns the instance itself.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca", "sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_sparse[csc_matrix]", "sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_sparse[csc_array]", "sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_sparse[csr_matrix]", "sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_sparse[csr_array]", "sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_sparse[lil_matrix]", "sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_sparse[lil_array]", "sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_check_projection", "sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_inverse", "sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_validation", "sklearn/decomposition/tests/test_incremental_pca.py::test_n_samples_equal_n_components", "sklearn/decomposition/tests/test_incremental_pca.py::test_n_components_none", "sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_set_params", "sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_num_features_change", "sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_batch_signs", "sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_batch_values", "sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_batch_rank", "sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_partial_fit", "sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_against_pca_iris", "sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_against_pca_random_data", "sklearn/decomposition/tests/test_incremental_pca.py::test_explained_variances", "sklearn/decomposition/tests/test_incremental_pca.py::test_singular_values", "sklearn/decomposition/tests/test_incremental_pca.py::test_whitening[42]", "sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_partial_fit_float_division", "sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_fit_overflow_error", "sklearn/decomposition/tests/test_incremental_pca.py::test_incremental_pca_feature_names_out", "sklearn/decomposition/_incremental_pca.py::sklearn.decomposition._incremental_pca.IncrementalPCA", "sklearn/decomposition/_incremental_pca.py::sklearn.decomposition._incremental_pca.IncrementalPCA.transform", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10)-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10)-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10)-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10)-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10,n_components=1)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[IncrementalPCA(batch_size=10)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[IncrementalPCA(batch_size=10)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[IncrementalPCA(batch_size=10)]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[IncrementalPCA(batch_size=10)]", "sklearn/tests/test_common.py::test_check_param_validation[IncrementalPCA(batch_size=10)]", "sklearn/tests/test_common.py::test_set_output_transform[IncrementalPCA(batch_size=10)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-IncrementalPCA(batch_size=10)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-IncrementalPCA(batch_size=10)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[IncrementalPCA(batch_size=10)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-67
1.0
{ "code": "diff --git b/sklearn/ensemble/_iforest.py a/sklearn/ensemble/_iforest.py\nindex 94601eebc..d7d9a06eb 100644\n--- b/sklearn/ensemble/_iforest.py\n+++ a/sklearn/ensemble/_iforest.py\n@@ -293,6 +293,7 @@ class IsolationForest(OutlierMixin, BaseBagging):\n # copies. This is only used in the fit method.\n return {\"prefer\": \"threads\"}\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None, sample_weight=None):\n \"\"\"\n Fit estimator.\n@@ -315,6 +316,73 @@ class IsolationForest(OutlierMixin, BaseBagging):\n self : object\n Fitted estimator.\n \"\"\"\n+ X = validate_data(\n+ self, X, accept_sparse=[\"csc\"], dtype=tree_dtype, ensure_all_finite=False\n+ )\n+ if issparse(X):\n+ # Pre-sort indices to avoid that each individual tree of the\n+ # ensemble sorts the indices.\n+ X.sort_indices()\n+\n+ rnd = check_random_state(self.random_state)\n+ y = rnd.uniform(size=X.shape[0])\n+\n+ # ensure that max_sample is in [1, n_samples]:\n+ n_samples = X.shape[0]\n+\n+ if isinstance(self.max_samples, str) and self.max_samples == \"auto\":\n+ max_samples = min(256, n_samples)\n+\n+ elif isinstance(self.max_samples, numbers.Integral):\n+ if self.max_samples > n_samples:\n+ warn(\n+ \"max_samples (%s) is greater than the \"\n+ \"total number of samples (%s). max_samples \"\n+ \"will be set to n_samples for estimation.\"\n+ % (self.max_samples, n_samples)\n+ )\n+ max_samples = n_samples\n+ else:\n+ max_samples = self.max_samples\n+ else: # max_samples is float\n+ max_samples = int(self.max_samples * X.shape[0])\n+\n+ self.max_samples_ = max_samples\n+ max_depth = int(np.ceil(np.log2(max(max_samples, 2))))\n+ super()._fit(\n+ X,\n+ y,\n+ max_samples,\n+ max_depth=max_depth,\n+ sample_weight=sample_weight,\n+ check_input=False,\n+ )\n+\n+ self._average_path_length_per_tree, self._decision_path_lengths = zip(\n+ *[\n+ (\n+ _average_path_length(tree.tree_.n_node_samples),\n+ tree.tree_.compute_node_depths(),\n+ )\n+ for tree in self.estimators_\n+ ]\n+ )\n+\n+ if self.contamination == \"auto\":\n+ # 0.5 plays a special role as described in the original paper.\n+ # we take the opposite as we consider the opposite of their score.\n+ self.offset_ = -0.5\n+ return self\n+\n+ # Else, define offset_ wrt contamination parameter\n+ # To avoid performing input validation a second time we call\n+ # _score_samples rather than score_samples.\n+ # _score_samples expects a CSR matrix, so we convert if necessary.\n+ if issparse(X):\n+ X = X.tocsr()\n+ self.offset_ = np.percentile(self._score_samples(X), 100.0 * self.contamination)\n+\n+ return self\n \n def predict(self, X):\n \"\"\"\n", "test": null }
null
{ "code": "diff --git a/sklearn/ensemble/_iforest.py b/sklearn/ensemble/_iforest.py\nindex d7d9a06eb..94601eebc 100644\n--- a/sklearn/ensemble/_iforest.py\n+++ b/sklearn/ensemble/_iforest.py\n@@ -293,7 +293,6 @@ class IsolationForest(OutlierMixin, BaseBagging):\n # copies. This is only used in the fit method.\n return {\"prefer\": \"threads\"}\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None, sample_weight=None):\n \"\"\"\n Fit estimator.\n@@ -316,73 +315,6 @@ class IsolationForest(OutlierMixin, BaseBagging):\n self : object\n Fitted estimator.\n \"\"\"\n- X = validate_data(\n- self, X, accept_sparse=[\"csc\"], dtype=tree_dtype, ensure_all_finite=False\n- )\n- if issparse(X):\n- # Pre-sort indices to avoid that each individual tree of the\n- # ensemble sorts the indices.\n- X.sort_indices()\n-\n- rnd = check_random_state(self.random_state)\n- y = rnd.uniform(size=X.shape[0])\n-\n- # ensure that max_sample is in [1, n_samples]:\n- n_samples = X.shape[0]\n-\n- if isinstance(self.max_samples, str) and self.max_samples == \"auto\":\n- max_samples = min(256, n_samples)\n-\n- elif isinstance(self.max_samples, numbers.Integral):\n- if self.max_samples > n_samples:\n- warn(\n- \"max_samples (%s) is greater than the \"\n- \"total number of samples (%s). max_samples \"\n- \"will be set to n_samples for estimation.\"\n- % (self.max_samples, n_samples)\n- )\n- max_samples = n_samples\n- else:\n- max_samples = self.max_samples\n- else: # max_samples is float\n- max_samples = int(self.max_samples * X.shape[0])\n-\n- self.max_samples_ = max_samples\n- max_depth = int(np.ceil(np.log2(max(max_samples, 2))))\n- super()._fit(\n- X,\n- y,\n- max_samples,\n- max_depth=max_depth,\n- sample_weight=sample_weight,\n- check_input=False,\n- )\n-\n- self._average_path_length_per_tree, self._decision_path_lengths = zip(\n- *[\n- (\n- _average_path_length(tree.tree_.n_node_samples),\n- tree.tree_.compute_node_depths(),\n- )\n- for tree in self.estimators_\n- ]\n- )\n-\n- if self.contamination == \"auto\":\n- # 0.5 plays a special role as described in the original paper.\n- # we take the opposite as we consider the opposite of their score.\n- self.offset_ = -0.5\n- return self\n-\n- # Else, define offset_ wrt contamination parameter\n- # To avoid performing input validation a second time we call\n- # _score_samples rather than score_samples.\n- # _score_samples expects a CSR matrix, so we convert if necessary.\n- if issparse(X):\n- X = X.tocsr()\n- self.offset_ = np.percentile(self._score_samples(X), 100.0 * self.contamination)\n-\n- return self\n \n def predict(self, X):\n \"\"\"\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/ensemble/_iforest.py.\nHere is the description for the function:\n def fit(self, X, y=None, sample_weight=None):\n \"\"\"\n Fit estimator.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n The input samples. Use ``dtype=np.float32`` for maximum\n efficiency. Sparse matrices are also supported, use sparse\n ``csc_matrix`` for maximum efficiency.\n\n y : Ignored\n Not used, present for API consistency by convention.\n\n sample_weight : array-like of shape (n_samples,), default=None\n Sample weights. If None, then samples are equally weighted.\n\n Returns\n -------\n self : object\n Fitted estimator.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_outlier_detector[contourf-auto]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_outlier_detector[contourf-predict]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_outlier_detector[contourf-decision_function]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_outlier_detector[contour-auto]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_outlier_detector[contour-predict]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_outlier_detector[contour-decision_function]", "sklearn/utils/tests/test_response.py::test_get_response_values_outlier_detection[True-predict]", "sklearn/utils/tests/test_response.py::test_get_response_values_outlier_detection[True-decision_function]", "sklearn/utils/tests/test_response.py::test_get_response_values_outlier_detection[True-response_method2]", "sklearn/utils/tests/test_response.py::test_get_response_values_outlier_detection[False-predict]", "sklearn/utils/tests/test_response.py::test_get_response_values_outlier_detection[False-decision_function]", "sklearn/utils/tests/test_response.py::test_get_response_values_outlier_detection[False-response_method2]", "sklearn/ensemble/tests/test_iforest.py::test_iforest[42]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_sparse[42-csc_matrix]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_sparse[42-csc_array]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_sparse[42-csr_matrix]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_sparse[42-csr_array]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_error", "sklearn/ensemble/tests/test_iforest.py::test_recalculate_max_depth", "sklearn/ensemble/tests/test_iforest.py::test_max_samples_attribute", "sklearn/ensemble/tests/test_iforest.py::test_iforest_parallel_regression[42]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_performance[42]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_works[42-0.25]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_works[42-auto]", "sklearn/ensemble/tests/test_iforest.py::test_max_samples_consistency", "sklearn/ensemble/tests/test_iforest.py::test_iforest_subsampled_features", "sklearn/ensemble/tests/test_iforest.py::test_score_samples", "sklearn/ensemble/tests/test_iforest.py::test_iforest_warm_start", "sklearn/ensemble/tests/test_iforest.py::test_iforest_chunks_works1[42-0.25-3]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_chunks_works1[42-auto-2]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_chunks_works2[42-0.25-3]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_chunks_works2[42-auto-2]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_with_uniform_data", "sklearn/ensemble/tests/test_iforest.py::test_iforest_with_n_jobs_does_not_segfault[csc_matrix]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_with_n_jobs_does_not_segfault[csc_array]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_preserve_feature_names", "sklearn/ensemble/tests/test_iforest.py::test_iforest_sparse_input_float_contamination[csc_matrix]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_sparse_input_float_contamination[csc_array]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_sparse_input_float_contamination[csr_matrix]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_sparse_input_float_contamination[csr_array]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_predict_parallel[42-0.25-1]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_predict_parallel[42-0.25-2]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_predict_parallel[42-auto-1]", "sklearn/ensemble/tests/test_iforest.py::test_iforest_predict_parallel[42-auto-2]", "sklearn/ensemble/_iforest.py::sklearn.ensemble._iforest.IsolationForest", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_outliers_fit_predict]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_outliers_train]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_outliers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[IsolationForest(n_estimators=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[IsolationForest(n_estimators=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[IsolationForest(n_estimators=5)]", "sklearn/tests/test_common.py::test_check_param_validation[IsolationForest(n_estimators=5)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-68
1.0
{ "code": "diff --git b/sklearn/manifold/_isomap.py a/sklearn/manifold/_isomap.py\nindex 2a2b9490d..ee302bc07 100644\n--- b/sklearn/manifold/_isomap.py\n+++ a/sklearn/manifold/_isomap.py\n@@ -407,6 +407,33 @@ class Isomap(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator):\n X_new : array-like, shape (n_queries, n_components)\n X transformed in the new space.\n \"\"\"\n+ check_is_fitted(self)\n+ if self.n_neighbors is not None:\n+ distances, indices = self.nbrs_.kneighbors(X, return_distance=True)\n+ else:\n+ distances, indices = self.nbrs_.radius_neighbors(X, return_distance=True)\n+\n+ # Create the graph of shortest distances from X to\n+ # training data via the nearest neighbors of X.\n+ # This can be done as a single array operation, but it potentially\n+ # takes a lot of memory. To avoid that, use a loop:\n+\n+ n_samples_fit = self.nbrs_.n_samples_fit_\n+ n_queries = distances.shape[0]\n+\n+ if hasattr(X, \"dtype\") and X.dtype == np.float32:\n+ dtype = np.float32\n+ else:\n+ dtype = np.float64\n+\n+ G_X = np.zeros((n_queries, n_samples_fit), dtype)\n+ for i in range(n_queries):\n+ G_X[i] = np.min(self.dist_matrix_[indices[i]] + distances[i][:, None], 0)\n+\n+ G_X **= 2\n+ G_X *= -0.5\n+\n+ return self.kernel_pca_.transform(G_X)\n \n def __sklearn_tags__(self):\n tags = super().__sklearn_tags__()\n", "test": null }
null
{ "code": "diff --git a/sklearn/manifold/_isomap.py b/sklearn/manifold/_isomap.py\nindex ee302bc07..2a2b9490d 100644\n--- a/sklearn/manifold/_isomap.py\n+++ b/sklearn/manifold/_isomap.py\n@@ -407,33 +407,6 @@ class Isomap(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator):\n X_new : array-like, shape (n_queries, n_components)\n X transformed in the new space.\n \"\"\"\n- check_is_fitted(self)\n- if self.n_neighbors is not None:\n- distances, indices = self.nbrs_.kneighbors(X, return_distance=True)\n- else:\n- distances, indices = self.nbrs_.radius_neighbors(X, return_distance=True)\n-\n- # Create the graph of shortest distances from X to\n- # training data via the nearest neighbors of X.\n- # This can be done as a single array operation, but it potentially\n- # takes a lot of memory. To avoid that, use a loop:\n-\n- n_samples_fit = self.nbrs_.n_samples_fit_\n- n_queries = distances.shape[0]\n-\n- if hasattr(X, \"dtype\") and X.dtype == np.float32:\n- dtype = np.float32\n- else:\n- dtype = np.float64\n-\n- G_X = np.zeros((n_queries, n_samples_fit), dtype)\n- for i in range(n_queries):\n- G_X[i] = np.min(self.dist_matrix_[indices[i]] + distances[i][:, None], 0)\n-\n- G_X **= 2\n- G_X *= -0.5\n-\n- return self.kernel_pca_.transform(G_X)\n \n def __sklearn_tags__(self):\n tags = super().__sklearn_tags__()\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/manifold/_isomap.py.\nHere is the description for the function:\n def transform(self, X):\n \"\"\"Transform X.\n\n This is implemented by linking the points X into the graph of geodesic\n distances of the training data. First the `n_neighbors` nearest\n neighbors of X are found in the training data, and from these the\n shortest geodesic distances from each point in X to each point in\n the training data are computed in order to construct the kernel.\n The embedding of X is the projection of this kernel onto the\n embedding vectors of the training set.\n\n Parameters\n ----------\n X : {array-like, sparse matrix}, shape (n_queries, n_features)\n If neighbors_algorithm='precomputed', X is assumed to be a\n distance matrix or a sparse graph of shape\n (n_queries, n_samples_fit).\n\n Returns\n -------\n X_new : array-like, shape (n_queries, n_components)\n X transformed in the new space.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/manifold/tests/test_isomap.py::test_transform[float64-2-None]", "sklearn/manifold/tests/test_isomap.py::test_transform[float64-None-0.5]", "sklearn/manifold/tests/test_isomap.py::test_pipeline[float64-2-None]", "sklearn/manifold/tests/test_isomap.py::test_pipeline[float64-None-10.0]", "sklearn/manifold/tests/test_isomap.py::test_pipeline_with_nearest_neighbors_transformer[float64]", "sklearn/neighbors/tests/test_neighbors_pipeline.py::test_isomap", "sklearn/tests/test_common.py::test_estimators[Isomap()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[Isomap()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[Isomap()-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[Isomap()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[Isomap()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[Isomap()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[Isomap()-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[Isomap()-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[Isomap()-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[Isomap()-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[Isomap()-check_transformers_unfitted]", "sklearn/tests/test_common.py::test_estimators[Isomap()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[Isomap()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[Isomap(n_components=1)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[Isomap()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[Isomap()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[Isomap()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[Isomap()]", "sklearn/tests/test_common.py::test_set_output_transform[Isomap()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-Isomap()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-Isomap()]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-69
1.0
{ "code": "diff --git b/sklearn/isotonic.py a/sklearn/isotonic.py\nindex 1f535018d..7312fdba7 100644\n--- b/sklearn/isotonic.py\n+++ a/sklearn/isotonic.py\n@@ -354,6 +354,7 @@ class IsotonicRegression(RegressorMixin, TransformerMixin, BaseEstimator):\n # prediction speed).\n return X, y\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y, sample_weight=None):\n \"\"\"Fit the model using X, y as training data.\n \n@@ -382,6 +383,26 @@ class IsotonicRegression(RegressorMixin, TransformerMixin, BaseEstimator):\n X is stored for future use, as :meth:`transform` needs X to interpolate\n new input data.\n \"\"\"\n+ check_params = dict(accept_sparse=False, ensure_2d=False)\n+ X = check_array(\n+ X, input_name=\"X\", dtype=[np.float64, np.float32], **check_params\n+ )\n+ y = check_array(y, input_name=\"y\", dtype=X.dtype, **check_params)\n+ check_consistent_length(X, y, sample_weight)\n+\n+ # Transform y by running the isotonic regression algorithm and\n+ # transform X accordingly.\n+ X, y = self._build_y(X, y, sample_weight)\n+\n+ # It is necessary to store the non-redundant part of the training set\n+ # on the model to make it possible to support model persistence via\n+ # the pickle module as the object built by scipy.interp1d is not\n+ # picklable directly.\n+ self.X_thresholds_, self.y_thresholds_ = X, y\n+\n+ # Build the interpolation function\n+ self._build_f(X, y)\n+ return self\n \n def _transform(self, T):\n \"\"\"`_transform` is called by both `transform` and `predict` methods.\n", "test": null }
null
{ "code": "diff --git a/sklearn/isotonic.py b/sklearn/isotonic.py\nindex 7312fdba7..1f535018d 100644\n--- a/sklearn/isotonic.py\n+++ b/sklearn/isotonic.py\n@@ -354,7 +354,6 @@ class IsotonicRegression(RegressorMixin, TransformerMixin, BaseEstimator):\n # prediction speed).\n return X, y\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y, sample_weight=None):\n \"\"\"Fit the model using X, y as training data.\n \n@@ -383,26 +382,6 @@ class IsotonicRegression(RegressorMixin, TransformerMixin, BaseEstimator):\n X is stored for future use, as :meth:`transform` needs X to interpolate\n new input data.\n \"\"\"\n- check_params = dict(accept_sparse=False, ensure_2d=False)\n- X = check_array(\n- X, input_name=\"X\", dtype=[np.float64, np.float32], **check_params\n- )\n- y = check_array(y, input_name=\"y\", dtype=X.dtype, **check_params)\n- check_consistent_length(X, y, sample_weight)\n-\n- # Transform y by running the isotonic regression algorithm and\n- # transform X accordingly.\n- X, y = self._build_y(X, y, sample_weight)\n-\n- # It is necessary to store the non-redundant part of the training set\n- # on the model to make it possible to support model persistence via\n- # the pickle module as the object built by scipy.interp1d is not\n- # picklable directly.\n- self.X_thresholds_, self.y_thresholds_ = X, y\n-\n- # Build the interpolation function\n- self._build_f(X, y)\n- return self\n \n def _transform(self, T):\n \"\"\"`_transform` is called by both `transform` and `predict` methods.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/isotonic.py.\nHere is the description for the function:\n def fit(self, X, y, sample_weight=None):\n \"\"\"Fit the model using X, y as training data.\n\n Parameters\n ----------\n X : array-like of shape (n_samples,) or (n_samples, 1)\n Training data.\n\n .. versionchanged:: 0.24\n Also accepts 2d array with 1 feature.\n\n y : array-like of shape (n_samples,)\n Training target.\n\n sample_weight : array-like of shape (n_samples,), default=None\n Weights. If set to None, all weights will be set to 1 (equal\n weights).\n\n Returns\n -------\n self : object\n Returns an instance of self.\n\n Notes\n -----\n X is stored for future use, as :meth:`transform` needs X to interpolate\n new input data.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_calibration.py::test_calibration[True-isotonic-csr_matrix]", "sklearn/tests/test_calibration.py::test_calibration[True-isotonic-csr_array]", "sklearn/tests/test_calibration.py::test_calibration[False-isotonic-csr_matrix]", "sklearn/tests/test_calibration.py::test_calibration[False-isotonic-csr_array]", "sklearn/tests/test_calibration.py::test_sample_weight[True-isotonic]", "sklearn/tests/test_calibration.py::test_sample_weight[False-isotonic]", "sklearn/tests/test_calibration.py::test_parallel_execution[True-isotonic]", "sklearn/tests/test_calibration.py::test_parallel_execution[False-isotonic]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[0-True-isotonic]", "sklearn/tests/test_isotonic.py::test_permutation_invariance", "sklearn/tests/test_calibration.py::test_calibration_multiclass[0-False-isotonic]", "sklearn/tests/test_isotonic.py::test_isotonic_regression", "sklearn/tests/test_isotonic.py::test_isotonic_regression_ties_min", "sklearn/tests/test_isotonic.py::test_isotonic_regression_ties_max", "sklearn/tests/test_isotonic.py::test_isotonic_regression_ties_secondary_", "sklearn/tests/test_isotonic.py::test_isotonic_regression_with_ties_in_differently_sized_groups", "sklearn/tests/test_isotonic.py::test_isotonic_regression_reversed", "sklearn/tests/test_isotonic.py::test_isotonic_regression_auto_decreasing", "sklearn/tests/test_isotonic.py::test_isotonic_regression_auto_increasing", "sklearn/tests/test_isotonic.py::test_assert_raises_exceptions", "sklearn/tests/test_isotonic.py::test_isotonic_sample_weight_parameter_default_value", "sklearn/tests/test_isotonic.py::test_isotonic_min_max_boundaries", "sklearn/tests/test_isotonic.py::test_isotonic_sample_weight", "sklearn/tests/test_isotonic.py::test_isotonic_regression_oob_raise", "sklearn/tests/test_isotonic.py::test_isotonic_regression_oob_clip", "sklearn/tests/test_isotonic.py::test_isotonic_regression_oob_nan", "sklearn/tests/test_isotonic.py::test_isotonic_regression_pickle", "sklearn/tests/test_isotonic.py::test_isotonic_duplicate_min_entry", "sklearn/tests/test_isotonic.py::test_isotonic_zero_weight_loop", "sklearn/tests/test_isotonic.py::test_fast_predict", "sklearn/tests/test_isotonic.py::test_isotonic_dtype[int32]", "sklearn/tests/test_isotonic.py::test_isotonic_dtype[int64]", "sklearn/tests/test_isotonic.py::test_isotonic_dtype[float32]", "sklearn/tests/test_isotonic.py::test_isotonic_dtype[float64]", "sklearn/tests/test_isotonic.py::test_isotonic_mismatched_dtype[int32]", "sklearn/tests/test_isotonic.py::test_isotonic_mismatched_dtype[int64]", "sklearn/tests/test_isotonic.py::test_isotonic_mismatched_dtype[float32]", "sklearn/tests/test_isotonic.py::test_isotonic_mismatched_dtype[float64]", "sklearn/tests/test_isotonic.py::test_isotonic_make_unique_tolerance", "sklearn/tests/test_isotonic.py::test_isotonic_non_regression_inf_slope", "sklearn/tests/test_isotonic.py::test_isotonic_thresholds[True]", "sklearn/tests/test_isotonic.py::test_isotonic_thresholds[False]", "sklearn/tests/test_isotonic.py::test_input_shape_validation", "sklearn/tests/test_isotonic.py::test_isotonic_2darray_more_than_1_feature", "sklearn/tests/test_isotonic.py::test_isotonic_regression_sample_weight_not_overwritten", "sklearn/tests/test_isotonic.py::test_get_feature_names_out[1d]", "sklearn/tests/test_isotonic.py::test_get_feature_names_out[2d]", "sklearn/tests/test_isotonic.py::test_isotonic_regression_output_predict", "sklearn/tests/test_calibration.py::test_calibration_multiclass[1-True-isotonic]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[1-False-isotonic]", "sklearn/tests/test_calibration.py::test_calibration_prefit[csr_matrix]", "sklearn/tests/test_calibration.py::test_calibration_prefit[csr_array]", "sklearn/tests/test_calibration.py::test_calibration_ensemble_false[isotonic]", "sklearn/tests/test_calibration.py::test_calibration_nan_imputer[True]", "sklearn/tests/test_calibration.py::test_calibration_nan_imputer[False]", "sklearn/manifold/tests/test_mds.py::test_MDS", "sklearn/isotonic.py::sklearn.isotonic.IsotonicRegression", "sklearn/tests/test_calibration.py::test_calibrated_classifier_cv_double_sample_weights_equivalence[True-isotonic]", "sklearn/tests/test_calibration.py::test_calibrated_classifier_cv_double_sample_weights_equivalence[False-isotonic]", "sklearn/tests/test_calibration.py::test_calibrated_classifier_cv_works_with_large_confidence_scores[42]", "sklearn/manifold/tests/test_mds.py::test_normed_stress[0.5]", "sklearn/manifold/tests/test_mds.py::test_normed_stress[1.5]", "sklearn/manifold/tests/test_mds.py::test_normed_stress[2]", "sklearn/manifold/tests/test_mds.py::test_normalized_stress_auto[False]", "sklearn/tests/test_common.py::test_check_param_validation[IsotonicRegression()]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-70
1.0
{ "code": "diff --git b/sklearn/impute/_iterative.py a/sklearn/impute/_iterative.py\nindex 2802aa13c..b1f722441 100644\n--- b/sklearn/impute/_iterative.py\n+++ a/sklearn/impute/_iterative.py\n@@ -695,6 +695,10 @@ class IterativeImputer(_BaseImputer):\n )\n return limit\n \n+ @_fit_context(\n+ # IterativeImputer.estimator is not validated yet\n+ prefer_skip_nested_validation=False\n+ )\n def fit_transform(self, X, y=None, **params):\n \"\"\"Fit the imputer on `X` and return the transformed `X`.\n \n@@ -722,6 +726,118 @@ class IterativeImputer(_BaseImputer):\n Xt : array-like, shape (n_samples, n_features)\n The imputed input data.\n \"\"\"\n+ _raise_for_params(params, self, \"fit\")\n+\n+ routed_params = process_routing(\n+ self,\n+ \"fit\",\n+ **params,\n+ )\n+\n+ self.random_state_ = getattr(\n+ self, \"random_state_\", check_random_state(self.random_state)\n+ )\n+\n+ if self.estimator is None:\n+ from ..linear_model import BayesianRidge\n+\n+ self._estimator = BayesianRidge()\n+ else:\n+ self._estimator = clone(self.estimator)\n+\n+ self.imputation_sequence_ = []\n+\n+ self.initial_imputer_ = None\n+\n+ X, Xt, mask_missing_values, complete_mask = self._initial_imputation(\n+ X, in_fit=True\n+ )\n+\n+ super()._fit_indicator(complete_mask)\n+ X_indicator = super()._transform_indicator(complete_mask)\n+\n+ if self.max_iter == 0 or np.all(mask_missing_values):\n+ self.n_iter_ = 0\n+ return super()._concatenate_indicator(Xt, X_indicator)\n+\n+ # Edge case: a single feature, we return the initial imputation.\n+ if Xt.shape[1] == 1:\n+ self.n_iter_ = 0\n+ return super()._concatenate_indicator(Xt, X_indicator)\n+\n+ self._min_value = self._validate_limit(self.min_value, \"min\", X.shape[1])\n+ self._max_value = self._validate_limit(self.max_value, \"max\", X.shape[1])\n+\n+ if not np.all(np.greater(self._max_value, self._min_value)):\n+ raise ValueError(\"One (or more) features have min_value >= max_value.\")\n+\n+ # order in which to impute\n+ # note this is probably too slow for large feature data (d > 100000)\n+ # and a better way would be good.\n+ # see: https://goo.gl/KyCNwj and subsequent comments\n+ ordered_idx = self._get_ordered_idx(mask_missing_values)\n+ self.n_features_with_missing_ = len(ordered_idx)\n+\n+ abs_corr_mat = self._get_abs_corr_mat(Xt)\n+\n+ n_samples, n_features = Xt.shape\n+ if self.verbose > 0:\n+ print(\"[IterativeImputer] Completing matrix with shape %s\" % (X.shape,))\n+ start_t = time()\n+ if not self.sample_posterior:\n+ Xt_previous = Xt.copy()\n+ normalized_tol = self.tol * np.max(np.abs(X[~mask_missing_values]))\n+ for self.n_iter_ in range(1, self.max_iter + 1):\n+ if self.imputation_order == \"random\":\n+ ordered_idx = self._get_ordered_idx(mask_missing_values)\n+\n+ for feat_idx in ordered_idx:\n+ neighbor_feat_idx = self._get_neighbor_feat_idx(\n+ n_features, feat_idx, abs_corr_mat\n+ )\n+ Xt, estimator = self._impute_one_feature(\n+ Xt,\n+ mask_missing_values,\n+ feat_idx,\n+ neighbor_feat_idx,\n+ estimator=None,\n+ fit_mode=True,\n+ params=routed_params.estimator.fit,\n+ )\n+ estimator_triplet = _ImputerTriplet(\n+ feat_idx, neighbor_feat_idx, estimator\n+ )\n+ self.imputation_sequence_.append(estimator_triplet)\n+\n+ if self.verbose > 1:\n+ print(\n+ \"[IterativeImputer] Ending imputation round \"\n+ \"%d/%d, elapsed time %0.2f\"\n+ % (self.n_iter_, self.max_iter, time() - start_t)\n+ )\n+\n+ if not self.sample_posterior:\n+ inf_norm = np.linalg.norm(Xt - Xt_previous, ord=np.inf, axis=None)\n+ if self.verbose > 0:\n+ print(\n+ \"[IterativeImputer] Change: {}, scaled tolerance: {} \".format(\n+ inf_norm, normalized_tol\n+ )\n+ )\n+ if inf_norm < normalized_tol:\n+ if self.verbose > 0:\n+ print(\"[IterativeImputer] Early stopping criterion reached.\")\n+ break\n+ Xt_previous = Xt.copy()\n+ else:\n+ if not self.sample_posterior:\n+ warnings.warn(\n+ \"[IterativeImputer] Early stopping criterion not reached.\",\n+ ConvergenceWarning,\n+ )\n+ _assign_where(Xt, X, cond=~mask_missing_values)\n+\n+ return super()._concatenate_indicator(Xt, X_indicator)\n \n def transform(self, X):\n \"\"\"Impute all missing values in `X`.\n", "test": null }
null
{ "code": "diff --git a/sklearn/impute/_iterative.py b/sklearn/impute/_iterative.py\nindex b1f722441..2802aa13c 100644\n--- a/sklearn/impute/_iterative.py\n+++ b/sklearn/impute/_iterative.py\n@@ -695,10 +695,6 @@ class IterativeImputer(_BaseImputer):\n )\n return limit\n \n- @_fit_context(\n- # IterativeImputer.estimator is not validated yet\n- prefer_skip_nested_validation=False\n- )\n def fit_transform(self, X, y=None, **params):\n \"\"\"Fit the imputer on `X` and return the transformed `X`.\n \n@@ -726,118 +722,6 @@ class IterativeImputer(_BaseImputer):\n Xt : array-like, shape (n_samples, n_features)\n The imputed input data.\n \"\"\"\n- _raise_for_params(params, self, \"fit\")\n-\n- routed_params = process_routing(\n- self,\n- \"fit\",\n- **params,\n- )\n-\n- self.random_state_ = getattr(\n- self, \"random_state_\", check_random_state(self.random_state)\n- )\n-\n- if self.estimator is None:\n- from ..linear_model import BayesianRidge\n-\n- self._estimator = BayesianRidge()\n- else:\n- self._estimator = clone(self.estimator)\n-\n- self.imputation_sequence_ = []\n-\n- self.initial_imputer_ = None\n-\n- X, Xt, mask_missing_values, complete_mask = self._initial_imputation(\n- X, in_fit=True\n- )\n-\n- super()._fit_indicator(complete_mask)\n- X_indicator = super()._transform_indicator(complete_mask)\n-\n- if self.max_iter == 0 or np.all(mask_missing_values):\n- self.n_iter_ = 0\n- return super()._concatenate_indicator(Xt, X_indicator)\n-\n- # Edge case: a single feature, we return the initial imputation.\n- if Xt.shape[1] == 1:\n- self.n_iter_ = 0\n- return super()._concatenate_indicator(Xt, X_indicator)\n-\n- self._min_value = self._validate_limit(self.min_value, \"min\", X.shape[1])\n- self._max_value = self._validate_limit(self.max_value, \"max\", X.shape[1])\n-\n- if not np.all(np.greater(self._max_value, self._min_value)):\n- raise ValueError(\"One (or more) features have min_value >= max_value.\")\n-\n- # order in which to impute\n- # note this is probably too slow for large feature data (d > 100000)\n- # and a better way would be good.\n- # see: https://goo.gl/KyCNwj and subsequent comments\n- ordered_idx = self._get_ordered_idx(mask_missing_values)\n- self.n_features_with_missing_ = len(ordered_idx)\n-\n- abs_corr_mat = self._get_abs_corr_mat(Xt)\n-\n- n_samples, n_features = Xt.shape\n- if self.verbose > 0:\n- print(\"[IterativeImputer] Completing matrix with shape %s\" % (X.shape,))\n- start_t = time()\n- if not self.sample_posterior:\n- Xt_previous = Xt.copy()\n- normalized_tol = self.tol * np.max(np.abs(X[~mask_missing_values]))\n- for self.n_iter_ in range(1, self.max_iter + 1):\n- if self.imputation_order == \"random\":\n- ordered_idx = self._get_ordered_idx(mask_missing_values)\n-\n- for feat_idx in ordered_idx:\n- neighbor_feat_idx = self._get_neighbor_feat_idx(\n- n_features, feat_idx, abs_corr_mat\n- )\n- Xt, estimator = self._impute_one_feature(\n- Xt,\n- mask_missing_values,\n- feat_idx,\n- neighbor_feat_idx,\n- estimator=None,\n- fit_mode=True,\n- params=routed_params.estimator.fit,\n- )\n- estimator_triplet = _ImputerTriplet(\n- feat_idx, neighbor_feat_idx, estimator\n- )\n- self.imputation_sequence_.append(estimator_triplet)\n-\n- if self.verbose > 1:\n- print(\n- \"[IterativeImputer] Ending imputation round \"\n- \"%d/%d, elapsed time %0.2f\"\n- % (self.n_iter_, self.max_iter, time() - start_t)\n- )\n-\n- if not self.sample_posterior:\n- inf_norm = np.linalg.norm(Xt - Xt_previous, ord=np.inf, axis=None)\n- if self.verbose > 0:\n- print(\n- \"[IterativeImputer] Change: {}, scaled tolerance: {} \".format(\n- inf_norm, normalized_tol\n- )\n- )\n- if inf_norm < normalized_tol:\n- if self.verbose > 0:\n- print(\"[IterativeImputer] Early stopping criterion reached.\")\n- break\n- Xt_previous = Xt.copy()\n- else:\n- if not self.sample_posterior:\n- warnings.warn(\n- \"[IterativeImputer] Early stopping criterion not reached.\",\n- ConvergenceWarning,\n- )\n- _assign_where(Xt, X, cond=~mask_missing_values)\n-\n- return super()._concatenate_indicator(Xt, X_indicator)\n \n def transform(self, X):\n \"\"\"Impute all missing values in `X`.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/impute/_iterative.py.\nHere is the description for the function:\n def fit_transform(self, X, y=None, **params):\n \"\"\"Fit the imputer on `X` and return the transformed `X`.\n\n Parameters\n ----------\n X : array-like, shape (n_samples, n_features)\n Input data, where `n_samples` is the number of samples and\n `n_features` is the number of features.\n\n y : Ignored\n Not used, present for API consistency by convention.\n\n **params : dict\n Parameters routed to the `fit` method of the sub-estimator via the\n metadata routing API.\n\n .. versionadded:: 1.5\n Only available if\n `sklearn.set_config(enable_metadata_routing=True)` is set. See\n :ref:`Metadata Routing User Guide <metadata_routing>` for more\n details.\n\n Returns\n -------\n Xt : array-like, shape (n_samples, n_features)\n The imputed input data.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/impute/tests/test_impute.py::test_imputation_shape[csr_matrix-mean]", "sklearn/impute/tests/test_impute.py::test_imputation_shape[csr_matrix-median]", "sklearn/impute/tests/test_impute.py::test_imputation_shape[csr_matrix-most_frequent]", "sklearn/impute/tests/test_impute.py::test_imputation_shape[csr_matrix-constant]", "sklearn/impute/tests/test_impute.py::test_imputation_shape[csr_array-mean]", "sklearn/impute/tests/test_impute.py::test_imputation_shape[csr_array-median]", "sklearn/impute/tests/test_impute.py::test_imputation_shape[csr_array-most_frequent]", "sklearn/impute/tests/test_impute.py::test_imputation_shape[csr_array-constant]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_one_feature[X0]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_one_feature[X1]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_zero_iters", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_verbose", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_all_missing", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_imputation_order[random]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_imputation_order[roman]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_imputation_order[ascending]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_imputation_order[descending]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_imputation_order[arabic]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_estimators[None]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_estimators[estimator1]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_estimators[estimator2]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_estimators[estimator3]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_estimators[estimator4]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_clip", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_clip_truncnorm", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_truncated_normal_posterior", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_missing_at_transform[mean]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_missing_at_transform[median]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_missing_at_transform[most_frequent]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_transform_stochasticity", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_no_missing", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_rank_one", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_transform_recovery[3]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_transform_recovery[5]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_additive_matrix", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_early_stopping", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_catch_warning", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_min_max_array_like[scalars]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_min_max_array_like[None-default]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_min_max_array_like[inf]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_min_max_array_like[lists]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_min_max_array_like[lists-with-inf]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_catch_min_max_error[100-0-min_value >= max_value.]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_catch_min_max_error[inf--inf-min_value >= max_value.]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_catch_min_max_error[min_value2-max_value2-_value' should be of shape]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_min_max_array_like_imputation[None-vs-inf]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_min_max_array_like_imputation[Scalar-vs-vector]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_skip_non_missing[True]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_skip_non_missing[False]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_dont_set_random_state[None-None]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_dont_set_random_state[None-1]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_dont_set_random_state[None-rs_imputer2]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_dont_set_random_state[1-None]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_dont_set_random_state[1-1]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_dont_set_random_state[1-rs_imputer2]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_dont_set_random_state[rs_estimator2-None]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_dont_set_random_state[rs_estimator2-1]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_dont_set_random_state[rs_estimator2-rs_imputer2]", "sklearn/impute/tests/test_impute.py::test_inconsistent_dtype_X_missing_values[NaN-nan-Input X contains NaN-IterativeImputer]", "sklearn/impute/tests/test_impute.py::test_inconsistent_dtype_X_missing_values[-1--1-types are expected to be both numerical.-IterativeImputer]", "sklearn/impute/tests/test_impute.py::test_imputer_without_indicator[IterativeImputer]", "sklearn/impute/tests/test_impute.py::test_imputation_order[ascending-idx_order0]", "sklearn/impute/tests/test_impute.py::test_imputation_order[descending-idx_order1]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_keep_empty_features[mean]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_keep_empty_features[median]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_keep_empty_features[most_frequent]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_keep_empty_features[constant]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_constant_fill_value", "sklearn/tests/test_metaestimators_metadata_routing.py::test_error_on_missing_requests_for_sub_estimator[IterativeImputer]", "sklearn/impute/tests/test_common.py::test_imputation_missing_value_in_test_array[IterativeImputer]", "sklearn/impute/tests/test_common.py::test_imputers_add_indicator[IterativeImputer-nan]", "sklearn/impute/tests/test_common.py::test_imputers_add_indicator[IterativeImputer--1]", "sklearn/impute/tests/test_common.py::test_imputers_add_indicator[IterativeImputer-0]", "sklearn/impute/tests/test_common.py::test_imputers_pandas_na_integer_array_support[True-IterativeImputer]", "sklearn/impute/tests/test_common.py::test_imputers_pandas_na_integer_array_support[False-IterativeImputer]", "sklearn/impute/tests/test_common.py::test_imputers_feature_names_out_pandas[True-IterativeImputer]", "sklearn/impute/tests/test_common.py::test_imputers_feature_names_out_pandas[False-IterativeImputer]", "sklearn/impute/tests/test_common.py::test_keep_empty_features[IterativeImputer-True]", "sklearn/impute/tests/test_common.py::test_keep_empty_features[IterativeImputer-False]", "sklearn/impute/tests/test_common.py::test_imputation_adds_missing_indicator_if_add_indicator_is_true[nan-IterativeImputer]", "sklearn/impute/tests/test_common.py::test_imputation_adds_missing_indicator_if_add_indicator_is_true[1-IterativeImputer]", "sklearn/impute/_iterative.py::sklearn.impute._iterative.IterativeImputer", "sklearn/tests/test_metaestimators_metadata_routing.py::test_setting_request_on_sub_estimator_removes_error[IterativeImputer]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_estimators_empty_data_messages]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_non_consuming_estimator_works[IterativeImputer]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_transformer_n_iter]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[IterativeImputer()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[IterativeImputer()]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[IterativeImputer()]", "sklearn/tests/test_common.py::test_check_param_validation[IterativeImputer()]", "sklearn/tests/test_common.py::test_set_output_transform[IterativeImputer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-IterativeImputer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-IterativeImputer()]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-71
1.0
{ "code": "diff --git b/sklearn/impute/_iterative.py a/sklearn/impute/_iterative.py\nindex ed699373a..b1f722441 100644\n--- b/sklearn/impute/_iterative.py\n+++ a/sklearn/impute/_iterative.py\n@@ -855,6 +855,43 @@ class IterativeImputer(_BaseImputer):\n Xt : array-like, shape (n_samples, n_features)\n The imputed input data.\n \"\"\"\n+ check_is_fitted(self)\n+\n+ X, Xt, mask_missing_values, complete_mask = self._initial_imputation(\n+ X, in_fit=False\n+ )\n+\n+ X_indicator = super()._transform_indicator(complete_mask)\n+\n+ if self.n_iter_ == 0 or np.all(mask_missing_values):\n+ return super()._concatenate_indicator(Xt, X_indicator)\n+\n+ imputations_per_round = len(self.imputation_sequence_) // self.n_iter_\n+ i_rnd = 0\n+ if self.verbose > 0:\n+ print(\"[IterativeImputer] Completing matrix with shape %s\" % (X.shape,))\n+ start_t = time()\n+ for it, estimator_triplet in enumerate(self.imputation_sequence_):\n+ Xt, _ = self._impute_one_feature(\n+ Xt,\n+ mask_missing_values,\n+ estimator_triplet.feat_idx,\n+ estimator_triplet.neighbor_feat_idx,\n+ estimator=estimator_triplet.estimator,\n+ fit_mode=False,\n+ )\n+ if not (it + 1) % imputations_per_round:\n+ if self.verbose > 1:\n+ print(\n+ \"[IterativeImputer] Ending imputation round \"\n+ \"%d/%d, elapsed time %0.2f\"\n+ % (i_rnd + 1, self.n_iter_, time() - start_t)\n+ )\n+ i_rnd += 1\n+\n+ _assign_where(Xt, X, cond=~mask_missing_values)\n+\n+ return super()._concatenate_indicator(Xt, X_indicator)\n \n def fit(self, X, y=None, **fit_params):\n \"\"\"Fit the imputer on `X` and return self.\n", "test": null }
null
{ "code": "diff --git a/sklearn/impute/_iterative.py b/sklearn/impute/_iterative.py\nindex b1f722441..ed699373a 100644\n--- a/sklearn/impute/_iterative.py\n+++ b/sklearn/impute/_iterative.py\n@@ -855,43 +855,6 @@ class IterativeImputer(_BaseImputer):\n Xt : array-like, shape (n_samples, n_features)\n The imputed input data.\n \"\"\"\n- check_is_fitted(self)\n-\n- X, Xt, mask_missing_values, complete_mask = self._initial_imputation(\n- X, in_fit=False\n- )\n-\n- X_indicator = super()._transform_indicator(complete_mask)\n-\n- if self.n_iter_ == 0 or np.all(mask_missing_values):\n- return super()._concatenate_indicator(Xt, X_indicator)\n-\n- imputations_per_round = len(self.imputation_sequence_) // self.n_iter_\n- i_rnd = 0\n- if self.verbose > 0:\n- print(\"[IterativeImputer] Completing matrix with shape %s\" % (X.shape,))\n- start_t = time()\n- for it, estimator_triplet in enumerate(self.imputation_sequence_):\n- Xt, _ = self._impute_one_feature(\n- Xt,\n- mask_missing_values,\n- estimator_triplet.feat_idx,\n- estimator_triplet.neighbor_feat_idx,\n- estimator=estimator_triplet.estimator,\n- fit_mode=False,\n- )\n- if not (it + 1) % imputations_per_round:\n- if self.verbose > 1:\n- print(\n- \"[IterativeImputer] Ending imputation round \"\n- \"%d/%d, elapsed time %0.2f\"\n- % (i_rnd + 1, self.n_iter_, time() - start_t)\n- )\n- i_rnd += 1\n-\n- _assign_where(Xt, X, cond=~mask_missing_values)\n-\n- return super()._concatenate_indicator(Xt, X_indicator)\n \n def fit(self, X, y=None, **fit_params):\n \"\"\"Fit the imputer on `X` and return self.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/impute/_iterative.py.\nHere is the description for the function:\n def transform(self, X):\n \"\"\"Impute all missing values in `X`.\n\n Note that this is stochastic, and that if `random_state` is not fixed,\n repeated calls, or permuted input, results will differ.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n The input data to complete.\n\n Returns\n -------\n Xt : array-like, shape (n_samples, n_features)\n The imputed input data.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/impute/tests/test_impute.py::test_iterative_imputer_zero_iters", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_verbose", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_truncated_normal_posterior", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_missing_at_transform[mean]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_missing_at_transform[median]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_missing_at_transform[most_frequent]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_transform_stochasticity", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_no_missing", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_transform_recovery[3]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_transform_recovery[5]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_additive_matrix", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_min_max_array_like_imputation[None-vs-inf]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_min_max_array_like_imputation[Scalar-vs-vector]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_skip_non_missing[True]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_skip_non_missing[False]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_keep_empty_features[mean]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_keep_empty_features[median]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_keep_empty_features[most_frequent]", "sklearn/impute/tests/test_impute.py::test_iterative_imputer_keep_empty_features[constant]", "sklearn/impute/tests/test_common.py::test_imputation_missing_value_in_test_array[IterativeImputer]", "sklearn/impute/tests/test_common.py::test_keep_empty_features[IterativeImputer-True]", "sklearn/impute/tests/test_common.py::test_keep_empty_features[IterativeImputer-False]", "sklearn/impute/tests/test_common.py::test_imputation_adds_missing_indicator_if_add_indicator_is_true[nan-IterativeImputer]", "sklearn/impute/tests/test_common.py::test_imputation_adds_missing_indicator_if_add_indicator_is_true[1-IterativeImputer]", "sklearn/impute/_iterative.py::sklearn.impute._iterative.IterativeImputer", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_transformers_unfitted]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[IterativeImputer()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[IterativeImputer()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[IterativeImputer()]", "sklearn/tests/test_common.py::test_set_output_transform[IterativeImputer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-IterativeImputer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-IterativeImputer()]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-72
1.0
{ "code": "diff --git b/sklearn/preprocessing/_discretization.py a/sklearn/preprocessing/_discretization.py\nindex 9a8fc964b..6a6a739c4 100644\n--- b/sklearn/preprocessing/_discretization.py\n+++ a/sklearn/preprocessing/_discretization.py\n@@ -197,6 +197,7 @@ class KBinsDiscretizer(TransformerMixin, BaseEstimator):\n self.subsample = subsample\n self.random_state = random_state\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None, sample_weight=None):\n \"\"\"\n Fit the estimator.\n@@ -221,6 +222,108 @@ class KBinsDiscretizer(TransformerMixin, BaseEstimator):\n self : object\n Returns the instance itself.\n \"\"\"\n+ X = validate_data(self, X, dtype=\"numeric\")\n+\n+ if self.dtype in (np.float64, np.float32):\n+ output_dtype = self.dtype\n+ else: # self.dtype is None\n+ output_dtype = X.dtype\n+\n+ n_samples, n_features = X.shape\n+\n+ if sample_weight is not None and self.strategy == \"uniform\":\n+ raise ValueError(\n+ \"`sample_weight` was provided but it cannot be \"\n+ \"used with strategy='uniform'. Got strategy=\"\n+ f\"{self.strategy!r} instead.\"\n+ )\n+\n+ if self.subsample is not None and n_samples > self.subsample:\n+ # Take a subsample of `X`\n+ X = resample(\n+ X,\n+ replace=False,\n+ n_samples=self.subsample,\n+ random_state=self.random_state,\n+ )\n+\n+ n_features = X.shape[1]\n+ n_bins = self._validate_n_bins(n_features)\n+\n+ if sample_weight is not None:\n+ sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)\n+\n+ bin_edges = np.zeros(n_features, dtype=object)\n+ for jj in range(n_features):\n+ column = X[:, jj]\n+ col_min, col_max = column.min(), column.max()\n+\n+ if col_min == col_max:\n+ warnings.warn(\n+ \"Feature %d is constant and will be replaced with 0.\" % jj\n+ )\n+ n_bins[jj] = 1\n+ bin_edges[jj] = np.array([-np.inf, np.inf])\n+ continue\n+\n+ if self.strategy == \"uniform\":\n+ bin_edges[jj] = np.linspace(col_min, col_max, n_bins[jj] + 1)\n+\n+ elif self.strategy == \"quantile\":\n+ quantiles = np.linspace(0, 100, n_bins[jj] + 1)\n+ if sample_weight is None:\n+ bin_edges[jj] = np.asarray(np.percentile(column, quantiles))\n+ else:\n+ bin_edges[jj] = np.asarray(\n+ [\n+ _weighted_percentile(column, sample_weight, q)\n+ for q in quantiles\n+ ],\n+ dtype=np.float64,\n+ )\n+ elif self.strategy == \"kmeans\":\n+ from ..cluster import KMeans # fixes import loops\n+\n+ # Deterministic initialization with uniform spacing\n+ uniform_edges = np.linspace(col_min, col_max, n_bins[jj] + 1)\n+ init = (uniform_edges[1:] + uniform_edges[:-1])[:, None] * 0.5\n+\n+ # 1D k-means procedure\n+ km = KMeans(n_clusters=n_bins[jj], init=init, n_init=1)\n+ centers = km.fit(\n+ column[:, None], sample_weight=sample_weight\n+ ).cluster_centers_[:, 0]\n+ # Must sort, centers may be unsorted even with sorted init\n+ centers.sort()\n+ bin_edges[jj] = (centers[1:] + centers[:-1]) * 0.5\n+ bin_edges[jj] = np.r_[col_min, bin_edges[jj], col_max]\n+\n+ # Remove bins whose width are too small (i.e., <= 1e-8)\n+ if self.strategy in (\"quantile\", \"kmeans\"):\n+ mask = np.ediff1d(bin_edges[jj], to_begin=np.inf) > 1e-8\n+ bin_edges[jj] = bin_edges[jj][mask]\n+ if len(bin_edges[jj]) - 1 != n_bins[jj]:\n+ warnings.warn(\n+ \"Bins whose width are too small (i.e., <= \"\n+ \"1e-8) in feature %d are removed. Consider \"\n+ \"decreasing the number of bins.\" % jj\n+ )\n+ n_bins[jj] = len(bin_edges[jj]) - 1\n+\n+ self.bin_edges_ = bin_edges\n+ self.n_bins_ = n_bins\n+\n+ if \"onehot\" in self.encode:\n+ self._encoder = OneHotEncoder(\n+ categories=[np.arange(i) for i in self.n_bins_],\n+ sparse_output=self.encode == \"onehot\",\n+ dtype=output_dtype,\n+ )\n+ # Fit the OneHotEncoder with toy datasets\n+ # so that it's ready for use after the KBinsDiscretizer is fitted\n+ self._encoder.fit(np.zeros((1, len(self.n_bins_))))\n+\n+ return self\n \n def _validate_n_bins(self, n_features):\n \"\"\"Returns n_bins_, the number of bins per feature.\"\"\"\n", "test": null }
null
{ "code": "diff --git a/sklearn/preprocessing/_discretization.py b/sklearn/preprocessing/_discretization.py\nindex 6a6a739c4..9a8fc964b 100644\n--- a/sklearn/preprocessing/_discretization.py\n+++ b/sklearn/preprocessing/_discretization.py\n@@ -197,7 +197,6 @@ class KBinsDiscretizer(TransformerMixin, BaseEstimator):\n self.subsample = subsample\n self.random_state = random_state\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None, sample_weight=None):\n \"\"\"\n Fit the estimator.\n@@ -222,108 +221,6 @@ class KBinsDiscretizer(TransformerMixin, BaseEstimator):\n self : object\n Returns the instance itself.\n \"\"\"\n- X = validate_data(self, X, dtype=\"numeric\")\n-\n- if self.dtype in (np.float64, np.float32):\n- output_dtype = self.dtype\n- else: # self.dtype is None\n- output_dtype = X.dtype\n-\n- n_samples, n_features = X.shape\n-\n- if sample_weight is not None and self.strategy == \"uniform\":\n- raise ValueError(\n- \"`sample_weight` was provided but it cannot be \"\n- \"used with strategy='uniform'. Got strategy=\"\n- f\"{self.strategy!r} instead.\"\n- )\n-\n- if self.subsample is not None and n_samples > self.subsample:\n- # Take a subsample of `X`\n- X = resample(\n- X,\n- replace=False,\n- n_samples=self.subsample,\n- random_state=self.random_state,\n- )\n-\n- n_features = X.shape[1]\n- n_bins = self._validate_n_bins(n_features)\n-\n- if sample_weight is not None:\n- sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)\n-\n- bin_edges = np.zeros(n_features, dtype=object)\n- for jj in range(n_features):\n- column = X[:, jj]\n- col_min, col_max = column.min(), column.max()\n-\n- if col_min == col_max:\n- warnings.warn(\n- \"Feature %d is constant and will be replaced with 0.\" % jj\n- )\n- n_bins[jj] = 1\n- bin_edges[jj] = np.array([-np.inf, np.inf])\n- continue\n-\n- if self.strategy == \"uniform\":\n- bin_edges[jj] = np.linspace(col_min, col_max, n_bins[jj] + 1)\n-\n- elif self.strategy == \"quantile\":\n- quantiles = np.linspace(0, 100, n_bins[jj] + 1)\n- if sample_weight is None:\n- bin_edges[jj] = np.asarray(np.percentile(column, quantiles))\n- else:\n- bin_edges[jj] = np.asarray(\n- [\n- _weighted_percentile(column, sample_weight, q)\n- for q in quantiles\n- ],\n- dtype=np.float64,\n- )\n- elif self.strategy == \"kmeans\":\n- from ..cluster import KMeans # fixes import loops\n-\n- # Deterministic initialization with uniform spacing\n- uniform_edges = np.linspace(col_min, col_max, n_bins[jj] + 1)\n- init = (uniform_edges[1:] + uniform_edges[:-1])[:, None] * 0.5\n-\n- # 1D k-means procedure\n- km = KMeans(n_clusters=n_bins[jj], init=init, n_init=1)\n- centers = km.fit(\n- column[:, None], sample_weight=sample_weight\n- ).cluster_centers_[:, 0]\n- # Must sort, centers may be unsorted even with sorted init\n- centers.sort()\n- bin_edges[jj] = (centers[1:] + centers[:-1]) * 0.5\n- bin_edges[jj] = np.r_[col_min, bin_edges[jj], col_max]\n-\n- # Remove bins whose width are too small (i.e., <= 1e-8)\n- if self.strategy in (\"quantile\", \"kmeans\"):\n- mask = np.ediff1d(bin_edges[jj], to_begin=np.inf) > 1e-8\n- bin_edges[jj] = bin_edges[jj][mask]\n- if len(bin_edges[jj]) - 1 != n_bins[jj]:\n- warnings.warn(\n- \"Bins whose width are too small (i.e., <= \"\n- \"1e-8) in feature %d are removed. Consider \"\n- \"decreasing the number of bins.\" % jj\n- )\n- n_bins[jj] = len(bin_edges[jj]) - 1\n-\n- self.bin_edges_ = bin_edges\n- self.n_bins_ = n_bins\n-\n- if \"onehot\" in self.encode:\n- self._encoder = OneHotEncoder(\n- categories=[np.arange(i) for i in self.n_bins_],\n- sparse_output=self.encode == \"onehot\",\n- dtype=output_dtype,\n- )\n- # Fit the OneHotEncoder with toy datasets\n- # so that it's ready for use after the KBinsDiscretizer is fitted\n- self._encoder.fit(np.zeros((1, len(self.n_bins_))))\n-\n- return self\n \n def _validate_n_bins(self, n_features):\n \"\"\"Returns n_bins_, the number of bins per feature.\"\"\"\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/preprocessing/_discretization.py.\nHere is the description for the function:\n def fit(self, X, y=None, sample_weight=None):\n \"\"\"\n Fit the estimator.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n Data to be discretized.\n\n y : None\n Ignored. This parameter exists only for compatibility with\n :class:`~sklearn.pipeline.Pipeline`.\n\n sample_weight : ndarray of shape (n_samples,)\n Contains weight values to be associated with each sample.\n Cannot be used when `strategy` is set to `\"uniform\"`.\n\n .. versionadded:: 1.3\n\n Returns\n -------\n self : object\n Returns the instance itself.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_kbindiscretizer", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_missing_values_minmax_imputation", "sklearn/preprocessing/tests/test_discretization.py::test_fit_transform[uniform-expected0-None]", "sklearn/preprocessing/tests/test_discretization.py::test_fit_transform[kmeans-expected1-None]", "sklearn/preprocessing/tests/test_discretization.py::test_fit_transform[quantile-expected2-None]", "sklearn/preprocessing/tests/test_discretization.py::test_fit_transform[quantile-expected3-sample_weight3]", "sklearn/preprocessing/tests/test_discretization.py::test_fit_transform[quantile-expected4-sample_weight4]", "sklearn/preprocessing/tests/test_discretization.py::test_fit_transform[quantile-expected5-sample_weight5]", "sklearn/preprocessing/tests/test_discretization.py::test_fit_transform[kmeans-expected6-sample_weight6]", "sklearn/preprocessing/tests/test_discretization.py::test_fit_transform[kmeans-expected7-sample_weight7]", "sklearn/preprocessing/tests/test_discretization.py::test_valid_n_bins", "sklearn/preprocessing/tests/test_discretization.py::test_kbinsdiscretizer_wrong_strategy_with_weights[uniform]", "sklearn/preprocessing/tests/test_discretization.py::test_invalid_n_bins_array", "sklearn/preprocessing/tests/test_discretization.py::test_fit_transform_n_bins_array[uniform-expected0-None]", "sklearn/preprocessing/tests/test_discretization.py::test_fit_transform_n_bins_array[kmeans-expected1-None]", "sklearn/preprocessing/tests/test_discretization.py::test_fit_transform_n_bins_array[quantile-expected2-None]", "sklearn/preprocessing/tests/test_discretization.py::test_fit_transform_n_bins_array[quantile-expected3-sample_weight3]", "sklearn/preprocessing/tests/test_discretization.py::test_fit_transform_n_bins_array[quantile-expected4-sample_weight4]", "sklearn/preprocessing/tests/test_discretization.py::test_fit_transform_n_bins_array[kmeans-expected5-sample_weight5]", "sklearn/preprocessing/tests/test_discretization.py::test_kbinsdiscretizer_effect_sample_weight", "sklearn/preprocessing/tests/test_discretization.py::test_kbinsdiscretizer_no_mutating_sample_weight[kmeans]", "sklearn/preprocessing/tests/test_discretization.py::test_kbinsdiscretizer_no_mutating_sample_weight[quantile]", "sklearn/preprocessing/tests/test_discretization.py::test_same_min_max[uniform]", "sklearn/preprocessing/tests/test_discretization.py::test_same_min_max[kmeans]", "sklearn/preprocessing/tests/test_discretization.py::test_same_min_max[quantile]", "sklearn/preprocessing/tests/test_discretization.py::test_transform_1d_behavior", "sklearn/preprocessing/tests/test_discretization.py::test_numeric_stability[1]", "sklearn/preprocessing/tests/test_discretization.py::test_numeric_stability[2]", "sklearn/preprocessing/tests/test_discretization.py::test_numeric_stability[3]", "sklearn/preprocessing/tests/test_discretization.py::test_numeric_stability[4]", "sklearn/preprocessing/tests/test_discretization.py::test_numeric_stability[5]", "sklearn/preprocessing/tests/test_discretization.py::test_numeric_stability[6]", "sklearn/preprocessing/tests/test_discretization.py::test_numeric_stability[7]", "sklearn/preprocessing/tests/test_discretization.py::test_numeric_stability[8]", "sklearn/preprocessing/tests/test_discretization.py::test_encode_options", "sklearn/preprocessing/tests/test_discretization.py::test_nonuniform_strategies[uniform-expected_2bins0-expected_3bins0-expected_5bins0]", "sklearn/preprocessing/tests/test_discretization.py::test_nonuniform_strategies[kmeans-expected_2bins1-expected_3bins1-expected_5bins1]", "sklearn/preprocessing/tests/test_discretization.py::test_nonuniform_strategies[quantile-expected_2bins2-expected_3bins2-expected_5bins2]", "sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[ordinal-uniform-expected_inv0]", "sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[ordinal-kmeans-expected_inv1]", "sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[ordinal-quantile-expected_inv2]", "sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[onehot-uniform-expected_inv0]", "sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[onehot-kmeans-expected_inv1]", "sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[onehot-quantile-expected_inv2]", "sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[onehot-dense-uniform-expected_inv0]", "sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[onehot-dense-kmeans-expected_inv1]", "sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[onehot-dense-quantile-expected_inv2]", "sklearn/preprocessing/tests/test_discretization.py::test_transform_outside_fit_range[uniform]", "sklearn/preprocessing/tests/test_discretization.py::test_transform_outside_fit_range[kmeans]", "sklearn/preprocessing/tests/test_discretization.py::test_transform_outside_fit_range[quantile]", "sklearn/preprocessing/tests/test_discretization.py::test_overwrite", "sklearn/preprocessing/tests/test_discretization.py::test_redundant_bins[quantile-expected_bin_edges0]", "sklearn/preprocessing/tests/test_discretization.py::test_redundant_bins[kmeans-expected_bin_edges1]", "sklearn/preprocessing/tests/test_discretization.py::test_percentile_numeric_stability", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[ordinal-None-float16]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[ordinal-None-float32]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[ordinal-None-float64]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[ordinal-float32-float16]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[ordinal-float32-float32]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[ordinal-float32-float64]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[ordinal-float64-float16]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[ordinal-float64-float32]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[ordinal-float64-float64]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-None-float16]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-None-float32]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-None-float64]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-float32-float16]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-float32-float32]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-float32-float64]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-float64-float16]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-float64-float32]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-float64-float64]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-None-float16]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-None-float32]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-None-float64]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-float32-float16]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-float32-float32]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-float32-float64]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-float64-float16]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-float64-float32]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-float64-float64]", "sklearn/preprocessing/tests/test_discretization.py::test_32_equal_64[ordinal-float16]", "sklearn/preprocessing/tests/test_discretization.py::test_32_equal_64[ordinal-float32]", "sklearn/preprocessing/tests/test_discretization.py::test_32_equal_64[ordinal-float64]", "sklearn/preprocessing/tests/test_discretization.py::test_32_equal_64[onehot-float16]", "sklearn/preprocessing/tests/test_discretization.py::test_32_equal_64[onehot-float32]", "sklearn/preprocessing/tests/test_discretization.py::test_32_equal_64[onehot-float64]", "sklearn/preprocessing/tests/test_discretization.py::test_32_equal_64[onehot-dense-float16]", "sklearn/preprocessing/tests/test_discretization.py::test_32_equal_64[onehot-dense-float32]", "sklearn/preprocessing/tests/test_discretization.py::test_32_equal_64[onehot-dense-float64]", "sklearn/preprocessing/tests/test_discretization.py::test_kbinsdiscretizer_subsample_default", "sklearn/preprocessing/tests/test_discretization.py::test_kbinsdiscrtizer_get_feature_names_out[onehot-expected_names0]", "sklearn/preprocessing/tests/test_discretization.py::test_kbinsdiscrtizer_get_feature_names_out[onehot-dense-expected_names1]", "sklearn/preprocessing/tests/test_discretization.py::test_kbinsdiscrtizer_get_feature_names_out[ordinal-expected_names2]", "sklearn/preprocessing/tests/test_discretization.py::test_kbinsdiscretizer_subsample[42-uniform]", "sklearn/preprocessing/tests/test_discretization.py::test_kbinsdiscretizer_subsample[42-kmeans]", "sklearn/preprocessing/tests/test_discretization.py::test_kbinsdiscretizer_subsample[42-quantile]", "sklearn/preprocessing/tests/test_discretization.py::test_KBD_inverse_transform_Xt_deprecation", "sklearn/preprocessing/tests/test_target_encoder.py::test_invariance_of_encoding_under_label_permutation[42-0.0]", "sklearn/preprocessing/tests/test_target_encoder.py::test_invariance_of_encoding_under_label_permutation[42-1000.0]", "sklearn/preprocessing/tests/test_target_encoder.py::test_invariance_of_encoding_under_label_permutation[42-auto]", "sklearn/preprocessing/tests/test_target_encoder.py::test_target_encoding_for_linear_regression[42-0.0]", "sklearn/preprocessing/tests/test_target_encoder.py::test_target_encoding_for_linear_regression[42-auto]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_equivalence_array_dataframe[0.5-None]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_equivalence_array_dataframe[0.5-1]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_equivalence_array_dataframe[0.5-2]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_equivalence_array_dataframe[1.0-None]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_equivalence_array_dataframe[1.0-1]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_equivalence_array_dataframe[1.0-2]", "sklearn/preprocessing/_discretization.py::sklearn.preprocessing._discretization.KBinsDiscretizer", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[KBinsDiscretizer()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[KBinsDiscretizer()]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[KBinsDiscretizer()]", "sklearn/tests/test_common.py::test_check_param_validation[KBinsDiscretizer()]", "sklearn/tests/test_common.py::test_set_output_transform[KBinsDiscretizer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-KBinsDiscretizer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-KBinsDiscretizer()]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-73
1.0
{ "code": "diff --git b/sklearn/preprocessing/_discretization.py a/sklearn/preprocessing/_discretization.py\nindex 7694bad00..6a6a739c4 100644\n--- b/sklearn/preprocessing/_discretization.py\n+++ a/sklearn/preprocessing/_discretization.py\n@@ -412,6 +412,28 @@ class KBinsDiscretizer(TransformerMixin, BaseEstimator):\n Xinv : ndarray, dtype={np.float32, np.float64}\n Data in the original feature space.\n \"\"\"\n+ X = _deprecate_Xt_in_inverse_transform(X, Xt)\n+\n+ check_is_fitted(self)\n+\n+ if \"onehot\" in self.encode:\n+ X = self._encoder.inverse_transform(X)\n+\n+ Xinv = check_array(X, copy=True, dtype=(np.float64, np.float32))\n+ n_features = self.n_bins_.shape[0]\n+ if Xinv.shape[1] != n_features:\n+ raise ValueError(\n+ \"Incorrect number of features. Expecting {}, received {}.\".format(\n+ n_features, Xinv.shape[1]\n+ )\n+ )\n+\n+ for jj in range(n_features):\n+ bin_edges = self.bin_edges_[jj]\n+ bin_centers = (bin_edges[1:] + bin_edges[:-1]) * 0.5\n+ Xinv[:, jj] = bin_centers[(Xinv[:, jj]).astype(np.int64)]\n+\n+ return Xinv\n \n def get_feature_names_out(self, input_features=None):\n \"\"\"Get output feature names.\n", "test": null }
null
{ "code": "diff --git a/sklearn/preprocessing/_discretization.py b/sklearn/preprocessing/_discretization.py\nindex 6a6a739c4..7694bad00 100644\n--- a/sklearn/preprocessing/_discretization.py\n+++ b/sklearn/preprocessing/_discretization.py\n@@ -412,28 +412,6 @@ class KBinsDiscretizer(TransformerMixin, BaseEstimator):\n Xinv : ndarray, dtype={np.float32, np.float64}\n Data in the original feature space.\n \"\"\"\n- X = _deprecate_Xt_in_inverse_transform(X, Xt)\n-\n- check_is_fitted(self)\n-\n- if \"onehot\" in self.encode:\n- X = self._encoder.inverse_transform(X)\n-\n- Xinv = check_array(X, copy=True, dtype=(np.float64, np.float32))\n- n_features = self.n_bins_.shape[0]\n- if Xinv.shape[1] != n_features:\n- raise ValueError(\n- \"Incorrect number of features. Expecting {}, received {}.\".format(\n- n_features, Xinv.shape[1]\n- )\n- )\n-\n- for jj in range(n_features):\n- bin_edges = self.bin_edges_[jj]\n- bin_centers = (bin_edges[1:] + bin_edges[:-1]) * 0.5\n- Xinv[:, jj] = bin_centers[(Xinv[:, jj]).astype(np.int64)]\n-\n- return Xinv\n \n def get_feature_names_out(self, input_features=None):\n \"\"\"Get output feature names.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/preprocessing/_discretization.py.\nHere is the description for the function:\n def inverse_transform(self, X=None, *, Xt=None):\n \"\"\"\n Transform discretized data back to original feature space.\n\n Note that this function does not regenerate the original data\n due to discretization rounding.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n Transformed data in the binned space.\n\n Xt : array-like of shape (n_samples, n_features)\n Transformed data in the binned space.\n\n .. deprecated:: 1.5\n `Xt` was deprecated in 1.5 and will be removed in 1.7. Use `X` instead.\n\n Returns\n -------\n Xinv : ndarray, dtype={np.float32, np.float64}\n Data in the original feature space.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[ordinal-uniform-expected_inv0]", "sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[ordinal-kmeans-expected_inv1]", "sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[ordinal-quantile-expected_inv2]", "sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[onehot-uniform-expected_inv0]", "sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[onehot-kmeans-expected_inv1]", "sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[onehot-quantile-expected_inv2]", "sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[onehot-dense-uniform-expected_inv0]", "sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[onehot-dense-kmeans-expected_inv1]", "sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[onehot-dense-quantile-expected_inv2]", "sklearn/preprocessing/tests/test_discretization.py::test_overwrite", "sklearn/preprocessing/tests/test_discretization.py::test_KBD_inverse_transform_Xt_deprecation", "sklearn/preprocessing/_discretization.py::sklearn.preprocessing._discretization.KBinsDiscretizer" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-74
1.0
{ "code": "diff --git b/sklearn/preprocessing/_discretization.py a/sklearn/preprocessing/_discretization.py\nindex d280df781..6a6a739c4 100644\n--- b/sklearn/preprocessing/_discretization.py\n+++ a/sklearn/preprocessing/_discretization.py\n@@ -365,6 +365,29 @@ class KBinsDiscretizer(TransformerMixin, BaseEstimator):\n Data in the binned space. Will be a sparse matrix if\n `self.encode='onehot'` and ndarray otherwise.\n \"\"\"\n+ check_is_fitted(self)\n+\n+ # check input and attribute dtypes\n+ dtype = (np.float64, np.float32) if self.dtype is None else self.dtype\n+ Xt = validate_data(self, X, copy=True, dtype=dtype, reset=False)\n+\n+ bin_edges = self.bin_edges_\n+ for jj in range(Xt.shape[1]):\n+ Xt[:, jj] = np.searchsorted(bin_edges[jj][1:-1], Xt[:, jj], side=\"right\")\n+\n+ if self.encode == \"ordinal\":\n+ return Xt\n+\n+ dtype_init = None\n+ if \"onehot\" in self.encode:\n+ dtype_init = self._encoder.dtype\n+ self._encoder.dtype = Xt.dtype\n+ try:\n+ Xt_enc = self._encoder.transform(Xt)\n+ finally:\n+ # revert the initial dtype to avoid modifying self.\n+ self._encoder.dtype = dtype_init\n+ return Xt_enc\n \n def inverse_transform(self, X=None, *, Xt=None):\n \"\"\"\n", "test": null }
null
{ "code": "diff --git a/sklearn/preprocessing/_discretization.py b/sklearn/preprocessing/_discretization.py\nindex 6a6a739c4..d280df781 100644\n--- a/sklearn/preprocessing/_discretization.py\n+++ b/sklearn/preprocessing/_discretization.py\n@@ -365,29 +365,6 @@ class KBinsDiscretizer(TransformerMixin, BaseEstimator):\n Data in the binned space. Will be a sparse matrix if\n `self.encode='onehot'` and ndarray otherwise.\n \"\"\"\n- check_is_fitted(self)\n-\n- # check input and attribute dtypes\n- dtype = (np.float64, np.float32) if self.dtype is None else self.dtype\n- Xt = validate_data(self, X, copy=True, dtype=dtype, reset=False)\n-\n- bin_edges = self.bin_edges_\n- for jj in range(Xt.shape[1]):\n- Xt[:, jj] = np.searchsorted(bin_edges[jj][1:-1], Xt[:, jj], side=\"right\")\n-\n- if self.encode == \"ordinal\":\n- return Xt\n-\n- dtype_init = None\n- if \"onehot\" in self.encode:\n- dtype_init = self._encoder.dtype\n- self._encoder.dtype = Xt.dtype\n- try:\n- Xt_enc = self._encoder.transform(Xt)\n- finally:\n- # revert the initial dtype to avoid modifying self.\n- self._encoder.dtype = dtype_init\n- return Xt_enc\n \n def inverse_transform(self, X=None, *, Xt=None):\n \"\"\"\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/preprocessing/_discretization.py.\nHere is the description for the function:\n def transform(self, X):\n \"\"\"\n Discretize the data.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n Data to be discretized.\n\n Returns\n -------\n Xt : {ndarray, sparse matrix}, dtype={np.float32, np.float64}\n Data in the binned space. Will be a sparse matrix if\n `self.encode='onehot'` and ndarray otherwise.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_kbindiscretizer", "sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py::test_missing_values_minmax_imputation", "sklearn/preprocessing/tests/test_discretization.py::test_fit_transform[uniform-expected0-None]", "sklearn/preprocessing/tests/test_discretization.py::test_fit_transform[kmeans-expected1-None]", "sklearn/preprocessing/tests/test_discretization.py::test_fit_transform[quantile-expected2-None]", "sklearn/preprocessing/tests/test_discretization.py::test_fit_transform[quantile-expected3-sample_weight3]", "sklearn/preprocessing/tests/test_discretization.py::test_fit_transform[quantile-expected4-sample_weight4]", "sklearn/preprocessing/tests/test_discretization.py::test_fit_transform[quantile-expected5-sample_weight5]", "sklearn/preprocessing/tests/test_discretization.py::test_fit_transform[kmeans-expected6-sample_weight6]", "sklearn/preprocessing/tests/test_discretization.py::test_fit_transform[kmeans-expected7-sample_weight7]", "sklearn/preprocessing/tests/test_discretization.py::test_valid_n_bins", "sklearn/preprocessing/tests/test_discretization.py::test_fit_transform_n_bins_array[uniform-expected0-None]", "sklearn/preprocessing/tests/test_discretization.py::test_fit_transform_n_bins_array[kmeans-expected1-None]", "sklearn/preprocessing/tests/test_discretization.py::test_fit_transform_n_bins_array[quantile-expected2-None]", "sklearn/preprocessing/tests/test_discretization.py::test_fit_transform_n_bins_array[quantile-expected3-sample_weight3]", "sklearn/preprocessing/tests/test_discretization.py::test_fit_transform_n_bins_array[quantile-expected4-sample_weight4]", "sklearn/preprocessing/tests/test_discretization.py::test_fit_transform_n_bins_array[kmeans-expected5-sample_weight5]", "sklearn/preprocessing/tests/test_discretization.py::test_kbinsdiscretizer_effect_sample_weight", "sklearn/preprocessing/tests/test_discretization.py::test_same_min_max[uniform]", "sklearn/preprocessing/tests/test_discretization.py::test_same_min_max[kmeans]", "sklearn/preprocessing/tests/test_discretization.py::test_same_min_max[quantile]", "sklearn/preprocessing/tests/test_discretization.py::test_transform_1d_behavior", "sklearn/preprocessing/tests/test_discretization.py::test_numeric_stability[1]", "sklearn/preprocessing/tests/test_discretization.py::test_numeric_stability[2]", "sklearn/preprocessing/tests/test_discretization.py::test_numeric_stability[3]", "sklearn/preprocessing/tests/test_discretization.py::test_numeric_stability[4]", "sklearn/preprocessing/tests/test_discretization.py::test_numeric_stability[5]", "sklearn/preprocessing/tests/test_discretization.py::test_numeric_stability[6]", "sklearn/preprocessing/tests/test_discretization.py::test_numeric_stability[7]", "sklearn/preprocessing/tests/test_discretization.py::test_numeric_stability[8]", "sklearn/preprocessing/tests/test_discretization.py::test_encode_options", "sklearn/preprocessing/tests/test_discretization.py::test_nonuniform_strategies[uniform-expected_2bins0-expected_3bins0-expected_5bins0]", "sklearn/preprocessing/tests/test_discretization.py::test_nonuniform_strategies[kmeans-expected_2bins1-expected_3bins1-expected_5bins1]", "sklearn/preprocessing/tests/test_discretization.py::test_nonuniform_strategies[quantile-expected_2bins2-expected_3bins2-expected_5bins2]", "sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[ordinal-uniform-expected_inv0]", "sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[ordinal-kmeans-expected_inv1]", "sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[ordinal-quantile-expected_inv2]", "sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[onehot-uniform-expected_inv0]", "sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[onehot-kmeans-expected_inv1]", "sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[onehot-quantile-expected_inv2]", "sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[onehot-dense-uniform-expected_inv0]", "sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[onehot-dense-kmeans-expected_inv1]", "sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[onehot-dense-quantile-expected_inv2]", "sklearn/preprocessing/tests/test_discretization.py::test_transform_outside_fit_range[uniform]", "sklearn/preprocessing/tests/test_discretization.py::test_transform_outside_fit_range[kmeans]", "sklearn/preprocessing/tests/test_discretization.py::test_transform_outside_fit_range[quantile]", "sklearn/preprocessing/tests/test_discretization.py::test_overwrite", "sklearn/preprocessing/tests/test_discretization.py::test_percentile_numeric_stability", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[ordinal-None-float16]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[ordinal-None-float32]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[ordinal-None-float64]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[ordinal-float32-float16]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[ordinal-float32-float32]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[ordinal-float32-float64]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[ordinal-float64-float16]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[ordinal-float64-float32]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[ordinal-float64-float64]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-None-float16]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-None-float32]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-None-float64]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-float32-float16]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-float32-float32]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-float32-float64]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-float64-float16]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-float64-float32]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-float64-float64]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-None-float16]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-None-float32]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-None-float64]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-float32-float16]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-float32-float32]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-float32-float64]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-float64-float16]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-float64-float32]", "sklearn/preprocessing/tests/test_discretization.py::test_consistent_dtype[onehot-dense-float64-float64]", "sklearn/preprocessing/tests/test_discretization.py::test_32_equal_64[ordinal-float16]", "sklearn/preprocessing/tests/test_discretization.py::test_32_equal_64[ordinal-float32]", "sklearn/preprocessing/tests/test_discretization.py::test_32_equal_64[ordinal-float64]", "sklearn/preprocessing/tests/test_discretization.py::test_32_equal_64[onehot-float16]", "sklearn/preprocessing/tests/test_discretization.py::test_32_equal_64[onehot-float32]", "sklearn/preprocessing/tests/test_discretization.py::test_32_equal_64[onehot-float64]", "sklearn/preprocessing/tests/test_discretization.py::test_32_equal_64[onehot-dense-float16]", "sklearn/preprocessing/tests/test_discretization.py::test_32_equal_64[onehot-dense-float32]", "sklearn/preprocessing/tests/test_discretization.py::test_32_equal_64[onehot-dense-float64]", "sklearn/preprocessing/tests/test_discretization.py::test_kbinsdiscrtizer_get_feature_names_out[onehot-expected_names0]", "sklearn/preprocessing/tests/test_discretization.py::test_kbinsdiscrtizer_get_feature_names_out[onehot-dense-expected_names1]", "sklearn/preprocessing/tests/test_discretization.py::test_kbinsdiscrtizer_get_feature_names_out[ordinal-expected_names2]", "sklearn/preprocessing/tests/test_target_encoder.py::test_invariance_of_encoding_under_label_permutation[42-0.0]", "sklearn/preprocessing/tests/test_target_encoder.py::test_invariance_of_encoding_under_label_permutation[42-1000.0]", "sklearn/preprocessing/tests/test_target_encoder.py::test_invariance_of_encoding_under_label_permutation[42-auto]", "sklearn/preprocessing/tests/test_target_encoder.py::test_target_encoding_for_linear_regression[42-0.0]", "sklearn/preprocessing/tests/test_target_encoder.py::test_target_encoding_for_linear_regression[42-auto]", "sklearn/preprocessing/tests/test_discretization.py::test_KBD_inverse_transform_Xt_deprecation", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_equivalence_array_dataframe[0.5-None]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_equivalence_array_dataframe[0.5-1]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_equivalence_array_dataframe[0.5-2]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_equivalence_array_dataframe[1.0-None]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_equivalence_array_dataframe[1.0-1]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_equivalence_array_dataframe[1.0-2]", "sklearn/preprocessing/_discretization.py::sklearn.preprocessing._discretization.KBinsDiscretizer", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_transformers_unfitted]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[KBinsDiscretizer()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[KBinsDiscretizer()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[KBinsDiscretizer()]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[KBinsDiscretizer()]", "sklearn/tests/test_common.py::test_set_output_transform[KBinsDiscretizer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-KBinsDiscretizer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-KBinsDiscretizer()]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-75
1.0
{ "code": "diff --git b/sklearn/cluster/_kmeans.py a/sklearn/cluster/_kmeans.py\nindex ac2d2e7c7..ef7b910e1 100644\n--- b/sklearn/cluster/_kmeans.py\n+++ a/sklearn/cluster/_kmeans.py\n@@ -1427,6 +1427,7 @@ class KMeans(_BaseKMeans):\n f\" variable OMP_NUM_THREADS={n_active_threads}.\"\n )\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None, sample_weight=None):\n \"\"\"Compute k-means clustering.\n \n@@ -1454,6 +1455,107 @@ class KMeans(_BaseKMeans):\n self : object\n Fitted estimator.\n \"\"\"\n+ X = validate_data(\n+ self,\n+ X,\n+ accept_sparse=\"csr\",\n+ dtype=[np.float64, np.float32],\n+ order=\"C\",\n+ copy=self.copy_x,\n+ accept_large_sparse=False,\n+ )\n+\n+ self._check_params_vs_input(X)\n+\n+ random_state = check_random_state(self.random_state)\n+ sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)\n+ self._n_threads = _openmp_effective_n_threads()\n+\n+ # Validate init array\n+ init = self.init\n+ init_is_array_like = _is_arraylike_not_scalar(init)\n+ if init_is_array_like:\n+ init = check_array(init, dtype=X.dtype, copy=True, order=\"C\")\n+ self._validate_center_shape(X, init)\n+\n+ # subtract of mean of x for more accurate distance computations\n+ if not sp.issparse(X):\n+ X_mean = X.mean(axis=0)\n+ # The copy was already done above\n+ X -= X_mean\n+\n+ if init_is_array_like:\n+ init -= X_mean\n+\n+ # precompute squared norms of data points\n+ x_squared_norms = row_norms(X, squared=True)\n+\n+ if self._algorithm == \"elkan\":\n+ kmeans_single = _kmeans_single_elkan\n+ else:\n+ kmeans_single = _kmeans_single_lloyd\n+ self._check_mkl_vcomp(X, X.shape[0])\n+\n+ best_inertia, best_labels = None, None\n+\n+ for i in range(self._n_init):\n+ # Initialize centers\n+ centers_init = self._init_centroids(\n+ X,\n+ x_squared_norms=x_squared_norms,\n+ init=init,\n+ random_state=random_state,\n+ sample_weight=sample_weight,\n+ )\n+ if self.verbose:\n+ print(\"Initialization complete\")\n+\n+ # run a k-means once\n+ labels, inertia, centers, n_iter_ = kmeans_single(\n+ X,\n+ sample_weight,\n+ centers_init,\n+ max_iter=self.max_iter,\n+ verbose=self.verbose,\n+ tol=self._tol,\n+ n_threads=self._n_threads,\n+ )\n+\n+ # determine if these results are the best so far\n+ # we chose a new run if it has a better inertia and the clustering is\n+ # different from the best so far (it's possible that the inertia is\n+ # slightly better even if the clustering is the same with potentially\n+ # permuted labels, due to rounding errors)\n+ if best_inertia is None or (\n+ inertia < best_inertia\n+ and not _is_same_clustering(labels, best_labels, self.n_clusters)\n+ ):\n+ best_labels = labels\n+ best_centers = centers\n+ best_inertia = inertia\n+ best_n_iter = n_iter_\n+\n+ if not sp.issparse(X):\n+ if not self.copy_x:\n+ X += X_mean\n+ best_centers += X_mean\n+\n+ distinct_clusters = len(set(best_labels))\n+ if distinct_clusters < self.n_clusters:\n+ warnings.warn(\n+ \"Number of distinct clusters ({}) found smaller than \"\n+ \"n_clusters ({}). Possibly due to duplicate points \"\n+ \"in X.\".format(distinct_clusters, self.n_clusters),\n+ ConvergenceWarning,\n+ stacklevel=2,\n+ )\n+\n+ self.cluster_centers_ = best_centers\n+ self._n_features_out = self.cluster_centers_.shape[0]\n+ self.labels_ = best_labels\n+ self.inertia_ = best_inertia\n+ self.n_iter_ = best_n_iter\n+ return self\n \n \n def _mini_batch_step(\n", "test": null }
null
{ "code": "diff --git a/sklearn/cluster/_kmeans.py b/sklearn/cluster/_kmeans.py\nindex ef7b910e1..ac2d2e7c7 100644\n--- a/sklearn/cluster/_kmeans.py\n+++ b/sklearn/cluster/_kmeans.py\n@@ -1427,7 +1427,6 @@ class KMeans(_BaseKMeans):\n f\" variable OMP_NUM_THREADS={n_active_threads}.\"\n )\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None, sample_weight=None):\n \"\"\"Compute k-means clustering.\n \n@@ -1455,107 +1454,6 @@ class KMeans(_BaseKMeans):\n self : object\n Fitted estimator.\n \"\"\"\n- X = validate_data(\n- self,\n- X,\n- accept_sparse=\"csr\",\n- dtype=[np.float64, np.float32],\n- order=\"C\",\n- copy=self.copy_x,\n- accept_large_sparse=False,\n- )\n-\n- self._check_params_vs_input(X)\n-\n- random_state = check_random_state(self.random_state)\n- sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)\n- self._n_threads = _openmp_effective_n_threads()\n-\n- # Validate init array\n- init = self.init\n- init_is_array_like = _is_arraylike_not_scalar(init)\n- if init_is_array_like:\n- init = check_array(init, dtype=X.dtype, copy=True, order=\"C\")\n- self._validate_center_shape(X, init)\n-\n- # subtract of mean of x for more accurate distance computations\n- if not sp.issparse(X):\n- X_mean = X.mean(axis=0)\n- # The copy was already done above\n- X -= X_mean\n-\n- if init_is_array_like:\n- init -= X_mean\n-\n- # precompute squared norms of data points\n- x_squared_norms = row_norms(X, squared=True)\n-\n- if self._algorithm == \"elkan\":\n- kmeans_single = _kmeans_single_elkan\n- else:\n- kmeans_single = _kmeans_single_lloyd\n- self._check_mkl_vcomp(X, X.shape[0])\n-\n- best_inertia, best_labels = None, None\n-\n- for i in range(self._n_init):\n- # Initialize centers\n- centers_init = self._init_centroids(\n- X,\n- x_squared_norms=x_squared_norms,\n- init=init,\n- random_state=random_state,\n- sample_weight=sample_weight,\n- )\n- if self.verbose:\n- print(\"Initialization complete\")\n-\n- # run a k-means once\n- labels, inertia, centers, n_iter_ = kmeans_single(\n- X,\n- sample_weight,\n- centers_init,\n- max_iter=self.max_iter,\n- verbose=self.verbose,\n- tol=self._tol,\n- n_threads=self._n_threads,\n- )\n-\n- # determine if these results are the best so far\n- # we chose a new run if it has a better inertia and the clustering is\n- # different from the best so far (it's possible that the inertia is\n- # slightly better even if the clustering is the same with potentially\n- # permuted labels, due to rounding errors)\n- if best_inertia is None or (\n- inertia < best_inertia\n- and not _is_same_clustering(labels, best_labels, self.n_clusters)\n- ):\n- best_labels = labels\n- best_centers = centers\n- best_inertia = inertia\n- best_n_iter = n_iter_\n-\n- if not sp.issparse(X):\n- if not self.copy_x:\n- X += X_mean\n- best_centers += X_mean\n-\n- distinct_clusters = len(set(best_labels))\n- if distinct_clusters < self.n_clusters:\n- warnings.warn(\n- \"Number of distinct clusters ({}) found smaller than \"\n- \"n_clusters ({}). Possibly due to duplicate points \"\n- \"in X.\".format(distinct_clusters, self.n_clusters),\n- ConvergenceWarning,\n- stacklevel=2,\n- )\n-\n- self.cluster_centers_ = best_centers\n- self._n_features_out = self.cluster_centers_.shape[0]\n- self.labels_ = best_labels\n- self.inertia_ = best_inertia\n- self.n_iter_ = best_n_iter\n- return self\n \n \n def _mini_batch_step(\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/cluster/_kmeans.py.\nHere is the description for the function:\n def fit(self, X, y=None, sample_weight=None):\n \"\"\"Compute k-means clustering.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n Training instances to cluster. It must be noted that the data\n will be converted to C ordering, which will cause a memory\n copy if the given data is not C-contiguous.\n If a sparse matrix is passed, a copy will be made if it's not in\n CSR format.\n\n y : Ignored\n Not used, present here for API consistency by convention.\n\n sample_weight : array-like of shape (n_samples,), default=None\n The weights for each observation in X. If None, all observations\n are assigned equal weight. `sample_weight` is not used during\n initialization if `init` is a callable or a user provided array.\n\n .. versionadded:: 0.20\n\n Returns\n -------\n self : object\n Fitted estimator.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/cluster/tests/test_k_means.py::test_kmeans_results[float32-lloyd-dense]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_results[float32-lloyd-sparse_matrix]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_results[float32-lloyd-sparse_array]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_results[float32-elkan-dense]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_results[float32-elkan-sparse_matrix]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_results[float32-elkan-sparse_array]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_results[float64-lloyd-dense]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_results[float64-lloyd-sparse_matrix]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_results[float64-lloyd-sparse_array]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_results[float64-elkan-dense]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_results[float64-elkan-sparse_matrix]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_results[float64-elkan-sparse_array]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_relocated_clusters[lloyd-dense]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_relocated_clusters[lloyd-sparse_matrix]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_relocated_clusters[lloyd-sparse_array]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_relocated_clusters[elkan-dense]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_relocated_clusters[elkan-sparse_matrix]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_relocated_clusters[elkan-sparse_array]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[42-0.01-dense-normal]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[42-0.01-dense-blobs]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[42-0.01-sparse_matrix-normal]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[42-0.01-sparse_matrix-blobs]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[42-0.01-sparse_array-normal]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[42-0.01-sparse_array-blobs]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[42-1e-08-dense-normal]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[42-1e-08-dense-blobs]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[42-1e-08-sparse_matrix-normal]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[42-1e-08-sparse_matrix-blobs]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[42-1e-08-sparse_array-normal]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[42-1e-08-sparse_array-blobs]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[42-1e-100-dense-normal]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[42-1e-100-dense-blobs]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[42-1e-100-sparse_matrix-normal]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[42-1e-100-sparse_matrix-blobs]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[42-1e-100-sparse_array-normal]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[42-1e-100-sparse_array-blobs]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[42-0-dense-normal]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[42-0-dense-blobs]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[42-0-sparse_matrix-normal]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[42-0-sparse_matrix-blobs]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[42-0-sparse_array-normal]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_results[42-0-sparse_array-blobs]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_convergence[42-lloyd]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_convergence[42-elkan]", "sklearn/cluster/tests/test_k_means.py::test_all_init[KMeans-random-dense]", "sklearn/cluster/tests/test_k_means.py::test_all_init[KMeans-random-sparse_matrix]", "sklearn/metrics/tests/test_score_objects.py::test_supervised_cluster_scorers", "sklearn/cluster/tests/test_k_means.py::test_all_init[KMeans-random-sparse_array]", "sklearn/cluster/tests/test_k_means.py::test_all_init[KMeans-k-means++-dense]", "sklearn/cluster/tests/test_k_means.py::test_all_init[KMeans-k-means++-sparse_matrix]", "sklearn/cluster/tests/test_k_means.py::test_all_init[KMeans-k-means++-sparse_array]", "sklearn/cluster/tests/test_k_means.py::test_all_init[KMeans-ndarray-dense]", "sklearn/cluster/tests/test_k_means.py::test_all_init[KMeans-ndarray-sparse_matrix]", "sklearn/cluster/tests/test_k_means.py::test_all_init[KMeans-ndarray-sparse_array]", "sklearn/cluster/tests/test_k_means.py::test_all_init[KMeans-callable-dense]", "sklearn/cluster/tests/test_k_means.py::test_all_init[KMeans-callable-sparse_matrix]", "sklearn/cluster/tests/test_k_means.py::test_all_init[KMeans-callable-sparse_array]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_init_auto_with_initial_centroids[KMeans-k-means++-1]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_init_auto_with_initial_centroids[KMeans-random-default]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_init_auto_with_initial_centroids[KMeans-<lambda>-default]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_init_auto_with_initial_centroids[KMeans-array-like-1]", "sklearn/cluster/tests/test_k_means.py::test_fortran_aligned_data[42-KMeans]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_verbose[0.01-lloyd]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_verbose[0.01-elkan]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_verbose[0-lloyd]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_verbose[0-elkan]", "sklearn/cluster/tests/test_k_means.py::test_warning_n_init_precomputed_centers[KMeans]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_copyx", "sklearn/cluster/tests/test_k_means.py::test_score_max_iter[42-KMeans]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_predict[float64-42-2-KMeans-lloyd-dense]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_predict[float64-42-2-KMeans-lloyd-sparse_matrix]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_predict[float64-42-2-KMeans-lloyd-sparse_array]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_predict[float64-42-2-KMeans-elkan-dense]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_predict[float64-42-2-KMeans-elkan-sparse_matrix]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_predict[float64-42-2-KMeans-elkan-sparse_array]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_predict[float64-42-100-KMeans-lloyd-dense]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_predict[float64-42-100-KMeans-lloyd-sparse_matrix]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_predict[float64-42-100-KMeans-lloyd-sparse_array]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_predict[float64-42-100-KMeans-elkan-dense]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_predict[float64-42-100-KMeans-elkan-sparse_matrix]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_predict[float64-42-100-KMeans-elkan-sparse_array]", "sklearn/cluster/tests/test_k_means.py::test_dense_sparse[42-KMeans-X_csr0]", "sklearn/cluster/tests/test_k_means.py::test_dense_sparse[42-KMeans-X_csr1]", "sklearn/cluster/tests/test_k_means.py::test_predict_dense_sparse[KMeans-random-X_csr0]", "sklearn/cluster/tests/test_k_means.py::test_predict_dense_sparse[KMeans-random-X_csr1]", "sklearn/cluster/tests/test_k_means.py::test_predict_dense_sparse[KMeans-k-means++-X_csr0]", "sklearn/cluster/tests/test_k_means.py::test_predict_dense_sparse[KMeans-k-means++-X_csr1]", "sklearn/cluster/tests/test_k_means.py::test_predict_dense_sparse[KMeans-ndarray-X_csr0]", "sklearn/cluster/tests/test_k_means.py::test_predict_dense_sparse[KMeans-ndarray-X_csr1]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-KMeans-k-means++-int32-dense]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-KMeans-k-means++-int32-sparse_matrix]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-KMeans-k-means++-int32-sparse_array]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-KMeans-k-means++-int64-dense]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-KMeans-k-means++-int64-sparse_matrix]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-KMeans-k-means++-int64-sparse_array]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-KMeans-ndarray-int32-dense]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-KMeans-ndarray-int32-sparse_matrix]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-KMeans-ndarray-int32-sparse_array]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-KMeans-ndarray-int64-dense]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-KMeans-ndarray-int64-sparse_matrix]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-KMeans-ndarray-int64-sparse_array]", "sklearn/cluster/tests/test_k_means.py::test_transform[42-KMeans]", "sklearn/cluster/tests/test_k_means.py::test_fit_transform[42-KMeans]", "sklearn/cluster/tests/test_k_means.py::test_n_init[42]", "sklearn/cluster/tests/test_k_means.py::test_k_means_function[42]", "sklearn/cluster/tests/test_k_means.py::test_float_precision[42-KMeans-dense]", "sklearn/cluster/tests/test_k_means.py::test_float_precision[42-KMeans-sparse_matrix]", "sklearn/cluster/tests/test_k_means.py::test_float_precision[42-KMeans-sparse_array]", "sklearn/cluster/tests/test_k_means.py::test_centers_not_mutated[KMeans-int32]", "sklearn/cluster/tests/test_k_means.py::test_centers_not_mutated[KMeans-int64]", "sklearn/cluster/tests/test_k_means.py::test_centers_not_mutated[KMeans-float32]", "sklearn/cluster/tests/test_k_means.py::test_centers_not_mutated[KMeans-float64]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_init_fitted_centers[dense]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_init_fitted_centers[sparse_matrix]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_init_fitted_centers[sparse_array]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_warns_less_centers_than_unique_points[42]", "sklearn/cluster/tests/test_k_means.py::test_weighted_vs_repeated[42]", "sklearn/cluster/tests/test_k_means.py::test_unit_weights_vs_no_weights[42-KMeans-dense]", "sklearn/cluster/tests/test_k_means.py::test_unit_weights_vs_no_weights[42-KMeans-sparse_matrix]", "sklearn/cluster/tests/test_k_means.py::test_unit_weights_vs_no_weights[42-KMeans-sparse_array]", "sklearn/cluster/tests/test_k_means.py::test_scaled_weights[42-KMeans-dense]", "sklearn/cluster/tests/test_k_means.py::test_scaled_weights[42-KMeans-sparse_matrix]", "sklearn/cluster/tests/test_k_means.py::test_scaled_weights[42-KMeans-sparse_array]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_elkan_iter_attribute", "sklearn/cluster/tests/test_k_means.py::test_kmeans_empty_cluster_relocated[dense]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_empty_cluster_relocated[sparse_matrix]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_empty_cluster_relocated[sparse_array]", "sklearn/cluster/tests/test_k_means.py::test_result_equal_in_diff_n_threads[42-KMeans]", "sklearn/cluster/tests/test_k_means.py::test_warning_elkan_1_cluster", "sklearn/cluster/tests/test_k_means.py::test_k_means_1_iteration[42-lloyd-dense]", "sklearn/cluster/tests/test_k_means.py::test_k_means_1_iteration[42-lloyd-sparse_matrix]", "sklearn/cluster/tests/test_k_means.py::test_k_means_1_iteration[42-lloyd-sparse_array]", "sklearn/cluster/tests/test_k_means.py::test_k_means_1_iteration[42-elkan-dense]", "sklearn/cluster/tests/test_k_means.py::test_k_means_1_iteration[42-elkan-sparse_matrix]", "sklearn/cluster/tests/test_k_means.py::test_k_means_1_iteration[42-elkan-sparse_array]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_error[estimator0-params0-'estimator' must be a fitted regressor or classifier]", "sklearn/cluster/tests/test_k_means.py::test_n_init_auto[KMeans-10]", "sklearn/cluster/tests/test_k_means.py::test_sample_weight_unchanged[KMeans]", "sklearn/cluster/tests/test_k_means.py::test_wrong_params[param0-n_samples.* should be >= n_clusters-KMeans]", "sklearn/cluster/tests/test_k_means.py::test_wrong_params[param1-The shape of the initial centers .* does not match the number of clusters-KMeans]", "sklearn/cluster/tests/test_k_means.py::test_wrong_params[param2-The shape of the initial centers .* does not match the number of clusters-KMeans]", "sklearn/cluster/tests/test_k_means.py::test_wrong_params[param3-The shape of the initial centers .* does not match the number of features of the data-KMeans]", "sklearn/cluster/tests/test_k_means.py::test_wrong_params[param4-The shape of the initial centers .* does not match the number of features of the data-KMeans]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_with_array_like_or_np_scalar_init[kwargs0]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_with_array_like_or_np_scalar_init[kwargs1]", "sklearn/cluster/tests/test_k_means.py::test_feature_names_out[KMeans-fit]", "sklearn/cluster/tests/test_k_means.py::test_predict_does_not_change_cluster_centers[csr_matrix]", "sklearn/cluster/tests/test_k_means.py::test_predict_does_not_change_cluster_centers[csr_array]", "sklearn/cluster/tests/test_k_means.py::test_predict_does_not_change_cluster_centers[None]", "sklearn/cluster/tests/test_k_means.py::test_relocating_with_duplicates[lloyd-dense]", "sklearn/cluster/tests/test_k_means.py::test_relocating_with_duplicates[lloyd-sparse_matrix]", "sklearn/cluster/tests/test_k_means.py::test_relocating_with_duplicates[lloyd-sparse_array]", "sklearn/tests/test_common.py::test_estimators[BayesianGaussianMixture(max_iter=5,n_init=2)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[BayesianGaussianMixture(max_iter=5,n_init=2)-check_estimators_overwrite_params]", "sklearn/cluster/tests/test_k_means.py::test_relocating_with_duplicates[elkan-dense]", "sklearn/tests/test_common.py::test_estimators[BayesianGaussianMixture(max_iter=5,n_init=2)-check_estimators_dtypes]", "sklearn/cluster/tests/test_k_means.py::test_relocating_with_duplicates[elkan-sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[BayesianGaussianMixture(max_iter=5,n_init=2)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[BayesianGaussianMixture(max_iter=5,n_init=2)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[BayesianGaussianMixture(max_iter=5,n_init=2)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[BayesianGaussianMixture(max_iter=5,n_init=2)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[BayesianGaussianMixture(max_iter=5,n_init=2)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[BayesianGaussianMixture(max_iter=5,n_init=2)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[BayesianGaussianMixture(max_iter=5,n_init=2)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[BayesianGaussianMixture(max_iter=5,n_init=2)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[BayesianGaussianMixture(max_iter=5,n_init=2)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[BayesianGaussianMixture(max_iter=5,n_init=2)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[BayesianGaussianMixture(max_iter=5,n_init=2)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[BayesianGaussianMixture(max_iter=5,n_init=2)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[BayesianGaussianMixture(max_iter=5,n_init=2)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[BayesianGaussianMixture(max_iter=5,n_init=2)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[BayesianGaussianMixture(max_iter=5,n_init=2)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[BayesianGaussianMixture(max_iter=5,n_init=2)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[BayesianGaussianMixture(max_iter=5,n_init=2)-check_fit2d_predict1d]", "sklearn/tests/test_public_functions.py::test_class_wrapper_param_validation[sklearn.cluster.k_means-sklearn.cluster.KMeans]", "sklearn/cluster/tests/test_k_means.py::test_relocating_with_duplicates[elkan-sparse_array]", "sklearn/tests/test_pipeline.py::test_fit_predict_on_pipeline", "sklearn/preprocessing/tests/test_discretization.py::test_fit_transform[kmeans-expected1-None]", "sklearn/model_selection/tests/test_search.py::test_unsupervised_grid_search", "sklearn/preprocessing/tests/test_discretization.py::test_fit_transform[kmeans-expected6-sample_weight6]", "sklearn/preprocessing/tests/test_discretization.py::test_fit_transform[kmeans-expected7-sample_weight7]", "sklearn/preprocessing/tests/test_discretization.py::test_fit_transform_n_bins_array[kmeans-expected1-None]", "sklearn/preprocessing/tests/test_discretization.py::test_fit_transform_n_bins_array[kmeans-expected5-sample_weight5]", "sklearn/preprocessing/tests/test_discretization.py::test_kbinsdiscretizer_no_mutating_sample_weight[kmeans]", "sklearn/preprocessing/tests/test_discretization.py::test_same_min_max[kmeans]", "sklearn/preprocessing/tests/test_discretization.py::test_nonuniform_strategies[kmeans-expected_2bins1-expected_3bins1-expected_5bins1]", "sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[ordinal-kmeans-expected_inv1]", "sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[onehot-kmeans-expected_inv1]", "sklearn/preprocessing/tests/test_discretization.py::test_inverse_transform[onehot-dense-kmeans-expected_inv1]", "sklearn/preprocessing/tests/test_discretization.py::test_transform_outside_fit_range[kmeans]", "sklearn/preprocessing/tests/test_discretization.py::test_redundant_bins[kmeans-expected_bin_edges1]", "sklearn/preprocessing/tests/test_discretization.py::test_kbinsdiscretizer_subsample[42-kmeans]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict[coo_matrix]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict[coo_array]", "sklearn/mixture/tests/test_gaussian_mixture.py::test_check_weights", "sklearn/mixture/tests/test_gaussian_mixture.py::test_check_means", "sklearn/mixture/tests/test_gaussian_mixture.py::test_check_precisions", "sklearn/tests/test_common.py::test_estimators[GaussianMixture(max_iter=5,n_init=2)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[GaussianMixture(max_iter=5,n_init=2)-check_estimators_overwrite_params]", "sklearn/mixture/tests/test_gaussian_mixture.py::test_gaussian_mixture_fit_predict_n_init", "sklearn/mixture/tests/test_gaussian_mixture.py::test_gaussian_mixture_fit", "sklearn/mixture/tests/test_gaussian_mixture.py::test_gaussian_mixture_fit_best_params", "sklearn/tests/test_discriminant_analysis.py::test_lda_predict", "sklearn/tests/test_common.py::test_estimators[GaussianMixture(max_iter=5,n_init=2)-check_estimators_dtypes]", "sklearn/mixture/tests/test_gaussian_mixture.py::test_gaussian_mixture_fit_convergence_warning", "sklearn/tests/test_common.py::test_estimators[GaussianMixture(max_iter=5,n_init=2)-check_estimators_fit_returns_self]", "sklearn/mixture/tests/test_gaussian_mixture.py::test_multiple_init", "sklearn/mixture/tests/test_gaussian_mixture.py::test_gaussian_mixture_n_parameters", "sklearn/tests/test_common.py::test_estimators[GaussianMixture(max_iter=5,n_init=2)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/mixture/tests/test_gaussian_mixture.py::test_bic_1d_1component", "sklearn/mixture/tests/test_gaussian_mixture.py::test_gaussian_mixture_aic_bic", "sklearn/tests/test_common.py::test_estimators[GaussianMixture(max_iter=5,n_init=2)-check_dtype_object]", "sklearn/mixture/tests/test_gaussian_mixture.py::test_gaussian_mixture_verbose", "sklearn/mixture/tests/test_gaussian_mixture.py::test_warm_start[0]", "sklearn/cluster/tests/test_spectral.py::test_spectral_clustering[kmeans-arpack-csr_matrix]", "sklearn/mixture/tests/test_gaussian_mixture.py::test_warm_start[1]", "sklearn/cluster/tests/test_spectral.py::test_spectral_clustering[kmeans-arpack-csr_array]", "sklearn/mixture/tests/test_gaussian_mixture.py::test_warm_start[2]", "sklearn/tests/test_common.py::test_estimators[GaussianMixture(max_iter=5,n_init=2)-check_pipeline_consistency]", "sklearn/cluster/tests/test_spectral.py::test_spectral_clustering[kmeans-lobpcg-csr_matrix]", "sklearn/cluster/tests/test_spectral.py::test_spectral_clustering[kmeans-lobpcg-csr_array]", "sklearn/tests/test_common.py::test_estimators[GaussianMixture(max_iter=5,n_init=2)-check_estimators_nan_inf]", "sklearn/cluster/tests/test_spectral.py::test_spectral_clustering_sparse[kmeans-coo_matrix]", "sklearn/cluster/tests/test_spectral.py::test_spectral_clustering_sparse[kmeans-coo_array]", "sklearn/tests/test_common.py::test_estimators[GaussianMixture(max_iter=5,n_init=2)-check_estimators_pickle]", "sklearn/mixture/tests/test_gaussian_mixture.py::test_convergence_detected_with_warm_start", "sklearn/mixture/tests/test_gaussian_mixture.py::test_score", "sklearn/cluster/tests/test_spectral.py::test_precomputed_nearest_neighbors_filtering", "sklearn/mixture/tests/test_gaussian_mixture.py::test_score_samples", "sklearn/tests/test_common.py::test_estimators[GaussianMixture(max_iter=5,n_init=2)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/mixture/tests/test_gaussian_mixture.py::test_monotonic_likelihood", "sklearn/feature_selection/tests/test_sequential.py::test_unsupervised_model_fit[2]", "sklearn/mixture/tests/test_gaussian_mixture.py::test_regularisation", "sklearn/mixture/tests/test_gaussian_mixture.py::test_property", "sklearn/cluster/tests/test_spectral.py::test_affinities", "sklearn/feature_selection/tests/test_sequential.py::test_unsupervised_model_fit[3]", "sklearn/mixture/tests/test_gaussian_mixture.py::test_sample", "sklearn/tests/test_common.py::test_estimators[GaussianMixture(max_iter=5,n_init=2)-check_f_contiguous_array_estimator]", "sklearn/mixture/tests/test_gaussian_mixture.py::test_init", "sklearn/cluster/tests/test_spectral.py::test_spectral_clustering_with_arpack_amg_solvers", "sklearn/tests/test_common.py::test_estimators[GaussianMixture(max_iter=5,n_init=2)-check_methods_sample_order_invariance]", "sklearn/cluster/tests/test_spectral.py::test_n_components", "sklearn/cluster/tests/test_spectral.py::test_verbose[kmeans]", "sklearn/tests/test_common.py::test_estimators[GaussianMixture(max_iter=5,n_init=2)-check_methods_subset_invariance]", "sklearn/cluster/tests/test_spectral.py::test_verbose[discretize]", "sklearn/mixture/tests/test_gaussian_mixture.py::test_init_means_not_duplicated[42-kmeans]", "sklearn/cluster/tests/test_spectral.py::test_verbose[cluster_qr]", "sklearn/tests/test_common.py::test_estimators[GaussianMixture(max_iter=5,n_init=2)-check_fit2d_1feature]", "sklearn/mixture/tests/test_gaussian_mixture.py::test_means_for_all_inits[42-kmeans]", "sklearn/mixture/tests/test_gaussian_mixture.py::test_max_iter_zero", "sklearn/mixture/tests/test_gaussian_mixture.py::test_gaussian_mixture_precisions_init_diag", "sklearn/mixture/tests/test_gaussian_mixture.py::test_gaussian_mixture_single_component_stable", "sklearn/tests/test_common.py::test_estimators[GaussianMixture(max_iter=5,n_init=2)-check_dict_unchanged]", "sklearn/utils/tests/test_estimator_checks.py::test_check_estimator_clones", "sklearn/tests/test_common.py::test_estimators[GaussianMixture(max_iter=5,n_init=2)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[GaussianMixture(max_iter=5,n_init=2)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[GaussianMixture(max_iter=5,n_init=2)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[GaussianMixture(max_iter=5,n_init=2)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[GaussianMixture(max_iter=5,n_init=2)-check_fit2d_predict1d]", "sklearn/cluster/tests/test_bicluster.py::test_spectral_coclustering[42-csr_matrix]", "sklearn/cluster/tests/test_bicluster.py::test_spectral_coclustering[42-csr_array]", "sklearn/cluster/tests/test_bicluster.py::test_spectral_biclustering[42-csr_matrix]", "sklearn/manifold/tests/test_spectral_embedding.py::test_pipeline_spectral_clustering", "sklearn/cluster/tests/test_bicluster.py::test_spectral_biclustering[42-csr_array]", "sklearn/cluster/tests/test_bicluster.py::test_fit_best_piecewise[42]", "sklearn/cluster/tests/test_bicluster.py::test_project_and_cluster[42-csr_matrix]", "sklearn/cluster/tests/test_bicluster.py::test_project_and_cluster[42-csr_array]", "sklearn/cluster/tests/test_bicluster.py::test_perfect_checkerboard[42]", "sklearn/cluster/tests/test_bicluster.py::test_n_features_in_[est0]", "sklearn/mixture/tests/test_bayesian_mixture.py::test_bayesian_mixture_weights_prior_initialisation", "sklearn/cluster/tests/test_bicluster.py::test_n_features_in_[est1]", "sklearn/mixture/tests/test_bayesian_mixture.py::test_bayesian_mixture_mean_prior_initialisation", "sklearn/mixture/tests/test_bayesian_mixture.py::test_bayesian_mixture_precisions_prior_initialisation", "sklearn/mixture/tests/test_bayesian_mixture.py::test_bayesian_mixture_weights", "sklearn/mixture/tests/test_bayesian_mixture.py::test_monotonic_likelihood", "sklearn/mixture/tests/test_bayesian_mixture.py::test_compare_covar_type", "sklearn/mixture/tests/test_bayesian_mixture.py::test_check_covariance_precision", "sklearn/mixture/tests/test_bayesian_mixture.py::test_invariant_translation", "sklearn/mixture/tests/test_bayesian_mixture.py::test_bayesian_mixture_fit_predict[0-2-1e-07]", "sklearn/mixture/tests/test_bayesian_mixture.py::test_bayesian_mixture_fit_predict[1-2-0.1]", "sklearn/mixture/tests/test_bayesian_mixture.py::test_bayesian_mixture_fit_predict[3-300-1e-07]", "sklearn/mixture/tests/test_bayesian_mixture.py::test_bayesian_mixture_fit_predict[4-300-0.1]", "sklearn/mixture/tests/test_bayesian_mixture.py::test_bayesian_mixture_fit_predict_n_init", "sklearn/neighbors/tests/test_neighbors_pipeline.py::test_spectral_clustering", "sklearn/mixture/tests/test_bayesian_mixture.py::test_bayesian_mixture_predict_predict_proba", "sklearn/cluster/_kmeans.py::sklearn.cluster._kmeans.KMeans", "sklearn/cluster/_kmeans.py::sklearn.cluster._kmeans.k_means", "sklearn/metrics/cluster/_unsupervised.py::sklearn.metrics.cluster._unsupervised.calinski_harabasz_score", "sklearn/metrics/cluster/_unsupervised.py::sklearn.metrics.cluster._unsupervised.silhouette_samples", "sklearn/mixture/tests/test_mixture.py::test_gaussian_mixture_n_iter[estimator0]", "sklearn/metrics/cluster/_unsupervised.py::sklearn.metrics.cluster._unsupervised.silhouette_score", "sklearn/mixture/tests/test_mixture.py::test_gaussian_mixture_n_iter[estimator1]", "sklearn/cluster/_bicluster.py::sklearn.cluster._bicluster.SpectralBiclustering", "sklearn/cluster/_bicluster.py::sklearn.cluster._bicluster.SpectralCoclustering", "sklearn/mixture/_bayesian_mixture.py::sklearn.mixture._bayesian_mixture.BayesianGaussianMixture", "sklearn/mixture/_gaussian_mixture.py::sklearn.mixture._gaussian_mixture.GaussianMixture", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_transformer_n_iter]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_clustering]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_clustering(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=1,n_init=2)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[KMeans(max_iter=5,n_clusters=2,n_init=2)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[SpectralBiclustering(n_best=1,n_clusters=2,n_init=2)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[SpectralBiclustering(n_best=1,n_clusters=2,n_init=2)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[SpectralBiclustering(n_best=1,n_clusters=2,n_init=2)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[SpectralBiclustering(n_best=1,n_clusters=2,n_init=2)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SpectralBiclustering(n_best=1,n_clusters=2,n_init=2)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[SpectralBiclustering(n_best=1,n_clusters=2,n_init=2)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SpectralBiclustering(n_best=1,n_clusters=2,n_init=2)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[SpectralBiclustering(n_best=1,n_clusters=2,n_init=2)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[SpectralBiclustering(n_best=1,n_clusters=2,n_init=2)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SpectralBiclustering(n_best=1,n_clusters=2,n_init=2)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[SpectralBiclustering(n_best=1,n_clusters=2,n_init=2)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[SpectralBiclustering(n_best=1,n_clusters=1,n_components=1,n_init=2)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[SpectralBiclustering(n_best=1,n_clusters=2,n_init=2)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[SpectralBiclustering(n_best=1,n_clusters=2,n_init=2)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[SpectralBiclustering(n_best=1,n_clusters=2,n_init=2)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_clustering]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_clustering(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=1,n_components=1,n_init=2)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[SpectralClustering(n_clusters=2,n_init=2)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[SpectralCoclustering(n_clusters=2,n_init=2)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[SpectralCoclustering(n_clusters=2,n_init=2)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[SpectralCoclustering(n_clusters=2,n_init=2)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[SpectralCoclustering(n_clusters=2,n_init=2)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SpectralCoclustering(n_clusters=2,n_init=2)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[SpectralCoclustering(n_clusters=2,n_init=2)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[SpectralCoclustering(n_clusters=2,n_init=2)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[SpectralCoclustering(n_clusters=2,n_init=2)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[SpectralCoclustering(n_clusters=2,n_init=2)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SpectralCoclustering(n_clusters=2,n_init=2)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[SpectralCoclustering(n_clusters=2,n_init=2)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[SpectralCoclustering(n_clusters=2,n_init=2)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[SpectralCoclustering(n_clusters=2,n_init=2)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[SpectralCoclustering(n_clusters=2,n_init=2)-check_n_features_in]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[BayesianGaussianMixture(max_iter=5,n_init=2)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[GaussianMixture(max_iter=5,n_init=2)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[KMeans(max_iter=5,n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[SpectralBiclustering(n_best=1,n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[SpectralClustering(n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[SpectralCoclustering(n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[BayesianGaussianMixture(max_iter=5,n_init=2)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GaussianMixture(max_iter=5,n_init=2)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[KMeans(max_iter=5,n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[SpectralBiclustering(n_best=1,n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[SpectralClustering(n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[SpectralCoclustering(n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[KMeans(max_iter=5,n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_check_param_validation[KMeans(max_iter=5,n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_set_output_transform[KMeans(max_iter=5,n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-KMeans(max_iter=5,n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-KMeans(max_iter=5,n_clusters=2,n_init=2)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-76
1.0
{ "code": "diff --git b/sklearn/impute/_knn.py a/sklearn/impute/_knn.py\nindex a09b21b42..1b7ef06ed 100644\n--- b/sklearn/impute/_knn.py\n+++ a/sklearn/impute/_knn.py\n@@ -210,6 +210,7 @@ class KNNImputer(_BaseImputer):\n \n return np.ma.average(donors, axis=1, weights=weight_matrix).data\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None):\n \"\"\"Fit the imputer on X.\n \n@@ -227,6 +228,28 @@ class KNNImputer(_BaseImputer):\n self : object\n The fitted `KNNImputer` class instance.\n \"\"\"\n+ # Check data integrity and calling arguments\n+ if not is_scalar_nan(self.missing_values):\n+ ensure_all_finite = True\n+ else:\n+ ensure_all_finite = \"allow-nan\"\n+\n+ X = validate_data(\n+ self,\n+ X,\n+ accept_sparse=False,\n+ dtype=FLOAT_DTYPES,\n+ ensure_all_finite=ensure_all_finite,\n+ copy=self.copy,\n+ )\n+\n+ self._fit_X = X\n+ self._mask_fit_X = _get_mask(self._fit_X, self.missing_values)\n+ self._valid_mask = ~np.all(self._mask_fit_X, axis=0)\n+\n+ super()._fit_indicator(self._mask_fit_X)\n+\n+ return self\n \n def transform(self, X):\n \"\"\"Impute all missing values in X.\n", "test": null }
null
{ "code": "diff --git a/sklearn/impute/_knn.py b/sklearn/impute/_knn.py\nindex 1b7ef06ed..a09b21b42 100644\n--- a/sklearn/impute/_knn.py\n+++ b/sklearn/impute/_knn.py\n@@ -210,7 +210,6 @@ class KNNImputer(_BaseImputer):\n \n return np.ma.average(donors, axis=1, weights=weight_matrix).data\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None):\n \"\"\"Fit the imputer on X.\n \n@@ -228,28 +227,6 @@ class KNNImputer(_BaseImputer):\n self : object\n The fitted `KNNImputer` class instance.\n \"\"\"\n- # Check data integrity and calling arguments\n- if not is_scalar_nan(self.missing_values):\n- ensure_all_finite = True\n- else:\n- ensure_all_finite = \"allow-nan\"\n-\n- X = validate_data(\n- self,\n- X,\n- accept_sparse=False,\n- dtype=FLOAT_DTYPES,\n- ensure_all_finite=ensure_all_finite,\n- copy=self.copy,\n- )\n-\n- self._fit_X = X\n- self._mask_fit_X = _get_mask(self._fit_X, self.missing_values)\n- self._valid_mask = ~np.all(self._mask_fit_X, axis=0)\n-\n- super()._fit_indicator(self._mask_fit_X)\n-\n- return self\n \n def transform(self, X):\n \"\"\"Impute all missing values in X.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/impute/_knn.py.\nHere is the description for the function:\n def fit(self, X, y=None):\n \"\"\"Fit the imputer on X.\n\n Parameters\n ----------\n X : array-like shape of (n_samples, n_features)\n Input data, where `n_samples` is the number of samples and\n `n_features` is the number of features.\n\n y : Ignored\n Not used, present here for API consistency by convention.\n\n Returns\n -------\n self : object\n The fitted `KNNImputer` class instance.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/impute/tests/test_impute.py::test_knn_imputer_keep_empty_features[True]", "sklearn/impute/tests/test_impute.py::test_knn_imputer_keep_empty_features[False]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_shape[1-uniform]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_shape[1-distance]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_shape[2-uniform]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_shape[2-distance]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_shape[3-uniform]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_shape[3-distance]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_shape[4-uniform]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_shape[4-distance]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_shape[5-uniform]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_shape[5-distance]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_default_with_invalid_input[nan]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_default_with_invalid_input[-1]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_removes_all_na_features[nan]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_removes_all_na_features[-1]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_zero_nan_imputes_the_same[nan]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_zero_nan_imputes_the_same[-1]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_verify[nan]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_verify[-1]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_one_n_neighbors[nan]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_one_n_neighbors[-1]", "sklearn/impute/tests/test_common.py::test_imputation_missing_value_in_test_array[KNNImputer]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_all_samples_are_neighbors[nan]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_all_samples_are_neighbors[-1]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_weight_uniform[nan]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_weight_uniform[-1]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_weight_distance[nan]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_weight_distance[-1]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_callable_metric", "sklearn/impute/tests/test_knn.py::test_knn_imputer_with_simple_example[-1-None]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_with_simple_example[-1-0]", "sklearn/impute/tests/test_common.py::test_imputers_add_indicator[KNNImputer-nan]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_with_simple_example[nan-None]", "sklearn/impute/tests/test_common.py::test_imputers_add_indicator[KNNImputer--1]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_with_simple_example[nan-0]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_not_enough_valid_distances[uniform--1]", "sklearn/impute/tests/test_common.py::test_imputers_add_indicator[KNNImputer-0]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_not_enough_valid_distances[uniform-nan]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_not_enough_valid_distances[distance--1]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_not_enough_valid_distances[distance-nan]", "sklearn/impute/tests/test_common.py::test_imputers_pandas_na_integer_array_support[True-KNNImputer]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_nan_distance[uniform--1]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_nan_distance[uniform-nan]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_nan_distance[distance--1]", "sklearn/impute/tests/test_common.py::test_imputers_pandas_na_integer_array_support[False-KNNImputer]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_nan_distance[distance-nan]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_drops_all_nan_features[-1]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_drops_all_nan_features[nan]", "sklearn/impute/tests/test_common.py::test_imputers_feature_names_out_pandas[True-KNNImputer]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_distance_weighted_not_enough_neighbors[-1-None]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_distance_weighted_not_enough_neighbors[-1-0]", "sklearn/impute/tests/test_common.py::test_imputers_feature_names_out_pandas[False-KNNImputer]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_distance_weighted_not_enough_neighbors[nan-None]", "sklearn/impute/tests/test_common.py::test_keep_empty_features[KNNImputer-True]", "sklearn/impute/tests/test_common.py::test_keep_empty_features[KNNImputer-False]", "sklearn/impute/tests/test_common.py::test_imputation_adds_missing_indicator_if_add_indicator_is_true[nan-KNNImputer]", "sklearn/impute/tests/test_common.py::test_imputation_adds_missing_indicator_if_add_indicator_is_true[1-KNNImputer]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_distance_weighted_not_enough_neighbors[nan-0]", "sklearn/impute/_knn.py::sklearn.impute._knn.KNNImputer", "sklearn/tests/test_common.py::test_estimators[KNNImputer()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[KNNImputer()-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[KNNImputer()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[KNNImputer()-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[KNNImputer()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[KNNImputer()-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[KNNImputer()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[KNNImputer()-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[KNNImputer()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[KNNImputer()-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[KNNImputer()-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[KNNImputer()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[KNNImputer()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[KNNImputer()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[KNNImputer()-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[KNNImputer()-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[KNNImputer()-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[KNNImputer()-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[KNNImputer()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[KNNImputer()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[KNNImputer()-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[KNNImputer()-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[KNNImputer()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[KNNImputer()-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[KNNImputer()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[KNNImputer()-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[KNNImputer()-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[KNNImputer()-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[KNNImputer()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[KNNImputer()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[KNNImputer()]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[KNNImputer()]", "sklearn/tests/test_common.py::test_check_param_validation[KNNImputer()]", "sklearn/tests/test_common.py::test_set_output_transform[KNNImputer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-KNNImputer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-KNNImputer()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[KNNImputer()]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-77
1.0
{ "code": "diff --git b/sklearn/impute/_knn.py a/sklearn/impute/_knn.py\nindex ef720d12a..1b7ef06ed 100644\n--- b/sklearn/impute/_knn.py\n+++ a/sklearn/impute/_knn.py\n@@ -266,6 +266,125 @@ class KNNImputer(_BaseImputer):\n that is not always missing during `fit`.\n \"\"\"\n \n+ check_is_fitted(self)\n+ if not is_scalar_nan(self.missing_values):\n+ ensure_all_finite = True\n+ else:\n+ ensure_all_finite = \"allow-nan\"\n+ X = validate_data(\n+ self,\n+ X,\n+ accept_sparse=False,\n+ dtype=FLOAT_DTYPES,\n+ force_writeable=True,\n+ ensure_all_finite=ensure_all_finite,\n+ copy=self.copy,\n+ reset=False,\n+ )\n+\n+ mask = _get_mask(X, self.missing_values)\n+ mask_fit_X = self._mask_fit_X\n+ valid_mask = self._valid_mask\n+\n+ X_indicator = super()._transform_indicator(mask)\n+\n+ # Removes columns where the training data is all nan\n+ if not np.any(mask[:, valid_mask]):\n+ # No missing values in X\n+ if self.keep_empty_features:\n+ Xc = X\n+ Xc[:, ~valid_mask] = 0\n+ else:\n+ Xc = X[:, valid_mask]\n+\n+ # Even if there are no missing values in X, we still concatenate Xc\n+ # with the missing value indicator matrix, X_indicator.\n+ # This is to ensure that the output maintains consistency in terms\n+ # of columns, regardless of whether missing values exist in X or not.\n+ return super()._concatenate_indicator(Xc, X_indicator)\n+\n+ row_missing_idx = np.flatnonzero(mask[:, valid_mask].any(axis=1))\n+\n+ non_missing_fix_X = np.logical_not(mask_fit_X)\n+\n+ # Maps from indices from X to indices in dist matrix\n+ dist_idx_map = np.zeros(X.shape[0], dtype=int)\n+ dist_idx_map[row_missing_idx] = np.arange(row_missing_idx.shape[0])\n+\n+ def process_chunk(dist_chunk, start):\n+ row_missing_chunk = row_missing_idx[start : start + len(dist_chunk)]\n+\n+ # Find and impute missing by column\n+ for col in range(X.shape[1]):\n+ if not valid_mask[col]:\n+ # column was all missing during training\n+ continue\n+\n+ col_mask = mask[row_missing_chunk, col]\n+ if not np.any(col_mask):\n+ # column has no missing values\n+ continue\n+\n+ (potential_donors_idx,) = np.nonzero(non_missing_fix_X[:, col])\n+\n+ # receivers_idx are indices in X\n+ receivers_idx = row_missing_chunk[np.flatnonzero(col_mask)]\n+\n+ # distances for samples that needed imputation for column\n+ dist_subset = dist_chunk[dist_idx_map[receivers_idx] - start][\n+ :, potential_donors_idx\n+ ]\n+\n+ # receivers with all nan distances impute with mean\n+ all_nan_dist_mask = np.isnan(dist_subset).all(axis=1)\n+ all_nan_receivers_idx = receivers_idx[all_nan_dist_mask]\n+\n+ if all_nan_receivers_idx.size:\n+ col_mean = np.ma.array(\n+ self._fit_X[:, col], mask=mask_fit_X[:, col]\n+ ).mean()\n+ X[all_nan_receivers_idx, col] = col_mean\n+\n+ if len(all_nan_receivers_idx) == len(receivers_idx):\n+ # all receivers imputed with mean\n+ continue\n+\n+ # receivers with at least one defined distance\n+ receivers_idx = receivers_idx[~all_nan_dist_mask]\n+ dist_subset = dist_chunk[dist_idx_map[receivers_idx] - start][\n+ :, potential_donors_idx\n+ ]\n+\n+ n_neighbors = min(self.n_neighbors, len(potential_donors_idx))\n+ value = self._calc_impute(\n+ dist_subset,\n+ n_neighbors,\n+ self._fit_X[potential_donors_idx, col],\n+ mask_fit_X[potential_donors_idx, col],\n+ )\n+ X[receivers_idx, col] = value\n+\n+ # process in fixed-memory chunks\n+ gen = pairwise_distances_chunked(\n+ X[row_missing_idx, :],\n+ self._fit_X,\n+ metric=self.metric,\n+ missing_values=self.missing_values,\n+ ensure_all_finite=ensure_all_finite,\n+ reduce_func=process_chunk,\n+ )\n+ for chunk in gen:\n+ # process_chunk modifies X in place. No return value.\n+ pass\n+\n+ if self.keep_empty_features:\n+ Xc = X\n+ Xc[:, ~valid_mask] = 0\n+ else:\n+ Xc = X[:, valid_mask]\n+\n+ return super()._concatenate_indicator(Xc, X_indicator)\n+\n def get_feature_names_out(self, input_features=None):\n \"\"\"Get output feature names for transformation.\n \n", "test": null }
null
{ "code": "diff --git a/sklearn/impute/_knn.py b/sklearn/impute/_knn.py\nindex 1b7ef06ed..ef720d12a 100644\n--- a/sklearn/impute/_knn.py\n+++ b/sklearn/impute/_knn.py\n@@ -266,125 +266,6 @@ class KNNImputer(_BaseImputer):\n that is not always missing during `fit`.\n \"\"\"\n \n- check_is_fitted(self)\n- if not is_scalar_nan(self.missing_values):\n- ensure_all_finite = True\n- else:\n- ensure_all_finite = \"allow-nan\"\n- X = validate_data(\n- self,\n- X,\n- accept_sparse=False,\n- dtype=FLOAT_DTYPES,\n- force_writeable=True,\n- ensure_all_finite=ensure_all_finite,\n- copy=self.copy,\n- reset=False,\n- )\n-\n- mask = _get_mask(X, self.missing_values)\n- mask_fit_X = self._mask_fit_X\n- valid_mask = self._valid_mask\n-\n- X_indicator = super()._transform_indicator(mask)\n-\n- # Removes columns where the training data is all nan\n- if not np.any(mask[:, valid_mask]):\n- # No missing values in X\n- if self.keep_empty_features:\n- Xc = X\n- Xc[:, ~valid_mask] = 0\n- else:\n- Xc = X[:, valid_mask]\n-\n- # Even if there are no missing values in X, we still concatenate Xc\n- # with the missing value indicator matrix, X_indicator.\n- # This is to ensure that the output maintains consistency in terms\n- # of columns, regardless of whether missing values exist in X or not.\n- return super()._concatenate_indicator(Xc, X_indicator)\n-\n- row_missing_idx = np.flatnonzero(mask[:, valid_mask].any(axis=1))\n-\n- non_missing_fix_X = np.logical_not(mask_fit_X)\n-\n- # Maps from indices from X to indices in dist matrix\n- dist_idx_map = np.zeros(X.shape[0], dtype=int)\n- dist_idx_map[row_missing_idx] = np.arange(row_missing_idx.shape[0])\n-\n- def process_chunk(dist_chunk, start):\n- row_missing_chunk = row_missing_idx[start : start + len(dist_chunk)]\n-\n- # Find and impute missing by column\n- for col in range(X.shape[1]):\n- if not valid_mask[col]:\n- # column was all missing during training\n- continue\n-\n- col_mask = mask[row_missing_chunk, col]\n- if not np.any(col_mask):\n- # column has no missing values\n- continue\n-\n- (potential_donors_idx,) = np.nonzero(non_missing_fix_X[:, col])\n-\n- # receivers_idx are indices in X\n- receivers_idx = row_missing_chunk[np.flatnonzero(col_mask)]\n-\n- # distances for samples that needed imputation for column\n- dist_subset = dist_chunk[dist_idx_map[receivers_idx] - start][\n- :, potential_donors_idx\n- ]\n-\n- # receivers with all nan distances impute with mean\n- all_nan_dist_mask = np.isnan(dist_subset).all(axis=1)\n- all_nan_receivers_idx = receivers_idx[all_nan_dist_mask]\n-\n- if all_nan_receivers_idx.size:\n- col_mean = np.ma.array(\n- self._fit_X[:, col], mask=mask_fit_X[:, col]\n- ).mean()\n- X[all_nan_receivers_idx, col] = col_mean\n-\n- if len(all_nan_receivers_idx) == len(receivers_idx):\n- # all receivers imputed with mean\n- continue\n-\n- # receivers with at least one defined distance\n- receivers_idx = receivers_idx[~all_nan_dist_mask]\n- dist_subset = dist_chunk[dist_idx_map[receivers_idx] - start][\n- :, potential_donors_idx\n- ]\n-\n- n_neighbors = min(self.n_neighbors, len(potential_donors_idx))\n- value = self._calc_impute(\n- dist_subset,\n- n_neighbors,\n- self._fit_X[potential_donors_idx, col],\n- mask_fit_X[potential_donors_idx, col],\n- )\n- X[receivers_idx, col] = value\n-\n- # process in fixed-memory chunks\n- gen = pairwise_distances_chunked(\n- X[row_missing_idx, :],\n- self._fit_X,\n- metric=self.metric,\n- missing_values=self.missing_values,\n- ensure_all_finite=ensure_all_finite,\n- reduce_func=process_chunk,\n- )\n- for chunk in gen:\n- # process_chunk modifies X in place. No return value.\n- pass\n-\n- if self.keep_empty_features:\n- Xc = X\n- Xc[:, ~valid_mask] = 0\n- else:\n- Xc = X[:, valid_mask]\n-\n- return super()._concatenate_indicator(Xc, X_indicator)\n-\n def get_feature_names_out(self, input_features=None):\n \"\"\"Get output feature names for transformation.\n \n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/impute/_knn.py.\nHere is the description for the function:\n def transform(self, X):\n \"\"\"Impute all missing values in X.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n The input data to complete.\n\n Returns\n -------\n X : array-like of shape (n_samples, n_output_features)\n The imputed dataset. `n_output_features` is the number of features\n that is not always missing during `fit`.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/impute/tests/test_impute.py::test_knn_imputer_keep_empty_features[True]", "sklearn/impute/tests/test_impute.py::test_knn_imputer_keep_empty_features[False]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_shape[1-uniform]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_shape[1-distance]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_shape[2-uniform]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_shape[2-distance]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_shape[3-uniform]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_shape[3-distance]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_shape[4-uniform]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_shape[4-distance]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_shape[5-uniform]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_shape[5-distance]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_default_with_invalid_input[nan]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_default_with_invalid_input[-1]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_removes_all_na_features[nan]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_removes_all_na_features[-1]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_zero_nan_imputes_the_same[nan]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_zero_nan_imputes_the_same[-1]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_verify[nan]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_verify[-1]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_one_n_neighbors[nan]", "sklearn/impute/tests/test_common.py::test_imputation_missing_value_in_test_array[KNNImputer]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_one_n_neighbors[-1]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_all_samples_are_neighbors[nan]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_all_samples_are_neighbors[-1]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_weight_uniform[nan]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_weight_uniform[-1]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_weight_distance[nan]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_weight_distance[-1]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_callable_metric", "sklearn/impute/tests/test_knn.py::test_knn_imputer_with_simple_example[-1-None]", "sklearn/impute/tests/test_common.py::test_imputers_add_indicator[KNNImputer-nan]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_with_simple_example[-1-0]", "sklearn/impute/tests/test_common.py::test_imputers_add_indicator[KNNImputer--1]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_with_simple_example[nan-None]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_with_simple_example[nan-0]", "sklearn/impute/tests/test_common.py::test_imputers_add_indicator[KNNImputer-0]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_not_enough_valid_distances[uniform--1]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_not_enough_valid_distances[uniform-nan]", "sklearn/impute/tests/test_common.py::test_imputers_pandas_na_integer_array_support[True-KNNImputer]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_not_enough_valid_distances[distance--1]", "sklearn/impute/tests/test_common.py::test_imputers_pandas_na_integer_array_support[False-KNNImputer]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_not_enough_valid_distances[distance-nan]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_nan_distance[uniform--1]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_nan_distance[uniform-nan]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_nan_distance[distance--1]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_nan_distance[distance-nan]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_drops_all_nan_features[-1]", "sklearn/impute/tests/test_common.py::test_keep_empty_features[KNNImputer-True]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_drops_all_nan_features[nan]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_distance_weighted_not_enough_neighbors[-1-None]", "sklearn/impute/tests/test_common.py::test_keep_empty_features[KNNImputer-False]", "sklearn/impute/tests/test_common.py::test_imputation_adds_missing_indicator_if_add_indicator_is_true[nan-KNNImputer]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_distance_weighted_not_enough_neighbors[-1-0]", "sklearn/impute/tests/test_common.py::test_imputation_adds_missing_indicator_if_add_indicator_is_true[1-KNNImputer]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_distance_weighted_not_enough_neighbors[nan-None]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_distance_weighted_not_enough_neighbors[nan-0]", "sklearn/impute/_knn.py::sklearn.impute._knn.KNNImputer", "sklearn/tests/test_common.py::test_estimators[KNNImputer()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[KNNImputer()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[KNNImputer()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[KNNImputer()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[KNNImputer()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[KNNImputer()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[KNNImputer()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[KNNImputer()-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[KNNImputer()-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[KNNImputer()-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[KNNImputer()-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[KNNImputer()-check_transformers_unfitted]", "sklearn/tests/test_common.py::test_estimators[KNNImputer()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[KNNImputer()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[KNNImputer()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[KNNImputer()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[KNNImputer()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[KNNImputer()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[KNNImputer()]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[KNNImputer()]", "sklearn/tests/test_common.py::test_set_output_transform[KNNImputer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-KNNImputer()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-KNNImputer()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[KNNImputer()]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-78
1.0
{ "code": "diff --git b/sklearn/neighbors/_classification.py a/sklearn/neighbors/_classification.py\nindex 642f4ae05..43004a213 100644\n--- b/sklearn/neighbors/_classification.py\n+++ a/sklearn/neighbors/_classification.py\n@@ -252,6 +252,58 @@ class KNeighborsClassifier(KNeighborsMixin, ClassifierMixin, NeighborsBase):\n y : ndarray of shape (n_queries,) or (n_queries, n_outputs)\n Class labels for each data sample.\n \"\"\"\n+ check_is_fitted(self, \"_fit_method\")\n+ if self.weights == \"uniform\":\n+ if self._fit_method == \"brute\" and ArgKminClassMode.is_usable_for(\n+ X, self._fit_X, self.metric\n+ ):\n+ probabilities = self.predict_proba(X)\n+ if self.outputs_2d_:\n+ return np.stack(\n+ [\n+ self.classes_[idx][np.argmax(probas, axis=1)]\n+ for idx, probas in enumerate(probabilities)\n+ ],\n+ axis=1,\n+ )\n+ return self.classes_[np.argmax(probabilities, axis=1)]\n+ # In that case, we do not need the distances to perform\n+ # the weighting so we do not compute them.\n+ neigh_ind = self.kneighbors(X, return_distance=False)\n+ neigh_dist = None\n+ else:\n+ neigh_dist, neigh_ind = self.kneighbors(X)\n+\n+ classes_ = self.classes_\n+ _y = self._y\n+ if not self.outputs_2d_:\n+ _y = self._y.reshape((-1, 1))\n+ classes_ = [self.classes_]\n+\n+ n_outputs = len(classes_)\n+ n_queries = _num_samples(X)\n+ weights = _get_weights(neigh_dist, self.weights)\n+ if weights is not None and _all_with_any_reduction_axis_1(weights, value=0):\n+ raise ValueError(\n+ \"All neighbors of some sample is getting zero weights. \"\n+ \"Please modify 'weights' to avoid this case if you are \"\n+ \"using a user-defined function.\"\n+ )\n+\n+ y_pred = np.empty((n_queries, n_outputs), dtype=classes_[0].dtype)\n+ for k, classes_k in enumerate(classes_):\n+ if weights is None:\n+ mode, _ = _mode(_y[neigh_ind, k], axis=1)\n+ else:\n+ mode, _ = weighted_mode(_y[neigh_ind, k], weights, axis=1)\n+\n+ mode = np.asarray(mode.ravel(), dtype=np.intp)\n+ y_pred[:, k] = classes_k.take(mode)\n+\n+ if not self.outputs_2d_:\n+ y_pred = y_pred.ravel()\n+\n+ return y_pred\n \n def predict_proba(self, X):\n \"\"\"Return probability estimates for the test data X.\n", "test": null }
null
{ "code": "diff --git a/sklearn/neighbors/_classification.py b/sklearn/neighbors/_classification.py\nindex 43004a213..642f4ae05 100644\n--- a/sklearn/neighbors/_classification.py\n+++ b/sklearn/neighbors/_classification.py\n@@ -252,58 +252,6 @@ class KNeighborsClassifier(KNeighborsMixin, ClassifierMixin, NeighborsBase):\n y : ndarray of shape (n_queries,) or (n_queries, n_outputs)\n Class labels for each data sample.\n \"\"\"\n- check_is_fitted(self, \"_fit_method\")\n- if self.weights == \"uniform\":\n- if self._fit_method == \"brute\" and ArgKminClassMode.is_usable_for(\n- X, self._fit_X, self.metric\n- ):\n- probabilities = self.predict_proba(X)\n- if self.outputs_2d_:\n- return np.stack(\n- [\n- self.classes_[idx][np.argmax(probas, axis=1)]\n- for idx, probas in enumerate(probabilities)\n- ],\n- axis=1,\n- )\n- return self.classes_[np.argmax(probabilities, axis=1)]\n- # In that case, we do not need the distances to perform\n- # the weighting so we do not compute them.\n- neigh_ind = self.kneighbors(X, return_distance=False)\n- neigh_dist = None\n- else:\n- neigh_dist, neigh_ind = self.kneighbors(X)\n-\n- classes_ = self.classes_\n- _y = self._y\n- if not self.outputs_2d_:\n- _y = self._y.reshape((-1, 1))\n- classes_ = [self.classes_]\n-\n- n_outputs = len(classes_)\n- n_queries = _num_samples(X)\n- weights = _get_weights(neigh_dist, self.weights)\n- if weights is not None and _all_with_any_reduction_axis_1(weights, value=0):\n- raise ValueError(\n- \"All neighbors of some sample is getting zero weights. \"\n- \"Please modify 'weights' to avoid this case if you are \"\n- \"using a user-defined function.\"\n- )\n-\n- y_pred = np.empty((n_queries, n_outputs), dtype=classes_[0].dtype)\n- for k, classes_k in enumerate(classes_):\n- if weights is None:\n- mode, _ = _mode(_y[neigh_ind, k], axis=1)\n- else:\n- mode, _ = weighted_mode(_y[neigh_ind, k], weights, axis=1)\n-\n- mode = np.asarray(mode.ravel(), dtype=np.intp)\n- y_pred[:, k] = classes_k.take(mode)\n-\n- if not self.outputs_2d_:\n- y_pred = y_pred.ravel()\n-\n- return y_pred\n \n def predict_proba(self, X):\n \"\"\"Return probability estimates for the test data X.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/neighbors/_classification.py.\nHere is the description for the function:\n def predict(self, X):\n \"\"\"Predict the class labels for the provided data.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_queries, n_features), \\\n or (n_queries, n_indexed) if metric == 'precomputed'\n Test samples.\n\n Returns\n -------\n y : ndarray of shape (n_queries,) or (n_queries, n_outputs)\n Class labels for each data sample.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsClassifier-1-100-chebyshev-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsClassifier-1-100-chebyshev-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsClassifier-1-100-cityblock-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsClassifier-1-100-cityblock-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsClassifier-1-100-euclidean-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsClassifier-1-100-euclidean-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsClassifier-1-100-l1-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsClassifier-1-100-l1-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsClassifier-1-100-l2-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsClassifier-1-100-l2-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsClassifier-1-100-manhattan-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsClassifier-1-100-manhattan-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsClassifier-1-100-minkowski-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsClassifier-1-100-minkowski-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsClassifier-50-500-chebyshev-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsClassifier-50-500-chebyshev-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsClassifier-50-500-cityblock-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsClassifier-50-500-cityblock-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsClassifier-50-500-euclidean-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsClassifier-50-500-euclidean-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsClassifier-50-500-l1-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsClassifier-50-500-l1-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsClassifier-50-500-l2-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsClassifier-50-500-l2-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsClassifier-50-500-manhattan-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsClassifier-50-500-manhattan-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsClassifier-50-500-minkowski-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsClassifier-50-500-minkowski-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsClassifier-100-1000-chebyshev-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsClassifier-100-1000-chebyshev-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsClassifier-100-1000-cityblock-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsClassifier-100-1000-cityblock-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsClassifier-100-1000-euclidean-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsClassifier-100-1000-euclidean-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsClassifier-100-1000-l1-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsClassifier-100-1000-l1-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsClassifier-100-1000-l2-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsClassifier-100-1000-l2-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsClassifier-100-1000-manhattan-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsClassifier-100-1000-manhattan-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsClassifier-100-1000-minkowski-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsClassifier-100-1000-minkowski-1000-5-100]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_score_multilabel", "sklearn/model_selection/tests/test_search.py::test_search_cv_pairwise_property_equivalence_of_precomputed", "sklearn/neighbors/tests/test_neighbors.py::test_precomputed_dense", "sklearn/neighbors/tests/test_neighbors.py::test_precomputed_sparse_knn[csr]", "sklearn/neighbors/tests/test_neighbors.py::test_precomputed_sparse_knn[lil]", "sklearn/neighbors/tests/test_neighbors.py::test_kneighbors_classifier[float64-uniform-ball_tree]", "sklearn/neighbors/tests/test_neighbors.py::test_kneighbors_classifier[float64-uniform-brute]", "sklearn/neighbors/tests/test_neighbors.py::test_kneighbors_classifier[float64-uniform-kd_tree]", "sklearn/neighbors/tests/test_neighbors.py::test_kneighbors_classifier[float64-uniform-auto]", "sklearn/neighbors/tests/test_neighbors.py::test_kneighbors_classifier[float64-distance-ball_tree]", "sklearn/neighbors/tests/test_neighbors.py::test_kneighbors_classifier[float64-distance-brute]", "sklearn/neighbors/tests/test_neighbors.py::test_kneighbors_classifier[float64-distance-kd_tree]", "sklearn/neighbors/tests/test_neighbors.py::test_kneighbors_classifier[float64-distance-auto]", "sklearn/neighbors/tests/test_neighbors.py::test_kneighbors_classifier[float64-_weight_func-ball_tree]", "sklearn/neighbors/tests/test_neighbors.py::test_kneighbors_classifier[float64-_weight_func-brute]", "sklearn/neighbors/tests/test_neighbors.py::test_kneighbors_classifier[float64-_weight_func-kd_tree]", "sklearn/neighbors/tests/test_neighbors.py::test_kneighbors_classifier[float64-_weight_func-auto]", "sklearn/neighbors/tests/test_neighbors.py::test_kneighbors_classifier_float_labels[float64]", "sklearn/neighbors/tests/test_neighbors.py::test_kneighbors_classifier_sparse", "sklearn/neighbors/tests/test_neighbors.py::test_KNeighborsClassifier_multioutput", "sklearn/neighbors/tests/test_neighbors.py::test_neighbors_iris", "sklearn/neighbors/tests/test_neighbors.py::test_neighbors_digits", "sklearn/neighbors/tests/test_neighbors.py::test_neighbors_validate_parameters[csr_matrix-KNeighborsClassifier]", "sklearn/neighbors/tests/test_neighbors.py::test_neighbors_validate_parameters[csr_array-KNeighborsClassifier]", "sklearn/neighbors/tests/test_neighbors.py::test_predict_sparse_ball_kd_tree[csr_matrix]", "sklearn/neighbors/tests/test_neighbors.py::test_predict_sparse_ball_kd_tree[csr_array]", "sklearn/neighbors/tests/test_neighbors.py::test_same_knn_parallel[ball_tree]", "sklearn/neighbors/tests/test_neighbors.py::test_same_knn_parallel[brute]", "sklearn/neighbors/tests/test_neighbors.py::test_same_knn_parallel[kd_tree]", "sklearn/neighbors/tests/test_neighbors.py::test_same_knn_parallel[auto]", "sklearn/neighbors/tests/test_neighbors.py::test_knn_forcing_backend[ball_tree-threading]", "sklearn/neighbors/tests/test_neighbors.py::test_knn_forcing_backend[ball_tree-loky]", "sklearn/neighbors/tests/test_neighbors.py::test_knn_forcing_backend[brute-threading]", "sklearn/neighbors/tests/test_neighbors.py::test_knn_forcing_backend[brute-loky]", "sklearn/neighbors/tests/test_neighbors.py::test_knn_forcing_backend[kd_tree-threading]", "sklearn/neighbors/tests/test_neighbors.py::test_knn_forcing_backend[kd_tree-loky]", "sklearn/neighbors/tests/test_neighbors.py::test_knn_forcing_backend[auto-threading]", "sklearn/neighbors/tests/test_neighbors.py::test_knn_forcing_backend[auto-loky]", "sklearn/neighbors/tests/test_neighbors.py::test_dtype_convert", "sklearn/manifold/tests/test_isomap.py::test_pipeline[float64-2-None]", "sklearn/manifold/tests/test_isomap.py::test_pipeline[float64-None-10.0]", "sklearn/neighbors/tests/test_neighbors.py::test_predict_dataframe", "sklearn/tests/test_multiclass.py::test_ovo_consistent_binary_classification", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_predict_proba[MLPClassifier]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_predict_proba[RandomForestClassifier]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_decision_function", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_auto_predict[False-auto]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_auto_predict[False-predict]", "sklearn/neighbors/tests/test_neighbors.py::test_KNeighborsClassifier_raise_on_all_zero_weights", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_auto_predict[True-auto]", "sklearn/semi_supervised/tests/test_self_training.py::test_classification[threshold-estimator0]", "sklearn/semi_supervised/tests/test_self_training.py::test_classification[k_best-estimator0]", "sklearn/semi_supervised/tests/test_self_training.py::test_zero_iterations[y0-estimator0]", "sklearn/semi_supervised/tests/test_self_training.py::test_zero_iterations[y1-estimator0]", "sklearn/semi_supervised/tests/test_self_training.py::test_no_unlabeled", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_auto_predict[True-predict]", "sklearn/manifold/tests/test_locally_linear.py::test_pipeline", "sklearn/neighbors/_classification.py::sklearn.neighbors._classification.KNeighborsClassifier", "sklearn/neighbors/_nca.py::sklearn.neighbors._nca.NeighborhoodComponentsAnalysis", "sklearn/feature_selection/_sequential.py::sklearn.feature_selection._sequential.SequentialFeatureSelector", "sklearn/tests/test_common.py::test_estimators[KNeighborsClassifier()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[KNeighborsClassifier()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[KNeighborsClassifier()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[KNeighborsClassifier()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[KNeighborsClassifier()-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[KNeighborsClassifier()-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[KNeighborsClassifier()-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[KNeighborsClassifier()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[KNeighborsClassifier()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[KNeighborsClassifier()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[KNeighborsClassifier()-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[KNeighborsClassifier()-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[KNeighborsClassifier()-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[KNeighborsClassifier()-check_classifier_multioutput]", "sklearn/tests/test_common.py::test_estimators[KNeighborsClassifier()-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[KNeighborsClassifier()-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[KNeighborsClassifier()-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[KNeighborsClassifier()-check_classifiers_multilabel_representation_invariance]", "sklearn/tests/test_common.py::test_estimators[KNeighborsClassifier()-check_classifiers_multilabel_output_format_predict]", "sklearn/tests/test_common.py::test_estimators[KNeighborsClassifier()-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[KNeighborsClassifier()-check_estimators_unfitted]", "sklearn/tests/test_common.py::test_estimators[KNeighborsClassifier()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[KNeighborsClassifier()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[KNeighborsClassifier()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[KNeighborsClassifier()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[KNeighborsClassifier()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[KNeighborsClassifier()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[KNeighborsClassifier()]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-79
1.0
{ "code": "diff --git b/sklearn/neighbors/_regression.py a/sklearn/neighbors/_regression.py\nindex e8b255b5f..545e6b875 100644\n--- b/sklearn/neighbors/_regression.py\n+++ a/sklearn/neighbors/_regression.py\n@@ -235,6 +235,34 @@ class KNeighborsRegressor(KNeighborsMixin, RegressorMixin, NeighborsBase):\n y : ndarray of shape (n_queries,) or (n_queries, n_outputs), dtype=int\n Target values.\n \"\"\"\n+ if self.weights == \"uniform\":\n+ # In that case, we do not need the distances to perform\n+ # the weighting so we do not compute them.\n+ neigh_ind = self.kneighbors(X, return_distance=False)\n+ neigh_dist = None\n+ else:\n+ neigh_dist, neigh_ind = self.kneighbors(X)\n+\n+ weights = _get_weights(neigh_dist, self.weights)\n+\n+ _y = self._y\n+ if _y.ndim == 1:\n+ _y = _y.reshape((-1, 1))\n+\n+ if weights is None:\n+ y_pred = np.mean(_y[neigh_ind], axis=1)\n+ else:\n+ y_pred = np.empty((neigh_dist.shape[0], _y.shape[1]), dtype=np.float64)\n+ denom = np.sum(weights, axis=1)\n+\n+ for j in range(_y.shape[1]):\n+ num = np.sum(_y[neigh_ind, j] * weights, axis=1)\n+ y_pred[:, j] = num / denom\n+\n+ if self._y.ndim == 1:\n+ y_pred = y_pred.ravel()\n+\n+ return y_pred\n \n \n class RadiusNeighborsRegressor(RadiusNeighborsMixin, RegressorMixin, NeighborsBase):\n", "test": null }
null
{ "code": "diff --git a/sklearn/neighbors/_regression.py b/sklearn/neighbors/_regression.py\nindex 545e6b875..e8b255b5f 100644\n--- a/sklearn/neighbors/_regression.py\n+++ b/sklearn/neighbors/_regression.py\n@@ -235,34 +235,6 @@ class KNeighborsRegressor(KNeighborsMixin, RegressorMixin, NeighborsBase):\n y : ndarray of shape (n_queries,) or (n_queries, n_outputs), dtype=int\n Target values.\n \"\"\"\n- if self.weights == \"uniform\":\n- # In that case, we do not need the distances to perform\n- # the weighting so we do not compute them.\n- neigh_ind = self.kneighbors(X, return_distance=False)\n- neigh_dist = None\n- else:\n- neigh_dist, neigh_ind = self.kneighbors(X)\n-\n- weights = _get_weights(neigh_dist, self.weights)\n-\n- _y = self._y\n- if _y.ndim == 1:\n- _y = _y.reshape((-1, 1))\n-\n- if weights is None:\n- y_pred = np.mean(_y[neigh_ind], axis=1)\n- else:\n- y_pred = np.empty((neigh_dist.shape[0], _y.shape[1]), dtype=np.float64)\n- denom = np.sum(weights, axis=1)\n-\n- for j in range(_y.shape[1]):\n- num = np.sum(_y[neigh_ind, j] * weights, axis=1)\n- y_pred[:, j] = num / denom\n-\n- if self._y.ndim == 1:\n- y_pred = y_pred.ravel()\n-\n- return y_pred\n \n \n class RadiusNeighborsRegressor(RadiusNeighborsMixin, RegressorMixin, NeighborsBase):\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/neighbors/_regression.py.\nHere is the description for the function:\n def predict(self, X):\n \"\"\"Predict the target for the provided data.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_queries, n_features), \\\n or (n_queries, n_indexed) if metric == 'precomputed'\n Test samples.\n\n Returns\n -------\n y : ndarray of shape (n_queries,) or (n_queries, n_outputs), dtype=int\n Target values.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsRegressor-1-100-chebyshev-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsRegressor-1-100-chebyshev-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsRegressor-1-100-cityblock-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsRegressor-1-100-cityblock-1000-5-100]", "sklearn/ensemble/tests/test_bagging.py::test_regression", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsRegressor-1-100-euclidean-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsRegressor-1-100-euclidean-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsRegressor-1-100-l1-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsRegressor-1-100-l1-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsRegressor-1-100-l2-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsRegressor-1-100-l2-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsRegressor-1-100-manhattan-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsRegressor-1-100-manhattan-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsRegressor-1-100-minkowski-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsRegressor-1-100-minkowski-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsRegressor-1-100-DM_euclidean-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsRegressor-1-100-DM_euclidean-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsRegressor-50-500-chebyshev-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsRegressor-50-500-chebyshev-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsRegressor-50-500-cityblock-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsRegressor-50-500-cityblock-1000-5-100]", "sklearn/ensemble/tests/test_bagging.py::test_single_estimator", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsRegressor-50-500-euclidean-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsRegressor-50-500-euclidean-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsRegressor-50-500-l1-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsRegressor-50-500-l1-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsRegressor-50-500-l2-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsRegressor-50-500-l2-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsRegressor-50-500-manhattan-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsRegressor-50-500-manhattan-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsRegressor-50-500-minkowski-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsRegressor-50-500-minkowski-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsRegressor-50-500-DM_euclidean-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsRegressor-50-500-DM_euclidean-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsRegressor-100-1000-chebyshev-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsRegressor-100-1000-chebyshev-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsRegressor-100-1000-cityblock-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsRegressor-100-1000-cityblock-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsRegressor-100-1000-euclidean-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsRegressor-100-1000-euclidean-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsRegressor-100-1000-l1-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsRegressor-100-1000-l1-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsRegressor-100-1000-l2-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsRegressor-100-1000-l2-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsRegressor-100-1000-manhattan-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsRegressor-100-1000-manhattan-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsRegressor-100-1000-minkowski-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsRegressor-100-1000-minkowski-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsRegressor-100-1000-DM_euclidean-100-100-10]", "sklearn/neighbors/tests/test_neighbors.py::test_neigh_predictions_algorithm_agnosticity[float64-KNeighborsRegressor-100-1000-DM_euclidean-1000-5-100]", "sklearn/neighbors/tests/test_neighbors.py::test_precomputed_dense", "sklearn/neighbors/tests/test_neighbors.py::test_precomputed_sparse_knn[csr]", "sklearn/neighbors/tests/test_neighbors.py::test_precomputed_sparse_knn[lil]", "sklearn/neighbors/tests/test_neighbors.py::test_neighbors_regressors_zero_distance", "sklearn/neighbors/tests/test_neighbors.py::test_kneighbors_regressor", "sklearn/neighbors/tests/test_neighbors.py::test_KNeighborsRegressor_multioutput_uniform_weight", "sklearn/neighbors/tests/test_neighbors.py::test_kneighbors_regressor_multioutput", "sklearn/neighbors/tests/test_neighbors.py::test_kneighbors_regressor_sparse", "sklearn/neighbors/tests/test_neighbors.py::test_neighbors_iris", "sklearn/neighbors/tests/test_neighbors.py::test_neighbors_validate_parameters[csr_matrix-KNeighborsRegressor]", "sklearn/neighbors/tests/test_neighbors.py::test_neighbors_validate_parameters[csr_array-KNeighborsRegressor]", "sklearn/neighbors/tests/test_neighbors.py::test_predict_sparse_ball_kd_tree[csr_matrix]", "sklearn/neighbors/tests/test_neighbors.py::test_predict_sparse_ball_kd_tree[csr_array]", "sklearn/neighbors/tests/test_neighbors.py::test_pipeline_with_nearest_neighbors_transformer", "sklearn/neighbors/tests/test_neighbors.py::test_regressor_predict_on_arraylikes", "sklearn/impute/tests/test_knn.py::test_knn_imputer_weight_distance[nan]", "sklearn/impute/tests/test_knn.py::test_knn_imputer_weight_distance[-1]", "sklearn/neighbors/tests/test_neighbors_pipeline.py::test_kneighbors_regressor", "sklearn/neighbors/_regression.py::sklearn.neighbors._regression.KNeighborsRegressor", "sklearn/ensemble/_voting.py::sklearn.ensemble._voting.VotingRegressor", "sklearn/utils/tests/test_estimator_checks.py::test_check_estimator_pairwise", "sklearn/tests/test_common.py::test_estimators[KNeighborsRegressor()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[KNeighborsRegressor()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[KNeighborsRegressor()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[KNeighborsRegressor()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[KNeighborsRegressor()-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[KNeighborsRegressor()-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[KNeighborsRegressor()-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[KNeighborsRegressor()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[KNeighborsRegressor()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[KNeighborsRegressor()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[KNeighborsRegressor()-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[KNeighborsRegressor()-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[KNeighborsRegressor()-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[KNeighborsRegressor()-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[KNeighborsRegressor()-check_regressor_multioutput]", "sklearn/tests/test_common.py::test_estimators[KNeighborsRegressor()-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[KNeighborsRegressor()-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[KNeighborsRegressor()-check_estimators_unfitted]", "sklearn/tests/test_common.py::test_estimators[KNeighborsRegressor()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[KNeighborsRegressor()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[KNeighborsRegressor()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[KNeighborsRegressor()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[KNeighborsRegressor()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[KNeighborsRegressor()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[KNeighborsRegressor()]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-80
1.0
{ "code": "diff --git b/sklearn/neighbors/_kde.py a/sklearn/neighbors/_kde.py\nindex 1b6f9c8bf..ae82ea636 100644\n--- b/sklearn/neighbors/_kde.py\n+++ a/sklearn/neighbors/_kde.py\n@@ -187,6 +187,10 @@ class KernelDensity(BaseEstimator):\n )\n return algorithm\n \n+ @_fit_context(\n+ # KernelDensity.metric is not validated yet\n+ prefer_skip_nested_validation=False\n+ )\n def fit(self, X, y=None, sample_weight=None):\n \"\"\"Fit the Kernel Density model on the data.\n \n@@ -210,6 +214,36 @@ class KernelDensity(BaseEstimator):\n self : object\n Returns the instance itself.\n \"\"\"\n+ algorithm = self._choose_algorithm(self.algorithm, self.metric)\n+\n+ if isinstance(self.bandwidth, str):\n+ if self.bandwidth == \"scott\":\n+ self.bandwidth_ = X.shape[0] ** (-1 / (X.shape[1] + 4))\n+ elif self.bandwidth == \"silverman\":\n+ self.bandwidth_ = (X.shape[0] * (X.shape[1] + 2) / 4) ** (\n+ -1 / (X.shape[1] + 4)\n+ )\n+ else:\n+ self.bandwidth_ = self.bandwidth\n+\n+ X = validate_data(self, X, order=\"C\", dtype=np.float64)\n+\n+ if sample_weight is not None:\n+ sample_weight = _check_sample_weight(\n+ sample_weight, X, dtype=np.float64, ensure_non_negative=True\n+ )\n+\n+ kwargs = self.metric_params\n+ if kwargs is None:\n+ kwargs = {}\n+ self.tree_ = TREE_DICT[algorithm](\n+ X,\n+ metric=self.metric,\n+ leaf_size=self.leaf_size,\n+ sample_weight=sample_weight,\n+ **kwargs,\n+ )\n+ return self\n \n def score_samples(self, X):\n \"\"\"Compute the log-likelihood of each sample under the model.\n", "test": null }
null
{ "code": "diff --git a/sklearn/neighbors/_kde.py b/sklearn/neighbors/_kde.py\nindex ae82ea636..1b6f9c8bf 100644\n--- a/sklearn/neighbors/_kde.py\n+++ b/sklearn/neighbors/_kde.py\n@@ -187,10 +187,6 @@ class KernelDensity(BaseEstimator):\n )\n return algorithm\n \n- @_fit_context(\n- # KernelDensity.metric is not validated yet\n- prefer_skip_nested_validation=False\n- )\n def fit(self, X, y=None, sample_weight=None):\n \"\"\"Fit the Kernel Density model on the data.\n \n@@ -214,36 +210,6 @@ class KernelDensity(BaseEstimator):\n self : object\n Returns the instance itself.\n \"\"\"\n- algorithm = self._choose_algorithm(self.algorithm, self.metric)\n-\n- if isinstance(self.bandwidth, str):\n- if self.bandwidth == \"scott\":\n- self.bandwidth_ = X.shape[0] ** (-1 / (X.shape[1] + 4))\n- elif self.bandwidth == \"silverman\":\n- self.bandwidth_ = (X.shape[0] * (X.shape[1] + 2) / 4) ** (\n- -1 / (X.shape[1] + 4)\n- )\n- else:\n- self.bandwidth_ = self.bandwidth\n-\n- X = validate_data(self, X, order=\"C\", dtype=np.float64)\n-\n- if sample_weight is not None:\n- sample_weight = _check_sample_weight(\n- sample_weight, X, dtype=np.float64, ensure_non_negative=True\n- )\n-\n- kwargs = self.metric_params\n- if kwargs is None:\n- kwargs = {}\n- self.tree_ = TREE_DICT[algorithm](\n- X,\n- metric=self.metric,\n- leaf_size=self.leaf_size,\n- sample_weight=sample_weight,\n- **kwargs,\n- )\n- return self\n \n def score_samples(self, X):\n \"\"\"Compute the log-likelihood of each sample under the model.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/neighbors/_kde.py.\nHere is the description for the function:\n def fit(self, X, y=None, sample_weight=None):\n \"\"\"Fit the Kernel Density model on the data.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n List of n_features-dimensional data points. Each row\n corresponds to a single data point.\n\n y : None\n Ignored. This parameter exists only for compatibility with\n :class:`~sklearn.pipeline.Pipeline`.\n\n sample_weight : array-like of shape (n_samples,), default=None\n List of sample weights attached to the data X.\n\n .. versionadded:: 0.20\n\n Returns\n -------\n self : object\n Returns the instance itself.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/model_selection/tests/test_search.py::test_gridsearch_no_predict", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[0.01-gaussian]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[0.01-tophat]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[0.01-epanechnikov]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[0.01-exponential]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[0.01-linear]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[0.01-cosine]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[0.1-gaussian]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[0.1-tophat]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[0.1-epanechnikov]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[0.1-exponential]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[0.1-linear]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[0.1-cosine]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[1-gaussian]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[1-tophat]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[1-epanechnikov]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[1-exponential]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[1-linear]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[1-cosine]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[scott-gaussian]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[scott-tophat]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[scott-epanechnikov]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[scott-exponential]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[scott-linear]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[scott-cosine]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[silverman-gaussian]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[silverman-tophat]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[silverman-epanechnikov]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[silverman-exponential]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[silverman-linear]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[silverman-cosine]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density_sampling", "sklearn/neighbors/tests/test_kde.py::test_kde_algorithm_metric_choice[euclidean-auto]", "sklearn/neighbors/tests/test_kde.py::test_kde_algorithm_metric_choice[euclidean-ball_tree]", "sklearn/neighbors/tests/test_kde.py::test_kde_algorithm_metric_choice[euclidean-kd_tree]", "sklearn/neighbors/tests/test_kde.py::test_kde_algorithm_metric_choice[minkowski-auto]", "sklearn/neighbors/tests/test_kde.py::test_kde_algorithm_metric_choice[minkowski-ball_tree]", "sklearn/neighbors/tests/test_kde.py::test_kde_algorithm_metric_choice[minkowski-kd_tree]", "sklearn/neighbors/tests/test_kde.py::test_kde_algorithm_metric_choice[manhattan-auto]", "sklearn/neighbors/tests/test_kde.py::test_kde_algorithm_metric_choice[manhattan-ball_tree]", "sklearn/neighbors/tests/test_kde.py::test_kde_algorithm_metric_choice[manhattan-kd_tree]", "sklearn/neighbors/tests/test_kde.py::test_kde_algorithm_metric_choice[chebyshev-auto]", "sklearn/neighbors/tests/test_kde.py::test_kde_algorithm_metric_choice[chebyshev-ball_tree]", "sklearn/neighbors/tests/test_kde.py::test_kde_algorithm_metric_choice[chebyshev-kd_tree]", "sklearn/neighbors/tests/test_kde.py::test_kde_algorithm_metric_choice[haversine-auto]", "sklearn/neighbors/tests/test_kde.py::test_kde_algorithm_metric_choice[haversine-ball_tree]", "sklearn/neighbors/tests/test_kde.py::test_kde_algorithm_metric_choice[haversine-kd_tree]", "sklearn/neighbors/tests/test_kde.py::test_kde_sample_weights_error", "sklearn/neighbors/tests/test_kde.py::test_kde_pipeline_gridsearch", "sklearn/neighbors/tests/test_kde.py::test_kde_sample_weights", "sklearn/neighbors/tests/test_kde.py::test_pickling[None]", "sklearn/neighbors/tests/test_kde.py::test_pickling[sample_weight1]", "sklearn/neighbors/tests/test_kde.py::test_bandwidth[scott]", "sklearn/neighbors/tests/test_kde.py::test_bandwidth[silverman]", "sklearn/neighbors/tests/test_kde.py::test_bandwidth[0.1]", "sklearn/neighbors/_kde.py::sklearn.neighbors._kde.KernelDensity", "sklearn/tests/test_common.py::test_estimators[KernelDensity()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[KernelDensity()-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[KernelDensity()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[KernelDensity()-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[KernelDensity()-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[KernelDensity()-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[KernelDensity()-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[KernelDensity()-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[KernelDensity()-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[KernelDensity()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[KernelDensity()-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[KernelDensity()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[KernelDensity()-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[KernelDensity()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[KernelDensity()-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[KernelDensity()-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[KernelDensity()-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[KernelDensity()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[KernelDensity()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[KernelDensity()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[KernelDensity()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[KernelDensity()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[KernelDensity()-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[KernelDensity()-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[KernelDensity()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[KernelDensity()-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[KernelDensity()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[KernelDensity()-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[KernelDensity()-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[KernelDensity()-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[KernelDensity()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[KernelDensity()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[KernelDensity()]", "sklearn/tests/test_common.py::test_check_param_validation[KernelDensity()]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-81
1.0
{ "code": "diff --git b/sklearn/neighbors/_kde.py a/sklearn/neighbors/_kde.py\nindex a55ff31b6..ae82ea636 100644\n--- b/sklearn/neighbors/_kde.py\n+++ a/sklearn/neighbors/_kde.py\n@@ -326,6 +326,37 @@ class KernelDensity(BaseEstimator):\n X : array-like of shape (n_samples, n_features)\n List of samples.\n \"\"\"\n+ check_is_fitted(self)\n+ # TODO: implement sampling for other valid kernel shapes\n+ if self.kernel not in [\"gaussian\", \"tophat\"]:\n+ raise NotImplementedError()\n+\n+ data = np.asarray(self.tree_.data)\n+\n+ rng = check_random_state(random_state)\n+ u = rng.uniform(0, 1, size=n_samples)\n+ if self.tree_.sample_weight is None:\n+ i = (u * data.shape[0]).astype(np.int64)\n+ else:\n+ cumsum_weight = np.cumsum(np.asarray(self.tree_.sample_weight))\n+ sum_weight = cumsum_weight[-1]\n+ i = np.searchsorted(cumsum_weight, u * sum_weight)\n+ if self.kernel == \"gaussian\":\n+ return np.atleast_2d(rng.normal(data[i], self.bandwidth_))\n+\n+ elif self.kernel == \"tophat\":\n+ # we first draw points from a d-dimensional normal distribution,\n+ # then use an incomplete gamma function to map them to a uniform\n+ # d-dimensional tophat distribution.\n+ dim = data.shape[1]\n+ X = rng.normal(size=(n_samples, dim))\n+ s_sq = row_norms(X, squared=True)\n+ correction = (\n+ gammainc(0.5 * dim, 0.5 * s_sq) ** (1.0 / dim)\n+ * self.bandwidth_\n+ / np.sqrt(s_sq)\n+ )\n+ return data[i] + X * correction[:, np.newaxis]\n \n def __sklearn_tags__(self):\n tags = super().__sklearn_tags__()\n", "test": null }
null
{ "code": "diff --git a/sklearn/neighbors/_kde.py b/sklearn/neighbors/_kde.py\nindex ae82ea636..a55ff31b6 100644\n--- a/sklearn/neighbors/_kde.py\n+++ b/sklearn/neighbors/_kde.py\n@@ -326,37 +326,6 @@ class KernelDensity(BaseEstimator):\n X : array-like of shape (n_samples, n_features)\n List of samples.\n \"\"\"\n- check_is_fitted(self)\n- # TODO: implement sampling for other valid kernel shapes\n- if self.kernel not in [\"gaussian\", \"tophat\"]:\n- raise NotImplementedError()\n-\n- data = np.asarray(self.tree_.data)\n-\n- rng = check_random_state(random_state)\n- u = rng.uniform(0, 1, size=n_samples)\n- if self.tree_.sample_weight is None:\n- i = (u * data.shape[0]).astype(np.int64)\n- else:\n- cumsum_weight = np.cumsum(np.asarray(self.tree_.sample_weight))\n- sum_weight = cumsum_weight[-1]\n- i = np.searchsorted(cumsum_weight, u * sum_weight)\n- if self.kernel == \"gaussian\":\n- return np.atleast_2d(rng.normal(data[i], self.bandwidth_))\n-\n- elif self.kernel == \"tophat\":\n- # we first draw points from a d-dimensional normal distribution,\n- # then use an incomplete gamma function to map them to a uniform\n- # d-dimensional tophat distribution.\n- dim = data.shape[1]\n- X = rng.normal(size=(n_samples, dim))\n- s_sq = row_norms(X, squared=True)\n- correction = (\n- gammainc(0.5 * dim, 0.5 * s_sq) ** (1.0 / dim)\n- * self.bandwidth_\n- / np.sqrt(s_sq)\n- )\n- return data[i] + X * correction[:, np.newaxis]\n \n def __sklearn_tags__(self):\n tags = super().__sklearn_tags__()\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/neighbors/_kde.py.\nHere is the description for the function:\n def sample(self, n_samples=1, random_state=None):\n \"\"\"Generate random samples from the model.\n\n Currently, this is implemented only for gaussian and tophat kernels.\n\n Parameters\n ----------\n n_samples : int, default=1\n Number of samples to generate.\n\n random_state : int, RandomState instance or None, default=None\n Determines random number generation used to generate\n random samples. Pass an int for reproducible results\n across multiple function calls.\n See :term:`Glossary <random_state>`.\n\n Returns\n -------\n X : array-like of shape (n_samples, n_features)\n List of samples.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/neighbors/tests/test_kde.py::test_kernel_density_sampling", "sklearn/neighbors/tests/test_kde.py::test_kde_sample_weights", "sklearn/neighbors/tests/test_kde.py::test_check_is_fitted[sample]", "sklearn/neighbors/tests/test_kde.py::test_bandwidth[scott]", "sklearn/neighbors/tests/test_kde.py::test_bandwidth[silverman]", "sklearn/neighbors/tests/test_kde.py::test_bandwidth[0.1]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-82
1.0
{ "code": "diff --git b/sklearn/neighbors/_kde.py a/sklearn/neighbors/_kde.py\nindex 90446c066..ae82ea636 100644\n--- b/sklearn/neighbors/_kde.py\n+++ a/sklearn/neighbors/_kde.py\n@@ -261,6 +261,27 @@ class KernelDensity(BaseEstimator):\n probability densities, so values will be low for high-dimensional\n data.\n \"\"\"\n+ check_is_fitted(self)\n+ # The returned density is normalized to the number of points.\n+ # For it to be a probability, we must scale it. For this reason\n+ # we'll also scale atol.\n+ X = validate_data(self, X, order=\"C\", dtype=np.float64, reset=False)\n+ if self.tree_.sample_weight is None:\n+ N = self.tree_.data.shape[0]\n+ else:\n+ N = self.tree_.sum_weight\n+ atol_N = self.atol * N\n+ log_density = self.tree_.kernel_density(\n+ X,\n+ h=self.bandwidth_,\n+ kernel=self.kernel,\n+ atol=atol_N,\n+ rtol=self.rtol,\n+ breadth_first=self.breadth_first,\n+ return_log=True,\n+ )\n+ log_density -= np.log(N)\n+ return log_density\n \n def score(self, X, y=None):\n \"\"\"Compute the total log-likelihood under the model.\n", "test": null }
null
{ "code": "diff --git a/sklearn/neighbors/_kde.py b/sklearn/neighbors/_kde.py\nindex ae82ea636..90446c066 100644\n--- a/sklearn/neighbors/_kde.py\n+++ b/sklearn/neighbors/_kde.py\n@@ -261,27 +261,6 @@ class KernelDensity(BaseEstimator):\n probability densities, so values will be low for high-dimensional\n data.\n \"\"\"\n- check_is_fitted(self)\n- # The returned density is normalized to the number of points.\n- # For it to be a probability, we must scale it. For this reason\n- # we'll also scale atol.\n- X = validate_data(self, X, order=\"C\", dtype=np.float64, reset=False)\n- if self.tree_.sample_weight is None:\n- N = self.tree_.data.shape[0]\n- else:\n- N = self.tree_.sum_weight\n- atol_N = self.atol * N\n- log_density = self.tree_.kernel_density(\n- X,\n- h=self.bandwidth_,\n- kernel=self.kernel,\n- atol=atol_N,\n- rtol=self.rtol,\n- breadth_first=self.breadth_first,\n- return_log=True,\n- )\n- log_density -= np.log(N)\n- return log_density\n \n def score(self, X, y=None):\n \"\"\"Compute the total log-likelihood under the model.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/neighbors/_kde.py.\nHere is the description for the function:\n def score_samples(self, X):\n \"\"\"Compute the log-likelihood of each sample under the model.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n An array of points to query. Last dimension should match dimension\n of training data (n_features).\n\n Returns\n -------\n density : ndarray of shape (n_samples,)\n Log-likelihood of each sample in `X`. These are normalized to be\n probability densities, so values will be low for high-dimensional\n data.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/neighbors/tests/test_kde.py::test_kernel_density[0.01-gaussian]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[0.01-tophat]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[0.01-epanechnikov]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[0.01-exponential]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[0.01-linear]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[0.01-cosine]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[0.1-gaussian]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[0.1-tophat]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[0.1-epanechnikov]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[0.1-exponential]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[0.1-linear]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[0.1-cosine]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[1-gaussian]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[1-tophat]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[1-epanechnikov]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[1-exponential]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[1-linear]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[1-cosine]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[scott-gaussian]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[scott-tophat]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[scott-epanechnikov]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[scott-exponential]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[scott-linear]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[scott-cosine]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[silverman-gaussian]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[silverman-tophat]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[silverman-epanechnikov]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[silverman-exponential]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[silverman-linear]", "sklearn/neighbors/tests/test_kde.py::test_kernel_density[silverman-cosine]", "sklearn/neighbors/tests/test_kde.py::test_kde_algorithm_metric_choice[euclidean-auto]", "sklearn/neighbors/tests/test_kde.py::test_kde_algorithm_metric_choice[euclidean-ball_tree]", "sklearn/neighbors/tests/test_kde.py::test_kde_algorithm_metric_choice[euclidean-kd_tree]", "sklearn/neighbors/tests/test_kde.py::test_kde_algorithm_metric_choice[minkowski-auto]", "sklearn/neighbors/tests/test_kde.py::test_kde_algorithm_metric_choice[minkowski-ball_tree]", "sklearn/neighbors/tests/test_kde.py::test_kde_algorithm_metric_choice[minkowski-kd_tree]", "sklearn/neighbors/tests/test_kde.py::test_kde_algorithm_metric_choice[manhattan-auto]", "sklearn/neighbors/tests/test_kde.py::test_kde_algorithm_metric_choice[manhattan-ball_tree]", "sklearn/neighbors/tests/test_kde.py::test_kde_algorithm_metric_choice[manhattan-kd_tree]", "sklearn/neighbors/tests/test_kde.py::test_kde_algorithm_metric_choice[chebyshev-auto]", "sklearn/neighbors/tests/test_kde.py::test_kde_algorithm_metric_choice[chebyshev-ball_tree]", "sklearn/neighbors/tests/test_kde.py::test_kde_algorithm_metric_choice[chebyshev-kd_tree]", "sklearn/neighbors/tests/test_kde.py::test_kde_algorithm_metric_choice[haversine-auto]", "sklearn/neighbors/tests/test_kde.py::test_kde_algorithm_metric_choice[haversine-ball_tree]", "sklearn/neighbors/tests/test_kde.py::test_kde_pipeline_gridsearch", "sklearn/neighbors/tests/test_kde.py::test_kde_sample_weights", "sklearn/neighbors/tests/test_kde.py::test_pickling[None]", "sklearn/neighbors/tests/test_kde.py::test_pickling[sample_weight1]", "sklearn/neighbors/tests/test_kde.py::test_check_is_fitted[score_samples]", "sklearn/neighbors/tests/test_kde.py::test_bandwidth[scott]", "sklearn/neighbors/tests/test_kde.py::test_bandwidth[silverman]", "sklearn/neighbors/tests/test_kde.py::test_bandwidth[0.1]", "sklearn/neighbors/_kde.py::sklearn.neighbors._kde.KernelDensity", "sklearn/tests/test_common.py::test_estimators[KernelDensity()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[KernelDensity()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[KernelDensity()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[KernelDensity()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[KernelDensity()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[KernelDensity()]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-83
1.0
{ "code": "diff --git b/sklearn/preprocessing/_label.py a/sklearn/preprocessing/_label.py\nindex 7e6cf4d9d..345d55556 100644\n--- b/sklearn/preprocessing/_label.py\n+++ a/sklearn/preprocessing/_label.py\n@@ -271,6 +271,7 @@ class LabelBinarizer(TransformerMixin, BaseEstimator, auto_wrap_output_keys=None\n self.pos_label = pos_label\n self.sparse_output = sparse_output\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, y):\n \"\"\"Fit label binarizer.\n \n@@ -285,6 +286,31 @@ class LabelBinarizer(TransformerMixin, BaseEstimator, auto_wrap_output_keys=None\n self : object\n Returns the instance itself.\n \"\"\"\n+ if self.neg_label >= self.pos_label:\n+ raise ValueError(\n+ f\"neg_label={self.neg_label} must be strictly less than \"\n+ f\"pos_label={self.pos_label}.\"\n+ )\n+\n+ if self.sparse_output and (self.pos_label == 0 or self.neg_label != 0):\n+ raise ValueError(\n+ \"Sparse binarization is only supported with non \"\n+ \"zero pos_label and zero neg_label, got \"\n+ f\"pos_label={self.pos_label} and neg_label={self.neg_label}\"\n+ )\n+\n+ self.y_type_ = type_of_target(y, input_name=\"y\")\n+\n+ if \"multioutput\" in self.y_type_:\n+ raise ValueError(\n+ \"Multioutput target data is not supported with label binarization\"\n+ )\n+ if _num_samples(y) == 0:\n+ raise ValueError(\"y has 0 samples: %r\" % y)\n+\n+ self.sparse_input_ = sp.issparse(y)\n+ self.classes_ = unique_labels(y)\n+ return self\n \n def fit_transform(self, y):\n \"\"\"Fit label binarizer/transform multi-class labels to binary labels.\n", "test": null }
null
{ "code": "diff --git a/sklearn/preprocessing/_label.py b/sklearn/preprocessing/_label.py\nindex 345d55556..7e6cf4d9d 100644\n--- a/sklearn/preprocessing/_label.py\n+++ b/sklearn/preprocessing/_label.py\n@@ -271,7 +271,6 @@ class LabelBinarizer(TransformerMixin, BaseEstimator, auto_wrap_output_keys=None\n self.pos_label = pos_label\n self.sparse_output = sparse_output\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, y):\n \"\"\"Fit label binarizer.\n \n@@ -286,31 +285,6 @@ class LabelBinarizer(TransformerMixin, BaseEstimator, auto_wrap_output_keys=None\n self : object\n Returns the instance itself.\n \"\"\"\n- if self.neg_label >= self.pos_label:\n- raise ValueError(\n- f\"neg_label={self.neg_label} must be strictly less than \"\n- f\"pos_label={self.pos_label}.\"\n- )\n-\n- if self.sparse_output and (self.pos_label == 0 or self.neg_label != 0):\n- raise ValueError(\n- \"Sparse binarization is only supported with non \"\n- \"zero pos_label and zero neg_label, got \"\n- f\"pos_label={self.pos_label} and neg_label={self.neg_label}\"\n- )\n-\n- self.y_type_ = type_of_target(y, input_name=\"y\")\n-\n- if \"multioutput\" in self.y_type_:\n- raise ValueError(\n- \"Multioutput target data is not supported with label binarization\"\n- )\n- if _num_samples(y) == 0:\n- raise ValueError(\"y has 0 samples: %r\" % y)\n-\n- self.sparse_input_ = sp.issparse(y)\n- self.classes_ = unique_labels(y)\n- return self\n \n def fit_transform(self, y):\n \"\"\"Fit label binarizer/transform multi-class labels to binary labels.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/preprocessing/_label.py.\nHere is the description for the function:\n def fit(self, y):\n \"\"\"Fit label binarizer.\n\n Parameters\n ----------\n y : ndarray of shape (n_samples,) or (n_samples, n_classes)\n Target values. The 2-d matrix should only contain 0 and 1,\n represents multilabel classification.\n\n Returns\n -------\n self : object\n Returns the instance itself.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/metrics/tests/test_common.py::test_sample_order_invariance[hinge_loss]", "sklearn/metrics/tests/test_common.py::test_sample_order_invariance[log_loss]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_matrix-RidgeClassifier-params3]", "sklearn/metrics/tests/test_common.py::test_sample_order_invariance[unnormalized_log_loss]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_cv_multinomial_score[neg_log_loss-multiclass_agg_list3]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_matrix-RidgeClassifierCV-params9]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_array-RidgeClassifier-params3]", "sklearn/metrics/tests/test_common.py::test_sample_order_invariance_multilabel_and_multioutput", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_array-RidgeClassifierCV-params9]", "sklearn/metrics/tests/test_score_objects.py::test_thresholded_scorers", "sklearn/metrics/tests/test_score_objects.py::test_thresholded_scorers_multilabel_indicator_data", "sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[hinge_loss]", "sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[log_loss]", "sklearn/metrics/tests/test_score_objects.py::test_classification_scorer_sample_weight", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_log_loss]", "sklearn/svm/tests/test_svm.py::test_decision_function_shape_two_class", "sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[unnormalized_log_loss]", "sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_calls_method_once[scorers0-1-1-1]", "sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_calls_method_once[scorers2-1-1-0]", "sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_calls_method_once_classifier_no_decision[scorers0]", "sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_calls_method_once_classifier_no_decision[scorers1]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_decision_function_shape", "sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_sanity_check", "sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[log_loss]", "sklearn/metrics/tests/test_classification.py::test_multiclass_jaccard_score", "sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[unnormalized_log_loss]", "sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[hinge_loss]", "sklearn/model_selection/tests/test_search.py::test_search_with_2d_array", "sklearn/linear_model/tests/test_logistic.py::test_logreg_predict_proba_multinomial", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_sparse_prediction[csr_matrix]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_sparse_prediction[csr_array]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_with_method_multilabel_ovr", "sklearn/metrics/tests/test_classification.py::test_hinge_loss_binary", "sklearn/metrics/tests/test_classification.py::test_log_loss", "sklearn/metrics/tests/test_classification.py::test_log_loss_eps[float64]", "sklearn/metrics/tests/test_classification.py::test_log_loss_eps[float32]", "sklearn/metrics/tests/test_classification.py::test_log_loss_eps[float16]", "sklearn/metrics/tests/test_classification.py::test_log_loss_not_probabilities_warning[float64]", "sklearn/metrics/tests/test_classification.py::test_log_loss_not_probabilities_warning[float32]", "sklearn/metrics/tests/test_classification.py::test_log_loss_not_probabilities_warning[float16]", "sklearn/metrics/tests/test_classification.py::test_log_loss_perfect_predictions[y_true0-y_pred0]", "sklearn/metrics/tests/test_classification.py::test_log_loss_perfect_predictions[y_true1-y_pred1]", "sklearn/metrics/tests/test_classification.py::test_log_loss_perfect_predictions[y_true2-y_pred2]", "sklearn/metrics/tests/test_classification.py::test_log_loss_pandas_input", "sklearn/linear_model/tests/test_logistic.py::test_warm_start_converge_LR", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.1-0.001]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.1-0.046415888336127795]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.1-2.1544346900318843]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.1-100.0]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.5-0.001]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.5-0.046415888336127795]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.5-2.1544346900318843]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.5-100.0]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.9-0.001]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.9-0.046415888336127795]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.9-2.1544346900318843]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.9-100.0]", "sklearn/metrics/tests/test_classification.py::test_d2_log_loss_score", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_estimators_nan_inf]", "sklearn/linear_model/tests/test_logistic.py::test_liblinear_not_stuck", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_classifiers_regression_target]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_fit2d_1feature]", "sklearn/metrics/tests/test_common.py::test_averaging_multiclass[f0.5_score]", "sklearn/metrics/tests/test_common.py::test_averaging_multiclass[f1_score]", "sklearn/metrics/tests/test_common.py::test_averaging_multiclass[f2_score]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_dict_unchanged]", "sklearn/metrics/tests/test_common.py::test_averaging_multiclass[jaccard_score]", "sklearn/metrics/tests/test_common.py::test_averaging_multiclass[precision_score]", "sklearn/metrics/tests/test_common.py::test_averaging_multiclass[recall_score]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_fit2d_predict1d]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[hinge_loss]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[log_loss]", "sklearn/tests/test_naive_bayes.py::test_discretenb_prior[42-BernoulliNB]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[unnormalized_log_loss]", "sklearn/tests/test_naive_bayes.py::test_discretenb_prior[42-CategoricalNB]", "sklearn/tests/test_naive_bayes.py::test_discretenb_prior[42-ComplementNB]", "sklearn/tests/test_calibration.py::test_calibration[True-sigmoid-csr_matrix]", "sklearn/tests/test_naive_bayes.py::test_discretenb_prior[42-MultinomialNB]", "sklearn/tests/test_calibration.py::test_calibration[True-sigmoid-csr_array]", "sklearn/tests/test_naive_bayes.py::test_discretenb_partial_fit[BernoulliNB]", "sklearn/tests/test_naive_bayes.py::test_discretenb_partial_fit[CategoricalNB]", "sklearn/tests/test_calibration.py::test_calibration[True-isotonic-csr_matrix]", "sklearn/tests/test_naive_bayes.py::test_discretenb_partial_fit[ComplementNB]", "sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[log_loss]", "sklearn/tests/test_calibration.py::test_calibration[True-isotonic-csr_array]", "sklearn/tests/test_calibration.py::test_calibration[False-sigmoid-csr_matrix]", "sklearn/tests/test_calibration.py::test_calibration[False-sigmoid-csr_array]", "sklearn/tests/test_calibration.py::test_calibration[False-isotonic-csr_matrix]", "sklearn/tests/test_naive_bayes.py::test_discretenb_partial_fit[MultinomialNB]", "sklearn/tests/test_calibration.py::test_calibration[False-isotonic-csr_array]", "sklearn/tests/test_naive_bayes.py::test_discretenb_predict_proba", "sklearn/tests/test_naive_bayes.py::test_discretenb_uniform_prior[BernoulliNB]", "sklearn/tests/test_naive_bayes.py::test_discretenb_uniform_prior[CategoricalNB]", "sklearn/tests/test_naive_bayes.py::test_discretenb_uniform_prior[ComplementNB]", "sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[unnormalized_log_loss]", "sklearn/tests/test_naive_bayes.py::test_discretenb_uniform_prior[MultinomialNB]", "sklearn/tests/test_naive_bayes.py::test_discretenb_provide_prior[BernoulliNB]", "sklearn/tests/test_naive_bayes.py::test_discretenb_provide_prior[CategoricalNB]", "sklearn/tests/test_naive_bayes.py::test_discretenb_provide_prior[ComplementNB]", "sklearn/tests/test_naive_bayes.py::test_discretenb_provide_prior[MultinomialNB]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_cv_results_not_stored[ridge1-make_classification]", "sklearn/tests/test_naive_bayes.py::test_discretenb_provide_prior_with_partial_fit[BernoulliNB]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_best_score[None-ridge1-make_classification]", "sklearn/tests/test_naive_bayes.py::test_discretenb_provide_prior_with_partial_fit[CategoricalNB]", "sklearn/tests/test_naive_bayes.py::test_discretenb_provide_prior_with_partial_fit[ComplementNB]", "sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[log_loss]", "sklearn/tests/test_naive_bayes.py::test_discretenb_provide_prior_with_partial_fit[MultinomialNB]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_best_score[3-ridge1-make_classification]", "sklearn/tests/test_naive_bayes.py::test_discretenb_sample_weight_multiclass[BernoulliNB]", "sklearn/tests/test_naive_bayes.py::test_discretenb_sample_weight_multiclass[CategoricalNB]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[None-None-None]", "sklearn/tests/test_naive_bayes.py::test_discretenb_sample_weight_multiclass[ComplementNB]", "sklearn/tests/test_naive_bayes.py::test_discretenb_sample_weight_multiclass[MultinomialNB]", "sklearn/tests/test_naive_bayes.py::test_discretenb_degenerate_one_class_case[False-False-BernoulliNB]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_fit_score_takes_y]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_setting_request_on_sub_estimator_removes_error[OneVsRestClassifier]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[None-None-accuracy]", "sklearn/tests/test_naive_bayes.py::test_discretenb_degenerate_one_class_case[False-False-CategoricalNB]", "sklearn/tests/test_naive_bayes.py::test_discretenb_degenerate_one_class_case[False-False-ComplementNB]", "sklearn/tests/test_naive_bayes.py::test_discretenb_degenerate_one_class_case[False-False-MultinomialNB]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[None-None-_accuracy_callable]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_estimators_overwrite_params]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[None-cv1-None]", "sklearn/tests/test_naive_bayes.py::test_discretenb_degenerate_one_class_case[True-False-BernoulliNB]", "sklearn/tests/test_naive_bayes.py::test_discretenb_degenerate_one_class_case[True-False-CategoricalNB]", "sklearn/tests/test_naive_bayes.py::test_discretenb_degenerate_one_class_case[True-False-ComplementNB]", "sklearn/tests/test_naive_bayes.py::test_discretenb_degenerate_one_class_case[True-False-MultinomialNB]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_estimators_dtypes]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[None-cv1-accuracy]", "sklearn/preprocessing/tests/test_target_encoder.py::test_encoding_multiclass[42-5.0-target_labels0-categories0-auto]", "sklearn/preprocessing/tests/test_target_encoder.py::test_encoding_multiclass[42-5.0-target_labels0-categories1-unknown_values1]", "sklearn/preprocessing/tests/test_target_encoder.py::test_encoding_multiclass[42-5.0-target_labels1-categories0-auto]", "sklearn/preprocessing/tests/test_target_encoder.py::test_encoding_multiclass[42-5.0-target_labels1-categories1-unknown_values1]", "sklearn/tests/test_naive_bayes.py::test_mnnb[42-csr_matrix-dense]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_sample_weights_pandas_series]", "sklearn/tests/test_naive_bayes.py::test_mnnb[42-csr_matrix-sparse]", "sklearn/preprocessing/tests/test_target_encoder.py::test_encoding_multiclass[42-auto-target_labels0-categories0-auto]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[None-cv1-_accuracy_callable]", "sklearn/preprocessing/tests/test_target_encoder.py::test_encoding_multiclass[42-auto-target_labels0-categories1-unknown_values1]", "sklearn/tests/test_naive_bayes.py::test_mnnb[42-csr_array-dense]", "sklearn/preprocessing/tests/test_target_encoder.py::test_encoding_multiclass[42-auto-target_labels1-categories0-auto]", "sklearn/preprocessing/tests/test_target_encoder.py::test_encoding_multiclass[42-auto-target_labels1-categories1-unknown_values1]", "sklearn/feature_selection/tests/test_feature_select.py::test_boundary_case_ch2", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_sample_weights_not_an_array]", "sklearn/preprocessing/tests/test_target_encoder.py::test_use_regression_target", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[csr_matrix-None-None]", "sklearn/preprocessing/tests/test_target_encoder.py::test_feature_names_out_set_output[y1-feature_names1]", "sklearn/tests/test_naive_bayes.py::test_mnnb[42-csr_array-sparse]", "sklearn/preprocessing/tests/test_target_encoder.py::test_feature_names_out_set_output[y2-feature_names2]", "sklearn/tests/test_naive_bayes.py::test_bnb", "sklearn/tests/test_naive_bayes.py::test_bnb_feature_log_prob", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[csr_matrix-None-accuracy]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_sample_weights_list]", "sklearn/tests/test_naive_bayes.py::test_cnb", "sklearn/tests/test_naive_bayes.py::test_categoricalnb[42]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[csr_matrix-None-_accuracy_callable]", "sklearn/tests/test_naive_bayes.py::test_categoricalnb_with_min_categories[3-exp_X1_count0-exp_X2_count0-new_X0-exp_n_categories_0]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_sample_weights_shape]", "sklearn/tests/test_multiclass.py::test_ovr_exceptions", "sklearn/tests/test_naive_bayes.py::test_categoricalnb_with_min_categories[min_categories1-exp_X1_count1-exp_X2_count1-new_X1-exp_n_categories_1]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_sample_weights_not_overwritten]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[csr_matrix-cv1-None]", "sklearn/tests/test_naive_bayes.py::test_categoricalnb_with_min_categories[1-exp_X1_count2-exp_X2_count2-new_X2-exp_n_categories_2]", "sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[unnormalized_log_loss]", "sklearn/tests/test_naive_bayes.py::test_categoricalnb_min_categories_errors[min_categories0-'min_categories' should have shape]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[csr_matrix-cv1-accuracy]", "sklearn/tests/test_naive_bayes.py::test_alpha[csr_matrix]", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict", "sklearn/tests/test_naive_bayes.py::test_alpha[csr_array]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[csr_matrix-cv1-_accuracy_callable]", "sklearn/tests/test_multiclass.py::test_ovr_partial_fit", "sklearn/tests/test_multiclass.py::test_ovr_partial_fit_exceptions", "sklearn/metrics/tests/test_classification.py::test_d2_log_loss_score_raises", "sklearn/tests/test_naive_bayes.py::test_alpha_vector", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_multiclass.py::test_ovr_ovo_regressor", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[csr_array-None-None]", "sklearn/preprocessing/tests/test_label.py::test_label_binarizer", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[csr_matrix]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[csr_array]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_estimators_fit_returns_self]", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[csc_matrix]", "sklearn/tests/test_naive_bayes.py::test_check_accuracy_on_digits", "sklearn/tests/test_naive_bayes.py::test_predict_joint_proba[42-BernoulliNB]", "sklearn/preprocessing/tests/test_label.py::test_label_binarizer_unseen_labels", "sklearn/preprocessing/tests/test_label.py::test_label_binarizer_set_label_encoding", "sklearn/tests/test_naive_bayes.py::test_predict_joint_proba[42-CategoricalNB]", "sklearn/preprocessing/tests/test_label.py::test_label_binarizer_pandas_nullable[True-Int64]", "sklearn/preprocessing/tests/test_label.py::test_label_binarizer_pandas_nullable[True-Float64]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[csr_array-None-accuracy]", "sklearn/tests/test_naive_bayes.py::test_predict_joint_proba[42-ComplementNB]", "sklearn/preprocessing/tests/test_label.py::test_label_binarizer_pandas_nullable[True-boolean]", "sklearn/tests/test_naive_bayes.py::test_predict_joint_proba[42-MultinomialNB]", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[csc_array]", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[coo_matrix]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[csr_array-None-_accuracy_callable]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[csr_array-cv1-None]", "sklearn/preprocessing/tests/test_label.py::test_label_binarizer_pandas_nullable[False-Int64]", "sklearn/preprocessing/tests/test_label.py::test_label_binarizer_pandas_nullable[False-Float64]", "sklearn/preprocessing/tests/test_label.py::test_label_binarizer_pandas_nullable[False-boolean]", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[coo_array]", "sklearn/preprocessing/tests/test_label.py::test_label_binarizer_errors", "sklearn/preprocessing/tests/test_label.py::test_label_binarize_binary", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[dok_matrix]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[csr_array-cv1-accuracy]", "sklearn/preprocessing/tests/test_label.py::test_label_binarize_multiclass", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_dtype_object]", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[dok_array]", "sklearn/preprocessing/tests/test_label.py::test_label_binarize_multilabel[array]", "sklearn/preprocessing/tests/test_label.py::test_label_binarize_multilabel[coo_matrix]", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[lil_matrix]", "sklearn/neural_network/tests/test_mlp.py::test_alpha", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[csr_array-cv1-_accuracy_callable]", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[lil_array]", "sklearn/preprocessing/tests/test_label.py::test_label_binarize_multilabel[coo_array]", "sklearn/preprocessing/tests/test_label.py::test_label_binarize_multilabel[csc_matrix]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_pipeline_consistency]", "sklearn/tests/test_multiclass.py::test_ovr_always_present", "sklearn/preprocessing/tests/test_label.py::test_label_binarize_multilabel[csc_array]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_estimators_nan_inf]", "sklearn/neural_network/tests/test_mlp.py::test_fit", "sklearn/preprocessing/tests/test_label.py::test_label_binarize_multilabel[csr_matrix]", "sklearn/tests/test_multiclass.py::test_ovr_multiclass", "sklearn/neural_network/tests/test_mlp.py::test_gradient", "sklearn/neural_network/tests/test_mlp.py::test_lbfgs_classification[X0-y0]", "sklearn/tests/test_multiclass.py::test_ovr_binary", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_custom_scoring[None-None]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_estimators_pickle]", "sklearn/tests/test_multiclass.py::test_ovr_multilabel", "sklearn/neural_network/tests/test_mlp.py::test_lbfgs_classification[X1-y1]", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_svc", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_custom_scoring[None-cv1]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_custom_scoring[csr_matrix-None]", "sklearn/feature_selection/tests/test_feature_select.py::test_tied_pvalues", "sklearn/preprocessing/tests/test_label.py::test_label_binarize_multilabel[csr_array]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/neural_network/tests/test_mlp.py::test_lbfgs_classification_maxfun[X0-y0]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_custom_scoring[csr_matrix-cv1]", "sklearn/feature_selection/tests/test_feature_select.py::test_scorefunc_multilabel", "sklearn/preprocessing/tests/test_label.py::test_label_binarize_multilabel[dok_matrix]", "sklearn/tests/test_multiclass.py::test_ovr_multilabel_dataset", "sklearn/preprocessing/tests/test_label.py::test_label_binarize_multilabel[dok_array]", "sklearn/tests/test_multiclass.py::test_ovr_multilabel_predict_proba", "sklearn/feature_selection/tests/test_feature_select.py::test_tied_scores", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_custom_scoring[csr_array-None]", "sklearn/preprocessing/tests/test_label.py::test_label_binarize_multilabel[lil_matrix]", "sklearn/neural_network/tests/test_mlp.py::test_lbfgs_classification_maxfun[X1-y1]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_f_contiguous_array_estimator]", "sklearn/tests/test_multiclass.py::test_ovr_single_label_predict_proba", "sklearn/preprocessing/tests/test_label.py::test_label_binarize_multilabel[lil_array]", "sklearn/tests/test_multiclass.py::test_ovr_multilabel_decision_function", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_custom_scoring[csr_array-cv1]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_classifier_data_not_an_array]", "sklearn/preprocessing/tests/test_label.py::test_label_encoders_do_not_have_set_output[encoder1]", "sklearn/neural_network/tests/test_mlp.py::test_learning_rate_warmstart", "sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[log_loss]", "sklearn/tests/test_multiclass.py::test_ovr_single_label_decision_function", "sklearn/neural_network/tests/test_mlp.py::test_multilabel_classification", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_classifiers_one_label]", "sklearn/tests/test_multiclass.py::test_ovr_gridsearch", "sklearn/tests/test_multiclass.py::test_ovr_pipeline", "sklearn/tests/test_multiclass.py::test_ovo_fit_predict", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_multiclass.py::test_ovo_partial_fit_predict", "sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[csr_matrix-_test_ridge_classifiers]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_predict_proba[MLPClassifier]", "sklearn/tests/test_multioutput.py::test_multiclass_multioutput_estimator", "sklearn/neural_network/tests/test_mlp.py::test_partial_fit_classes_error", "sklearn/neural_network/tests/test_mlp.py::test_partial_fit_classification", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_classifiers_classes]", "sklearn/neural_network/tests/test_mlp.py::test_partial_fit_unseen_classes", "sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[csr_array-_test_ridge_classifiers]", "sklearn/tests/test_multiclass.py::test_ecoc_fit_predict", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_classifiers_train]", "sklearn/linear_model/tests/test_ridge.py::test_class_weights", "sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[unnormalized_log_loss]", "sklearn/linear_model/tests/test_ridge.py::test_class_weight_vs_sample_weight[RidgeClassifier]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_multiclass.py::test_pairwise_n_features_in", "sklearn/linear_model/tests/test_ridge.py::test_class_weight_vs_sample_weight[RidgeClassifierCV]", "sklearn/neural_network/tests/test_mlp.py::test_partial_fit_errors", "sklearn/tests/test_multiclass.py::test_pairwise_cross_val_score[OneVsRestClassifier]", "sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[log_loss]", "sklearn/neural_network/tests/test_mlp.py::test_predict_proba_binary", "sklearn/neural_network/tests/test_mlp.py::test_predict_proba_multiclass", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/neural_network/tests/test_mlp.py::test_predict_proba_multilabel", "sklearn/tests/test_multiclass.py::test_support_missing_values[OneVsRestClassifier]", "sklearn/linear_model/tests/test_ridge.py::test_class_weights_cv", "sklearn/tests/test_multiclass.py::test_constant_int_target[ones]", "sklearn/neural_network/tests/test_mlp.py::test_sparse_matrices[csr_matrix]", "sklearn/tests/test_multioutput.py::test_classifier_chain_vs_independent_models", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_classifiers_regression_target]", "sklearn/tests/test_multiclass.py::test_constant_int_target[zeros]", "sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[unnormalized_log_loss]", "sklearn/neural_network/tests/test_mlp.py::test_sparse_matrices[csr_array]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_cv_store_cv_results[None]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_decision_function", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_supervised_y_2d]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_cv_store_cv_results[accuracy]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_cv_store_cv_results[_accuracy_callable]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_auto_predict[False-auto]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_auto_predict[False-predict]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_methods_subset_invariance]", "sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_conversion[RidgeClassifierCV]", "sklearn/neural_network/tests/test_mlp.py::test_tolerance", "sklearn/neural_network/tests/test_mlp.py::test_verbose_sgd", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_fit2d_1sample]", "sklearn/neural_network/tests/test_mlp.py::test_early_stopping[MLPClassifier]", "sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_zero[RidgeClassifierCV-None]", "sklearn/neural_network/tests/test_mlp.py::test_adaptive_learning_rate", "sklearn/neural_network/tests/test_mlp.py::test_warm_start", "sklearn/neural_network/tests/test_mlp.py::test_warm_start_full_iteration[MLPClassifier]", "sklearn/neural_network/tests/test_mlp.py::test_n_iter_no_change", "sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_zero[RidgeClassifierCV-3]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_fit2d_1feature]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_auto_predict[True-auto]", "sklearn/neural_network/tests/test_mlp.py::test_n_iter_no_change_inf", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[hinge_loss-pandas]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_dict_unchanged]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[log_loss-pandas]", "sklearn/neural_network/tests/test_mlp.py::test_early_stopping_stratified", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_auto_predict[True-predict]", "sklearn/neural_network/tests/test_mlp.py::test_mlp_classifier_dtypes_casting", "sklearn/neural_network/tests/test_mlp.py::test_mlp_param_dtypes[MLPClassifier-float32]", "sklearn/neural_network/tests/test_mlp.py::test_mlp_param_dtypes[MLPClassifier-float64]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[unnormalized_log_loss-pandas]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_fit_idempotent]", "sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_validation[params0-ValueError-alphas\\\\[1\\\\] == -1, must be > 0.0-RidgeClassifierCV]", "sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_validation[params1-ValueError-alphas\\\\[0\\\\] == -0.1, must be > 0.0-RidgeClassifierCV]", "sklearn/neural_network/tests/test_mlp.py::test_preserve_feature_names[MLPClassifier]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_fit_check_is_fitted]", "sklearn/neural_network/tests/test_mlp.py::test_mlp_warm_start_with_early_stopping[MLPClassifier]", "sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_validation[params2-TypeError-alphas\\\\[2\\\\] must be an instance of float, not str-RidgeClassifierCV]", "sklearn/neural_network/tests/test_mlp.py::test_mlp_warm_start_no_convergence[sgd-MLPClassifier]", "sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_scalar[RidgeClassifierCV]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_fit2d_predict1d]", "sklearn/neural_network/tests/test_mlp.py::test_mlp_warm_start_no_convergence[adam-MLPClassifier]", "sklearn/neural_network/tests/test_mlp.py::test_mlp_warm_start_no_convergence[lbfgs-MLPClassifier]", "sklearn/neural_network/tests/test_mlp.py::test_mlp_partial_fit_after_fit[MLPClassifier]", "sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_feature_selection", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_estimators_overwrite_params]", "sklearn/linear_model/tests/test_ridge.py::test_ridgeclassifier_multilabel[RidgeClassifier-params0]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_estimators_dtypes]", "sklearn/linear_model/tests/test_ridge.py::test_ridgeclassifier_multilabel[RidgeClassifierCV-params1]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[no-intercept-two-classes-squared_hinge-csr_matrix]", "sklearn/linear_model/tests/test_ridge.py::test_ridgeclassifier_multilabel[RidgeClassifierCV-params2]", "sklearn/gaussian_process/tests/test_gpc.py::test_custom_optimizer[42-kernel0]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[no-intercept-two-classes-squared_hinge-csr_array]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_sample_weights_pandas_series]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[no-intercept-two-classes-squared_hinge-array]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[no-intercept-two-classes-log-csr_matrix]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[no-intercept-two-classes-log-csr_array]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_sample_weights_not_an_array]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[no-intercept-two-classes-log-array]", "sklearn/gaussian_process/tests/test_gpc.py::test_custom_optimizer[42-kernel1]", "sklearn/gaussian_process/tests/test_gpc.py::test_custom_optimizer[42-kernel2]", "sklearn/gaussian_process/tests/test_gpc.py::test_multi_class[kernel0]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[no-intercept-multi-class-squared_hinge-csr_matrix]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[no-intercept-multi-class-squared_hinge-csr_array]", "sklearn/gaussian_process/tests/test_gpc.py::test_multi_class[kernel1]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[no-intercept-multi-class-squared_hinge-array]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_sample_weights_list]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[no-intercept-multi-class-log-csr_matrix]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[no-intercept-multi-class-log-csr_array]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[no-intercept-multi-class-log-array]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[fit-intercept-two-classes-squared_hinge-csr_matrix]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_sample_weights_shape]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[fit-intercept-two-classes-squared_hinge-csr_array]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[fit-intercept-two-classes-squared_hinge-array]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[fit-intercept-two-classes-log-csr_matrix]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[fit-intercept-two-classes-log-csr_array]", "sklearn/gaussian_process/tests/test_gpc.py::test_multi_class[kernel2]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[fit-intercept-two-classes-log-array]", "sklearn/gaussian_process/tests/test_gpc.py::test_multi_class[kernel3]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[fit-intercept-multi-class-squared_hinge-csr_matrix]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[fit-intercept-multi-class-squared_hinge-csr_array]", "sklearn/gaussian_process/tests/test_gpc.py::test_multi_class_n_jobs[kernel0]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_sample_weights_not_overwritten]", "sklearn/gaussian_process/tests/test_gpc.py::test_multi_class_n_jobs[kernel1]", "sklearn/gaussian_process/tests/test_gpc.py::test_multi_class_n_jobs[kernel2]", "sklearn/gaussian_process/tests/test_gpc.py::test_multi_class_n_jobs[kernel3]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_sample_weights_invariance(kind=zeros)]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[fit-intercept-multi-class-squared_hinge-array]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[fit-intercept-multi-class-log-csr_matrix]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[fit-intercept-multi-class-log-csr_array]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_estimators_fit_returns_self]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[fit-intercept-multi-class-log-array]", "sklearn/svm/tests/test_bounds.py::test_ill_posed_min_c", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_pipeline_consistency]", "sklearn/linear_model/tests/test_sag.py::test_sag_multiclass_computed_correctly[csr_matrix]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_estimator_sparse_array]", "sklearn/linear_model/tests/test_sag.py::test_sag_multiclass_computed_correctly[csr_array]", "sklearn/metrics/_classification.py::sklearn.metrics._classification.hinge_loss", "sklearn/metrics/_classification.py::sklearn.metrics._classification.log_loss", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_estimators_pickle]", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[OneVsRestClassifier]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_f_contiguous_array_estimator]", "sklearn/tests/test_calibration.py::test_calibration_prefit[csr_matrix]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_classifier_data_not_an_array]", "sklearn/metrics/_ranking.py::sklearn.metrics._ranking.roc_auc_score", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_classifiers_one_label]", "sklearn/feature_selection/_univariate_selection.py::sklearn.feature_selection._univariate_selection.GenericUnivariateSelect", "sklearn/feature_selection/_univariate_selection.py::sklearn.feature_selection._univariate_selection.SelectFdr", "sklearn/feature_selection/_univariate_selection.py::sklearn.feature_selection._univariate_selection.SelectFpr", "sklearn/feature_selection/_univariate_selection.py::sklearn.feature_selection._univariate_selection.SelectFwe", "sklearn/feature_selection/_univariate_selection.py::sklearn.feature_selection._univariate_selection.SelectKBest", "sklearn/feature_selection/_univariate_selection.py::sklearn.feature_selection._univariate_selection.SelectPercentile", "sklearn/feature_selection/_univariate_selection.py::sklearn.feature_selection._univariate_selection.chi2", "sklearn/tests/test_calibration.py::test_calibration_prefit[csr_array]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_classifiers_one_label_sample_weights]", "sklearn/feature_selection/tests/test_chi2.py::test_chi2[csr_matrix]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_classifiers_classes]", "sklearn/feature_selection/tests/test_chi2.py::test_chi2[csr_array]", "sklearn/naive_bayes.py::sklearn.naive_bayes.BernoulliNB", "sklearn/linear_model/_ridge.py::sklearn.linear_model._ridge.RidgeClassifier", "sklearn/naive_bayes.py::sklearn.naive_bayes.CategoricalNB", "sklearn/feature_selection/tests/test_chi2.py::test_chi2_coo[coo_matrix]", "sklearn/linear_model/_ridge.py::sklearn.linear_model._ridge.RidgeClassifierCV", "sklearn/naive_bayes.py::sklearn.naive_bayes.ComplementNB", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_classifiers_train]", "sklearn/feature_selection/tests/test_chi2.py::test_chi2_coo[coo_array]", "sklearn/feature_selection/tests/test_chi2.py::test_chi2_unused_feature", "sklearn/preprocessing/_label.py::sklearn.preprocessing._label.LabelBinarizer", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_classifiers_train(readonly_memmap=True)]", "sklearn/naive_bayes.py::sklearn.naive_bayes.MultinomialNB", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/multiclass.py::sklearn.multiclass.OneVsRestClassifier", "sklearn/gaussian_process/kernels.py::sklearn.gaussian_process.kernels.Matern", "sklearn/gaussian_process/kernels.py::sklearn.gaussian_process.kernels.PairwiseKernel", "sklearn/feature_extraction/_dict_vectorizer.py::sklearn.feature_extraction._dict_vectorizer.DictVectorizer.restrict", "sklearn/neural_network/_multilayer_perceptron.py::sklearn.neural_network._multilayer_perceptron.MLPClassifier", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_classifiers_regression_target]", "sklearn/gaussian_process/_gpc.py::sklearn.gaussian_process._gpc.GaussianProcessClassifier", "sklearn/gaussian_process/kernels.py::sklearn.gaussian_process.kernels.RBF", "sklearn/gaussian_process/kernels.py::sklearn.gaussian_process.kernels.RationalQuadratic", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_supervised_y_2d]", "sklearn/svm/_bounds.py::sklearn.svm._bounds.l1_min_c", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_fit_non_negative]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_classifiers_regression_target]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_fit2d_predict1d]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_non_consuming_estimator_works[OneVsRestClassifier]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_metadata_is_routed_correctly_to_scorer[RidgeClassifierCV0]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_metadata_is_routed_correctly_to_scorer[RidgeClassifierCV1]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_metadata_is_routed_correctly_to_splitter[RidgeClassifierCV1]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_estimators_partial_fit_n_features]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_classifiers_regression_target]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_classifiers_multilabel_representation_invariance]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_classifiers_multilabel_output_format_predict]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_classifiers_multilabel_output_format_predict_proba]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_non_transformer_estimators_n_iter]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_classifiers_regression_target]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_fit_non_negative]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_classifier_multioutput]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_classifiers_regression_target]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_requires_y_none]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_classifiers_regression_target]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_classifiers_multilabel_representation_invariance]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_classifiers_multilabel_output_format_predict]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_classifiers_multilabel_output_format_decision_function]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_class_weight_classifiers]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_class_weight_balanced_linear_classifier0]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_class_weight_balanced_linear_classifier1]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_classifiers_regression_target]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_classifiers_multilabel_representation_invariance]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_classifiers_multilabel_output_format_predict]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_classifiers_multilabel_output_format_decision_function]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_class_weight_classifiers]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_class_weight_balanced_linear_classifier0]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_class_weight_balanced_linear_classifier1]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[TargetEncoder(cv=3)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[TargetEncoder(cv=3)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[TargetEncoder(cv=3)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[TargetEncoder(cv=3)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[TargetEncoder(cv=3)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[TargetEncoder(cv=3)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[TargetEncoder(cv=3)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[TargetEncoder(cv=3)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[TargetEncoder(cv=3)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[TargetEncoder(cv=3)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[TargetEncoder(cv=3)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[BernoulliNB()]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[CategoricalNB()]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[ComplementNB()]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[MLPClassifier(max_iter=100)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[MultinomialNB()]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[OneVsRestClassifier(estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[RidgeClassifier()]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[RidgeClassifierCV()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[BernoulliNB()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[CategoricalNB()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[ComplementNB()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[MLPClassifier(max_iter=100)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[MultinomialNB()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[OneVsRestClassifier(estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RidgeClassifier()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RidgeClassifierCV()]", "sklearn/tests/test_common.py::test_check_param_validation[LabelBinarizer()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[RidgeClassifier()]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-84
1.0
{ "code": "diff --git b/sklearn/preprocessing/_label.py a/sklearn/preprocessing/_label.py\nindex 17965fca2..345d55556 100644\n--- b/sklearn/preprocessing/_label.py\n+++ a/sklearn/preprocessing/_label.py\n@@ -400,6 +400,24 @@ class LabelBinarizer(TransformerMixin, BaseEstimator, auto_wrap_output_keys=None\n linear model's :term:`decision_function` method directly as the input\n of :meth:`inverse_transform`.\n \"\"\"\n+ check_is_fitted(self)\n+\n+ if threshold is None:\n+ threshold = (self.pos_label + self.neg_label) / 2.0\n+\n+ if self.y_type_ == \"multiclass\":\n+ y_inv = _inverse_binarize_multiclass(Y, self.classes_)\n+ else:\n+ y_inv = _inverse_binarize_thresholding(\n+ Y, self.y_type_, self.classes_, threshold\n+ )\n+\n+ if self.sparse_input_:\n+ y_inv = sp.csr_matrix(y_inv)\n+ elif sp.issparse(y_inv):\n+ y_inv = y_inv.toarray()\n+\n+ return y_inv\n \n def __sklearn_tags__(self):\n tags = super().__sklearn_tags__()\n", "test": null }
null
{ "code": "diff --git a/sklearn/preprocessing/_label.py b/sklearn/preprocessing/_label.py\nindex 345d55556..17965fca2 100644\n--- a/sklearn/preprocessing/_label.py\n+++ b/sklearn/preprocessing/_label.py\n@@ -400,24 +400,6 @@ class LabelBinarizer(TransformerMixin, BaseEstimator, auto_wrap_output_keys=None\n linear model's :term:`decision_function` method directly as the input\n of :meth:`inverse_transform`.\n \"\"\"\n- check_is_fitted(self)\n-\n- if threshold is None:\n- threshold = (self.pos_label + self.neg_label) / 2.0\n-\n- if self.y_type_ == \"multiclass\":\n- y_inv = _inverse_binarize_multiclass(Y, self.classes_)\n- else:\n- y_inv = _inverse_binarize_thresholding(\n- Y, self.y_type_, self.classes_, threshold\n- )\n-\n- if self.sparse_input_:\n- y_inv = sp.csr_matrix(y_inv)\n- elif sp.issparse(y_inv):\n- y_inv = y_inv.toarray()\n-\n- return y_inv\n \n def __sklearn_tags__(self):\n tags = super().__sklearn_tags__()\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/preprocessing/_label.py.\nHere is the description for the function:\n def inverse_transform(self, Y, threshold=None):\n \"\"\"Transform binary labels back to multi-class labels.\n\n Parameters\n ----------\n Y : {ndarray, sparse matrix} of shape (n_samples, n_classes)\n Target values. All sparse matrices are converted to CSR before\n inverse transformation.\n\n threshold : float, default=None\n Threshold used in the binary and multi-label cases.\n\n Use 0 when ``Y`` contains the output of :term:`decision_function`\n (classifier).\n Use 0.5 when ``Y`` contains the output of :term:`predict_proba`.\n\n If None, the threshold is assumed to be half way between\n neg_label and pos_label.\n\n Returns\n -------\n y : {ndarray, sparse matrix} of shape (n_samples,)\n Target values. Sparse matrix will be of CSR format.\n\n Notes\n -----\n In the case when the binary labels are fractional\n (probabilistic), :meth:`inverse_transform` chooses the class with the\n greatest value. Typically, this allows to use the output of a\n linear model's :term:`decision_function` method directly as the input\n of :meth:`inverse_transform`.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/svm/tests/test_svm.py::test_decision_function_shape_two_class", "sklearn/linear_model/tests/test_ridge.py::test_ridgeclassifier_multilabel[RidgeClassifier-params0]", "sklearn/linear_model/tests/test_ridge.py::test_ridgeclassifier_multilabel[RidgeClassifierCV-params1]", "sklearn/linear_model/tests/test_ridge.py::test_ridgeclassifier_multilabel[RidgeClassifierCV-params2]", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[csr_matrix]", "sklearn/preprocessing/tests/test_label.py::test_label_binarizer", "sklearn/preprocessing/tests/test_label.py::test_label_binarizer_set_label_encoding", "sklearn/preprocessing/tests/test_label.py::test_label_binarizer_errors", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[csr_array]", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[csc_matrix]", "sklearn/preprocessing/tests/test_label.py::test_label_binarize_binary", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[csc_array]", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[coo_matrix]", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[coo_array]", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[dok_matrix]", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[dok_array]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_sparse_prediction[csr_matrix]", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[lil_matrix]", "sklearn/preprocessing/tests/test_label.py::test_label_binarize_multiclass", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[lil_array]", "sklearn/preprocessing/tests/test_label.py::test_label_binarize_multilabel[array]", "sklearn/preprocessing/tests/test_label.py::test_label_binarize_multilabel[coo_matrix]", "sklearn/preprocessing/tests/test_label.py::test_label_binarize_multilabel[coo_array]", "sklearn/preprocessing/tests/test_label.py::test_label_binarize_multilabel[csc_matrix]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_sparse_prediction[csr_array]", "sklearn/preprocessing/tests/test_label.py::test_label_binarize_multilabel[csc_array]", "sklearn/preprocessing/tests/test_label.py::test_label_binarize_multilabel[csr_matrix]", "sklearn/preprocessing/tests/test_label.py::test_label_binarize_multilabel[csr_array]", "sklearn/tests/test_multiclass.py::test_ovr_always_present", "sklearn/preprocessing/tests/test_label.py::test_label_binarize_multilabel[dok_matrix]", "sklearn/tests/test_multiclass.py::test_ovr_multiclass", "sklearn/preprocessing/tests/test_label.py::test_label_binarize_multilabel[dok_array]", "sklearn/tests/test_multiclass.py::test_ovr_binary", "sklearn/neural_network/tests/test_mlp.py::test_lbfgs_classification[X0-y0]", "sklearn/preprocessing/tests/test_label.py::test_label_binarize_multilabel[lil_matrix]", "sklearn/preprocessing/tests/test_label.py::test_label_binarize_multilabel[lil_array]", "sklearn/tests/test_multiclass.py::test_ovr_multilabel", "sklearn/tests/test_multiclass.py::test_ovr_multilabel_dataset", "sklearn/neural_network/tests/test_mlp.py::test_lbfgs_classification[X1-y1]", "sklearn/tests/test_multiclass.py::test_ovr_multilabel_predict_proba", "sklearn/tests/test_multiclass.py::test_ovr_multilabel_decision_function", "sklearn/tests/test_multiclass.py::test_ovr_single_label_decision_function", "sklearn/neural_network/tests/test_mlp.py::test_multilabel_classification", "sklearn/tests/test_multioutput.py::test_classifier_chain_vs_independent_models", "sklearn/neural_network/tests/test_mlp.py::test_partial_fit_classification", "sklearn/neural_network/tests/test_mlp.py::test_partial_fit_unseen_classes", "sklearn/neural_network/tests/test_mlp.py::test_sparse_matrices[csr_matrix]", "sklearn/neural_network/tests/test_mlp.py::test_sparse_matrices[csr_array]", "sklearn/neural_network/tests/test_mlp.py::test_early_stopping[MLPClassifier]", "sklearn/neural_network/tests/test_mlp.py::test_mlp_classifier_dtypes_casting", "sklearn/neural_network/tests/test_mlp.py::test_mlp_param_dtypes[MLPClassifier-float32]", "sklearn/neural_network/tests/test_mlp.py::test_mlp_param_dtypes[MLPClassifier-float64]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_auto_predict[False-predict]", "sklearn/neural_network/tests/test_mlp.py::test_preserve_feature_names[MLPClassifier]", "sklearn/neural_network/tests/test_mlp.py::test_mlp_warm_start_with_early_stopping[MLPClassifier]", "sklearn/neural_network/tests/test_mlp.py::test_mlp_partial_fit_after_fit[MLPClassifier]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_auto_predict[True-predict]", "sklearn/neural_network/_multilayer_perceptron.py::sklearn.neural_network._multilayer_perceptron.MLPClassifier", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_classifiers_multilabel_representation_invariance]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_classifiers_multilabel_output_format_predict]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_classifier_multioutput]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_classifiers_multilabel_representation_invariance]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_classifiers_multilabel_output_format_predict]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_classifiers_multilabel_representation_invariance]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_classifiers_multilabel_output_format_predict]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[MLPClassifier(max_iter=100)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[OneVsRestClassifier(estimator=LogisticRegression(C=1))]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-85
1.0
{ "code": "diff --git b/sklearn/preprocessing/_label.py a/sklearn/preprocessing/_label.py\nindex f2782dc1f..345d55556 100644\n--- b/sklearn/preprocessing/_label.py\n+++ a/sklearn/preprocessing/_label.py\n@@ -354,6 +354,19 @@ class LabelBinarizer(TransformerMixin, BaseEstimator, auto_wrap_output_keys=None\n Shape will be (n_samples, 1) for binary problems. Sparse matrix\n will be of CSR format.\n \"\"\"\n+ check_is_fitted(self)\n+\n+ y_is_multilabel = type_of_target(y).startswith(\"multilabel\")\n+ if y_is_multilabel and not self.y_type_.startswith(\"multilabel\"):\n+ raise ValueError(\"The object was not fitted with multilabel input.\")\n+\n+ return label_binarize(\n+ y,\n+ classes=self.classes_,\n+ pos_label=self.pos_label,\n+ neg_label=self.neg_label,\n+ sparse_output=self.sparse_output,\n+ )\n \n def inverse_transform(self, Y, threshold=None):\n \"\"\"Transform binary labels back to multi-class labels.\n", "test": null }
null
{ "code": "diff --git a/sklearn/preprocessing/_label.py b/sklearn/preprocessing/_label.py\nindex 345d55556..f2782dc1f 100644\n--- a/sklearn/preprocessing/_label.py\n+++ b/sklearn/preprocessing/_label.py\n@@ -354,19 +354,6 @@ class LabelBinarizer(TransformerMixin, BaseEstimator, auto_wrap_output_keys=None\n Shape will be (n_samples, 1) for binary problems. Sparse matrix\n will be of CSR format.\n \"\"\"\n- check_is_fitted(self)\n-\n- y_is_multilabel = type_of_target(y).startswith(\"multilabel\")\n- if y_is_multilabel and not self.y_type_.startswith(\"multilabel\"):\n- raise ValueError(\"The object was not fitted with multilabel input.\")\n-\n- return label_binarize(\n- y,\n- classes=self.classes_,\n- pos_label=self.pos_label,\n- neg_label=self.neg_label,\n- sparse_output=self.sparse_output,\n- )\n \n def inverse_transform(self, Y, threshold=None):\n \"\"\"Transform binary labels back to multi-class labels.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/preprocessing/_label.py.\nHere is the description for the function:\n def transform(self, y):\n \"\"\"Transform multi-class labels to binary labels.\n\n The output of transform is sometimes referred to by some authors as\n the 1-of-K coding scheme.\n\n Parameters\n ----------\n y : {array, sparse matrix} of shape (n_samples,) or \\\n (n_samples, n_classes)\n Target values. The 2-d matrix should only contain 0 and 1,\n represents multilabel classification. Sparse matrix can be\n CSR, CSC, COO, DOK, or LIL.\n\n Returns\n -------\n Y : {ndarray, sparse matrix} of shape (n_samples, n_classes)\n Shape will be (n_samples, 1) for binary problems. Sparse matrix\n will be of CSR format.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/metrics/tests/test_common.py::test_sample_order_invariance[hinge_loss]", "sklearn/metrics/tests/test_common.py::test_sample_order_invariance[log_loss]", "sklearn/metrics/tests/test_common.py::test_sample_order_invariance[unnormalized_log_loss]", "sklearn/metrics/tests/test_common.py::test_sample_order_invariance_multilabel_and_multioutput", "sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[hinge_loss]", "sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[log_loss]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_cv_multinomial_score[neg_log_loss-multiclass_agg_list3]", "sklearn/metrics/tests/test_score_objects.py::test_thresholded_scorers", "sklearn/metrics/tests/test_score_objects.py::test_thresholded_scorers_multilabel_indicator_data", "sklearn/metrics/tests/test_score_objects.py::test_classification_scorer_sample_weight", "sklearn/metrics/tests/test_common.py::test_format_invariance_with_1d_vectors[unnormalized_log_loss]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_memmap_input[neg_log_loss]", "sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[log_loss]", "sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[unnormalized_log_loss]", "sklearn/metrics/tests/test_common.py::test_thresholded_invariance_string_vs_numbers_labels[hinge_loss]", "sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_calls_method_once[scorers0-1-1-1]", "sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_calls_method_once[scorers2-1-1-0]", "sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_calls_method_once_classifier_no_decision[scorers0]", "sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_calls_method_once_classifier_no_decision[scorers1]", "sklearn/metrics/tests/test_score_objects.py::test_multimetric_scorer_sanity_check", "sklearn/metrics/tests/test_classification.py::test_multiclass_jaccard_score", "sklearn/linear_model/tests/test_logistic.py::test_logreg_predict_proba_multinomial", "sklearn/metrics/tests/test_classification.py::test_hinge_loss_binary", "sklearn/metrics/tests/test_classification.py::test_log_loss", "sklearn/metrics/tests/test_classification.py::test_log_loss_eps[float64]", "sklearn/metrics/tests/test_classification.py::test_log_loss_eps[float32]", "sklearn/metrics/tests/test_classification.py::test_log_loss_eps[float16]", "sklearn/metrics/tests/test_classification.py::test_log_loss_not_probabilities_warning[float64]", "sklearn/metrics/tests/test_classification.py::test_log_loss_not_probabilities_warning[float32]", "sklearn/metrics/tests/test_classification.py::test_log_loss_not_probabilities_warning[float16]", "sklearn/metrics/tests/test_classification.py::test_log_loss_perfect_predictions[y_true0-y_pred0]", "sklearn/metrics/tests/test_classification.py::test_log_loss_perfect_predictions[y_true1-y_pred1]", "sklearn/metrics/tests/test_classification.py::test_log_loss_perfect_predictions[y_true2-y_pred2]", "sklearn/metrics/tests/test_classification.py::test_log_loss_pandas_input", "sklearn/linear_model/tests/test_logistic.py::test_warm_start_converge_LR", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.1-0.001]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.1-0.046415888336127795]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.1-2.1544346900318843]", "sklearn/metrics/tests/test_classification.py::test_d2_log_loss_score", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.1-100.0]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.5-0.001]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.5-0.046415888336127795]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.5-2.1544346900318843]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.5-100.0]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_estimators_overwrite_params]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.9-0.001]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.9-0.046415888336127795]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_sample_weights_pandas_series]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.9-2.1544346900318843]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.9-100.0]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_classifiers_one_label_sample_weights]", "sklearn/linear_model/tests/test_logistic.py::test_liblinear_not_stuck", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_fit_idempotent]", "sklearn/metrics/tests/test_common.py::test_averaging_multiclass[f0.5_score]", "sklearn/metrics/tests/test_common.py::test_averaging_multiclass[f1_score]", "sklearn/metrics/tests/test_common.py::test_averaging_multiclass[f2_score]", "sklearn/metrics/tests/test_common.py::test_averaging_multiclass[jaccard_score]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[BernoulliNB()-check_fit2d_predict1d]", "sklearn/metrics/tests/test_common.py::test_averaging_multiclass[precision_score]", "sklearn/metrics/tests/test_common.py::test_averaging_multiclass[recall_score]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_matrix-RidgeClassifier-params3]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_matrix-RidgeClassifierCV-params9]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_array-RidgeClassifier-params3]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[hinge_loss]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_array-RidgeClassifierCV-params9]", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[log_loss]", "sklearn/metrics/tests/test_classification.py::test_d2_log_loss_score_raises", "sklearn/metrics/tests/test_common.py::test_binary_sample_weight_invariance[unnormalized_log_loss]", "sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[log_loss]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_gcv_cv_results_not_stored[ridge1-make_classification]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_best_score[None-ridge1-make_classification]", "sklearn/metrics/tests/test_common.py::test_multiclass_sample_weight_invariance[unnormalized_log_loss]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_best_score[3-ridge1-make_classification]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[None-None-None]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[None-None-accuracy]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_fit_score_takes_y]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[None-None-_accuracy_callable]", "sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[log_loss]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_estimators_overwrite_params]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[None-cv1-None]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[None-cv1-accuracy]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[None-cv1-_accuracy_callable]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_estimators_dtypes]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[csr_matrix-None-None]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_setting_request_on_sub_estimator_removes_error[OneVsRestClassifier]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_sample_weights_pandas_series]", "sklearn/svm/tests/test_svm.py::test_decision_function_shape_two_class", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_sample_weights_not_an_array]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[csr_matrix-None-accuracy]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[csr_matrix-None-_accuracy_callable]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_sample_weights_list]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[csr_matrix-cv1-None]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[csr_matrix-cv1-accuracy]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[csr_matrix-cv1-_accuracy_callable]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_sample_weights_shape]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[csr_array-None-None]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[csr_array-None-accuracy]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_sample_weights_not_overwritten]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[csr_array-None-_accuracy_callable]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[csr_array-cv1-None]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_sample_weights_invariance(kind=ones)]", "sklearn/metrics/tests/test_common.py::test_multilabel_sample_weight_invariance[unnormalized_log_loss]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[csr_array-cv1-accuracy]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_sample_weights_invariance(kind=zeros)]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_with_scoring[csr_array-cv1-_accuracy_callable]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_custom_scoring[None-None]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_dtype_object]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_custom_scoring[None-cv1]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_custom_scoring[csr_matrix-None]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_pipeline_consistency]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_custom_scoring[csr_matrix-cv1]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_custom_scoring[csr_array-None]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_estimators_nan_inf]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_regression_custom_scoring[csr_array-cv1]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[csr_matrix-_test_ridge_classifiers]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_classifier_data_not_an_array]", "sklearn/linear_model/tests/test_ridge.py::test_dense_sparse[csr_array-_test_ridge_classifiers]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_classifiers_one_label]", "sklearn/linear_model/tests/test_ridge.py::test_class_weights", "sklearn/linear_model/tests/test_ridge.py::test_class_weight_vs_sample_weight[RidgeClassifier]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_classifiers_one_label_sample_weights]", "sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[log_loss]", "sklearn/linear_model/tests/test_ridge.py::test_class_weight_vs_sample_weight[RidgeClassifierCV]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_classifiers_classes]", "sklearn/tests/test_naive_bayes.py::test_discretenb_prior[42-BernoulliNB]", "sklearn/tests/test_calibration.py::test_calibration[True-sigmoid-csr_matrix]", "sklearn/linear_model/tests/test_ridge.py::test_class_weights_cv", "sklearn/tests/test_naive_bayes.py::test_discretenb_prior[42-CategoricalNB]", "sklearn/tests/test_calibration.py::test_calibration[True-sigmoid-csr_array]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_cv_store_cv_results[None]", "sklearn/tests/test_naive_bayes.py::test_discretenb_prior[42-ComplementNB]", "sklearn/tests/test_naive_bayes.py::test_discretenb_prior[42-MultinomialNB]", "sklearn/tests/test_calibration.py::test_calibration[True-isotonic-csr_matrix]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_classifiers_train]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_cv_store_cv_results[accuracy]", "sklearn/tests/test_naive_bayes.py::test_discretenb_partial_fit[BernoulliNB]", "sklearn/tests/test_calibration.py::test_calibration[True-isotonic-csr_array]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_classifier_cv_store_cv_results[_accuracy_callable]", "sklearn/tests/test_naive_bayes.py::test_discretenb_partial_fit[CategoricalNB]", "sklearn/tests/test_calibration.py::test_calibration[False-sigmoid-csr_matrix]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_classifiers_train(readonly_memmap=True)]", "sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_conversion[RidgeClassifierCV]", "sklearn/tests/test_naive_bayes.py::test_discretenb_partial_fit[ComplementNB]", "sklearn/tests/test_calibration.py::test_calibration[False-sigmoid-csr_array]", "sklearn/tests/test_naive_bayes.py::test_discretenb_partial_fit[MultinomialNB]", "sklearn/metrics/tests/test_common.py::test_thresholded_multilabel_multioutput_permutations_invariance[unnormalized_log_loss]", "sklearn/tests/test_calibration.py::test_calibration[False-isotonic-csr_matrix]", "sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_zero[RidgeClassifierCV-None]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_naive_bayes.py::test_discretenb_predict_proba", "sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[log_loss]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_supervised_y_2d]", "sklearn/tests/test_calibration.py::test_calibration[False-isotonic-csr_array]", "sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_zero[RidgeClassifierCV-3]", "sklearn/tests/test_naive_bayes.py::test_discretenb_uniform_prior[BernoulliNB]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_methods_sample_order_invariance]", "sklearn/tests/test_naive_bayes.py::test_discretenb_uniform_prior[CategoricalNB]", "sklearn/tests/test_naive_bayes.py::test_discretenb_uniform_prior[ComplementNB]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_methods_subset_invariance]", "sklearn/metrics/tests/test_common.py::test_thresholded_metric_permutation_invariance[unnormalized_log_loss]", "sklearn/tests/test_naive_bayes.py::test_discretenb_uniform_prior[MultinomialNB]", "sklearn/preprocessing/tests/test_target_encoder.py::test_encoding_multiclass[42-5.0-target_labels0-categories0-auto]", "sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_validation[params0-ValueError-alphas\\\\[1\\\\] == -1, must be > 0.0-RidgeClassifierCV]", "sklearn/tests/test_naive_bayes.py::test_discretenb_provide_prior[BernoulliNB]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_fit2d_1sample]", "sklearn/tests/test_naive_bayes.py::test_discretenb_provide_prior[CategoricalNB]", "sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_validation[params1-ValueError-alphas\\\\[0\\\\] == -0.1, must be > 0.0-RidgeClassifierCV]", "sklearn/preprocessing/tests/test_target_encoder.py::test_encoding_multiclass[42-5.0-target_labels0-categories1-unknown_values1]", "sklearn/tests/test_naive_bayes.py::test_discretenb_provide_prior[ComplementNB]", "sklearn/preprocessing/tests/test_target_encoder.py::test_encoding_multiclass[42-5.0-target_labels1-categories0-auto]", "sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_validation[params2-TypeError-alphas\\\\[2\\\\] must be an instance of float, not str-RidgeClassifierCV]", "sklearn/preprocessing/tests/test_target_encoder.py::test_encoding_multiclass[42-5.0-target_labels1-categories1-unknown_values1]", "sklearn/tests/test_naive_bayes.py::test_discretenb_provide_prior[MultinomialNB]", "sklearn/preprocessing/tests/test_target_encoder.py::test_encoding_multiclass[42-auto-target_labels0-categories0-auto]", "sklearn/preprocessing/tests/test_target_encoder.py::test_encoding_multiclass[42-auto-target_labels0-categories1-unknown_values1]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[hinge_loss-pandas]", "sklearn/linear_model/tests/test_ridge.py::test_ridgecv_alphas_scalar[RidgeClassifierCV]", "sklearn/tests/test_naive_bayes.py::test_discretenb_provide_prior_with_partial_fit[BernoulliNB]", "sklearn/preprocessing/tests/test_target_encoder.py::test_encoding_multiclass[42-auto-target_labels1-categories0-auto]", "sklearn/feature_selection/tests/test_feature_select.py::test_boundary_case_ch2", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_fit2d_1feature]", "sklearn/preprocessing/tests/test_target_encoder.py::test_encoding_multiclass[42-auto-target_labels1-categories1-unknown_values1]", "sklearn/tests/test_naive_bayes.py::test_discretenb_provide_prior_with_partial_fit[CategoricalNB]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[log_loss-pandas]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_dict_unchanged]", "sklearn/preprocessing/tests/test_target_encoder.py::test_use_regression_target", "sklearn/preprocessing/tests/test_target_encoder.py::test_feature_names_out_set_output[y1-feature_names1]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_dont_overwrite_parameters]", "sklearn/preprocessing/tests/test_target_encoder.py::test_feature_names_out_set_output[y2-feature_names2]", "sklearn/tests/test_naive_bayes.py::test_discretenb_provide_prior_with_partial_fit[ComplementNB]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_fit_idempotent]", "sklearn/tests/test_naive_bayes.py::test_discretenb_provide_prior_with_partial_fit[MultinomialNB]", "sklearn/metrics/tests/test_common.py::test_metrics_dataframe_series[unnormalized_log_loss-pandas]", "sklearn/tests/test_naive_bayes.py::test_discretenb_sample_weight_multiclass[BernoulliNB]", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict", "sklearn/tests/test_naive_bayes.py::test_discretenb_sample_weight_multiclass[CategoricalNB]", "sklearn/tests/test_naive_bayes.py::test_discretenb_sample_weight_multiclass[ComplementNB]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_fit_check_is_fitted]", "sklearn/tests/test_naive_bayes.py::test_discretenb_sample_weight_multiclass[MultinomialNB]", "sklearn/tests/test_multiclass.py::test_ovr_partial_fit", "sklearn/tests/test_naive_bayes.py::test_discretenb_degenerate_one_class_case[False-False-BernoulliNB]", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_n_features_in]", "sklearn/tests/test_multiclass.py::test_ovr_partial_fit_exceptions", "sklearn/linear_model/tests/test_ridge.py::test_ridgeclassifier_multilabel[RidgeClassifier-params0]", "sklearn/tests/test_naive_bayes.py::test_discretenb_degenerate_one_class_case[False-False-CategoricalNB]", "sklearn/tests/test_multiclass.py::test_ovr_ovo_regressor", "sklearn/tests/test_common.py::test_estimators[CategoricalNB()-check_fit2d_predict1d]", "sklearn/tests/test_naive_bayes.py::test_discretenb_degenerate_one_class_case[False-False-ComplementNB]", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[csr_matrix]", "sklearn/preprocessing/tests/test_label.py::test_label_binarizer", "sklearn/preprocessing/tests/test_label.py::test_label_binarizer_unseen_labels", "sklearn/tests/test_naive_bayes.py::test_discretenb_degenerate_one_class_case[False-False-MultinomialNB]", "sklearn/preprocessing/tests/test_label.py::test_label_binarizer_set_label_encoding", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[csr_array]", "sklearn/linear_model/tests/test_ridge.py::test_ridgeclassifier_multilabel[RidgeClassifierCV-params1]", "sklearn/preprocessing/tests/test_label.py::test_label_binarizer_pandas_nullable[True-Int64]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_decision_function_shape", "sklearn/preprocessing/tests/test_label.py::test_label_binarizer_pandas_nullable[True-Float64]", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[csc_matrix]", "sklearn/tests/test_naive_bayes.py::test_discretenb_degenerate_one_class_case[True-False-BernoulliNB]", "sklearn/preprocessing/tests/test_label.py::test_label_binarizer_pandas_nullable[True-boolean]", "sklearn/model_selection/tests/test_search.py::test_search_with_2d_array", "sklearn/linear_model/tests/test_ridge.py::test_ridgeclassifier_multilabel[RidgeClassifierCV-params2]", "sklearn/preprocessing/tests/test_label.py::test_label_binarizer_pandas_nullable[False-Int64]", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[csc_array]", "sklearn/preprocessing/tests/test_label.py::test_label_binarizer_pandas_nullable[False-Float64]", "sklearn/preprocessing/tests/test_label.py::test_label_binarizer_pandas_nullable[False-boolean]", "sklearn/neural_network/tests/test_mlp.py::test_alpha", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[coo_matrix]", "sklearn/preprocessing/tests/test_label.py::test_label_binarizer_errors", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_fit_score_takes_y]", "sklearn/preprocessing/tests/test_label.py::test_label_binarize_binary", "sklearn/neural_network/tests/test_mlp.py::test_fit", "sklearn/preprocessing/tests/test_label.py::test_label_binarize_multiclass", "sklearn/tests/test_naive_bayes.py::test_discretenb_degenerate_one_class_case[True-False-CategoricalNB]", "sklearn/preprocessing/tests/test_label.py::test_label_binarize_multilabel[array]", "sklearn/tests/test_naive_bayes.py::test_discretenb_degenerate_one_class_case[True-False-ComplementNB]", "sklearn/neural_network/tests/test_mlp.py::test_gradient", "sklearn/preprocessing/tests/test_label.py::test_label_binarize_multilabel[coo_matrix]", "sklearn/neural_network/tests/test_mlp.py::test_lbfgs_classification[X0-y0]", "sklearn/tests/test_naive_bayes.py::test_discretenb_degenerate_one_class_case[True-False-MultinomialNB]", "sklearn/preprocessing/tests/test_label.py::test_label_binarize_multilabel[coo_array]", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[coo_array]", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[dok_matrix]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_estimators_overwrite_params]", "sklearn/preprocessing/tests/test_label.py::test_label_binarize_multilabel[csc_matrix]", "sklearn/neural_network/tests/test_mlp.py::test_lbfgs_classification[X1-y1]", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[dok_array]", "sklearn/neural_network/tests/test_mlp.py::test_lbfgs_classification_maxfun[X0-y0]", "sklearn/neural_network/tests/test_mlp.py::test_lbfgs_classification_maxfun[X1-y1]", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[lil_matrix]", "sklearn/preprocessing/tests/test_label.py::test_label_binarize_multilabel[csc_array]", "sklearn/preprocessing/tests/test_label.py::test_label_binarize_multilabel[csr_matrix]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_sample_weights_not_an_array]", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_sparse[lil_array]", "sklearn/preprocessing/tests/test_label.py::test_label_binarize_multilabel[csr_array]", "sklearn/tests/test_multiclass.py::test_ovr_always_present", "sklearn/tests/test_multiclass.py::test_ovr_multiclass", "sklearn/tests/test_naive_bayes.py::test_mnnb[42-csr_matrix-dense]", "sklearn/tests/test_multiclass.py::test_ovr_binary", "sklearn/tests/test_naive_bayes.py::test_mnnb[42-csr_matrix-sparse]", "sklearn/tests/test_naive_bayes.py::test_mnnb[42-csr_array-dense]", "sklearn/tests/test_naive_bayes.py::test_mnnb[42-csr_array-sparse]", "sklearn/preprocessing/tests/test_label.py::test_label_binarize_multilabel[dok_matrix]", "sklearn/neural_network/tests/test_mlp.py::test_learning_rate_warmstart", "sklearn/tests/test_naive_bayes.py::test_bnb", "sklearn/tests/test_naive_bayes.py::test_bnb_feature_log_prob", "sklearn/tests/test_naive_bayes.py::test_cnb", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_sample_weights_list]", "sklearn/preprocessing/tests/test_label.py::test_label_binarize_multilabel[dok_array]", "sklearn/tests/test_multiclass.py::test_ovr_multilabel", "sklearn/neural_network/tests/test_mlp.py::test_multilabel_classification", "sklearn/tests/test_naive_bayes.py::test_categoricalnb[42]", "sklearn/preprocessing/tests/test_label.py::test_label_binarize_multilabel[lil_matrix]", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict_svc", "sklearn/preprocessing/tests/test_label.py::test_label_binarize_multilabel[lil_array]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_sparse_prediction[csr_matrix]", "sklearn/preprocessing/tests/test_label.py::test_label_encoders_do_not_have_set_output[encoder1]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_sample_weights_shape]", "sklearn/neural_network/tests/test_mlp.py::test_partial_fit_classes_error", "sklearn/tests/test_naive_bayes.py::test_categoricalnb_with_min_categories[3-exp_X1_count0-exp_X2_count0-new_X0-exp_n_categories_0]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_sparse_prediction[csr_array]", "sklearn/tests/test_multiclass.py::test_ovr_multilabel_dataset", "sklearn/neural_network/tests/test_mlp.py::test_partial_fit_classification", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_sample_weights_not_overwritten]", "sklearn/tests/test_multiclass.py::test_ovr_multilabel_predict_proba", "sklearn/tests/test_naive_bayes.py::test_categoricalnb_with_min_categories[min_categories1-exp_X1_count1-exp_X2_count1-new_X1-exp_n_categories_1]", "sklearn/tests/test_multiclass.py::test_ovr_single_label_predict_proba", "sklearn/tests/test_naive_bayes.py::test_categoricalnb_with_min_categories[1-exp_X1_count2-exp_X2_count2-new_X2-exp_n_categories_2]", "sklearn/tests/test_multiclass.py::test_ovr_multilabel_decision_function", "sklearn/feature_selection/tests/test_feature_select.py::test_tied_pvalues", "sklearn/tests/test_naive_bayes.py::test_categoricalnb_min_categories_errors[min_categories0-'min_categories' should have shape]", "sklearn/tests/test_multiclass.py::test_ovr_single_label_decision_function", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_naive_bayes.py::test_alpha[csr_matrix]", "sklearn/feature_selection/tests/test_feature_select.py::test_scorefunc_multilabel", "sklearn/tests/test_multiclass.py::test_ovr_gridsearch", "sklearn/tests/test_naive_bayes.py::test_alpha[csr_array]", "sklearn/feature_selection/tests/test_feature_select.py::test_tied_scores", "sklearn/neural_network/tests/test_mlp.py::test_partial_fit_unseen_classes", "sklearn/tests/test_multiclass.py::test_ovr_pipeline", "sklearn/tests/test_naive_bayes.py::test_alpha_vector", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_naive_bayes.py::test_check_accuracy_on_digits", "sklearn/tests/test_multiclass.py::test_ovo_fit_predict", "sklearn/tests/test_multiclass.py::test_ovo_partial_fit_predict", "sklearn/tests/test_naive_bayes.py::test_predict_joint_proba[42-BernoulliNB]", "sklearn/tests/test_naive_bayes.py::test_predict_joint_proba[42-CategoricalNB]", "sklearn/tests/test_naive_bayes.py::test_predict_joint_proba[42-ComplementNB]", "sklearn/tests/test_multioutput.py::test_multiclass_multioutput_estimator", "sklearn/tests/test_multiclass.py::test_ecoc_fit_predict", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_estimators_fit_returns_self]", "sklearn/neural_network/tests/test_mlp.py::test_predict_proba_binary", "sklearn/tests/test_naive_bayes.py::test_predict_joint_proba[42-MultinomialNB]", "sklearn/neural_network/tests/test_mlp.py::test_predict_proba_multiclass", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/neural_network/tests/test_mlp.py::test_predict_proba_multilabel", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_dtype_object]", "sklearn/neural_network/tests/test_mlp.py::test_sparse_matrices[csr_matrix]", "sklearn/neural_network/tests/test_mlp.py::test_sparse_matrices[csr_array]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_with_method_multilabel_ovr", "sklearn/neural_network/tests/test_mlp.py::test_tolerance", "sklearn/tests/test_multiclass.py::test_pairwise_n_features_in", "sklearn/neural_network/tests/test_mlp.py::test_verbose_sgd", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_pipeline_consistency]", "sklearn/neural_network/tests/test_mlp.py::test_early_stopping[MLPClassifier]", "sklearn/tests/test_multiclass.py::test_pairwise_cross_val_score[OneVsRestClassifier]", "sklearn/neural_network/tests/test_mlp.py::test_adaptive_learning_rate", "sklearn/tests/test_multioutput.py::test_classifier_chain_vs_independent_models", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_estimators_nan_inf]", "sklearn/neural_network/tests/test_mlp.py::test_warm_start", "sklearn/neural_network/tests/test_mlp.py::test_warm_start_full_iteration[MLPClassifier]", "sklearn/tests/test_multiclass.py::test_support_missing_values[OneVsRestClassifier]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_estimator_sparse_array]", "sklearn/feature_extraction/tests/test_dict_vectorizer.py::test_feature_selection", "sklearn/tests/test_multiclass.py::test_constant_int_target[ones]", "sklearn/tests/test_multiclass.py::test_constant_int_target[zeros]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_estimator_sparse_matrix]", "sklearn/neural_network/tests/test_mlp.py::test_n_iter_no_change", "sklearn/neural_network/tests/test_mlp.py::test_n_iter_no_change_inf", "sklearn/neural_network/tests/test_mlp.py::test_early_stopping_stratified", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_predict_proba[MLPClassifier]", "sklearn/neural_network/tests/test_mlp.py::test_mlp_classifier_dtypes_casting", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[no-intercept-two-classes-squared_hinge-csr_matrix]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_estimators_pickle]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[no-intercept-two-classes-squared_hinge-csr_array]", "sklearn/neural_network/tests/test_mlp.py::test_mlp_param_dtypes[MLPClassifier-float32]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[no-intercept-two-classes-squared_hinge-array]", "sklearn/gaussian_process/tests/test_gpc.py::test_custom_optimizer[42-kernel0]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[no-intercept-two-classes-log-csr_matrix]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[no-intercept-two-classes-log-csr_array]", "sklearn/neural_network/tests/test_mlp.py::test_mlp_param_dtypes[MLPClassifier-float64]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[no-intercept-two-classes-log-array]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[no-intercept-multi-class-squared_hinge-csr_matrix]", "sklearn/gaussian_process/tests/test_gpc.py::test_custom_optimizer[42-kernel1]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[no-intercept-multi-class-squared_hinge-csr_array]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[no-intercept-multi-class-squared_hinge-array]", "sklearn/gaussian_process/tests/test_gpc.py::test_custom_optimizer[42-kernel2]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[no-intercept-multi-class-log-csr_matrix]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[no-intercept-multi-class-log-csr_array]", "sklearn/gaussian_process/tests/test_gpc.py::test_multi_class[kernel0]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[no-intercept-multi-class-log-array]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_f_contiguous_array_estimator]", "sklearn/gaussian_process/tests/test_gpc.py::test_multi_class[kernel1]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[fit-intercept-two-classes-squared_hinge-csr_matrix]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[fit-intercept-two-classes-squared_hinge-csr_array]", "sklearn/gaussian_process/tests/test_gpc.py::test_multi_class[kernel2]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[fit-intercept-two-classes-squared_hinge-array]", "sklearn/neural_network/tests/test_mlp.py::test_preserve_feature_names[MLPClassifier]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[fit-intercept-two-classes-log-csr_matrix]", "sklearn/gaussian_process/tests/test_gpc.py::test_multi_class[kernel3]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_classifier_data_not_an_array]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[fit-intercept-two-classes-log-csr_array]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[fit-intercept-two-classes-log-array]", "sklearn/neural_network/tests/test_mlp.py::test_mlp_warm_start_with_early_stopping[MLPClassifier]", "sklearn/gaussian_process/tests/test_gpc.py::test_multi_class_n_jobs[kernel0]", "sklearn/neural_network/tests/test_mlp.py::test_mlp_warm_start_no_convergence[sgd-MLPClassifier]", "sklearn/gaussian_process/tests/test_gpc.py::test_multi_class_n_jobs[kernel1]", "sklearn/gaussian_process/tests/test_gpc.py::test_multi_class_n_jobs[kernel2]", "sklearn/neural_network/tests/test_mlp.py::test_mlp_warm_start_no_convergence[adam-MLPClassifier]", "sklearn/gaussian_process/tests/test_gpc.py::test_multi_class_n_jobs[kernel3]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[fit-intercept-multi-class-squared_hinge-csr_matrix]", "sklearn/neural_network/tests/test_mlp.py::test_mlp_warm_start_no_convergence[lbfgs-MLPClassifier]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_decision_function", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[fit-intercept-multi-class-squared_hinge-csr_array]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[fit-intercept-multi-class-squared_hinge-array]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_classifiers_one_label]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[fit-intercept-multi-class-log-csr_matrix]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[fit-intercept-multi-class-log-csr_array]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[fit-intercept-multi-class-log-array]", "sklearn/svm/tests/test_bounds.py::test_ill_posed_min_c", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_classifiers_one_label_sample_weights]", "sklearn/neural_network/tests/test_mlp.py::test_mlp_partial_fit_after_fit[MLPClassifier]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_classifiers_classes]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_auto_predict[False-auto]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_classifiers_train]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_auto_predict[False-predict]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_auto_predict[True-auto]", "sklearn/linear_model/tests/test_sag.py::test_sag_multiclass_computed_correctly[csr_matrix]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_classifiers_train(readonly_memmap=True)]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_auto_predict[True-predict]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/linear_model/tests/test_sag.py::test_sag_multiclass_computed_correctly[csr_array]", "sklearn/metrics/_classification.py::sklearn.metrics._classification.hinge_loss", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_supervised_y_2d]", "sklearn/metrics/_classification.py::sklearn.metrics._classification.log_loss", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_methods_sample_order_invariance]", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[OneVsRestClassifier]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_dict_unchanged]", "sklearn/metrics/_ranking.py::sklearn.metrics._ranking.roc_auc_score", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_dont_overwrite_parameters]", "sklearn/feature_selection/_univariate_selection.py::sklearn.feature_selection._univariate_selection.GenericUnivariateSelect", "sklearn/feature_selection/_univariate_selection.py::sklearn.feature_selection._univariate_selection.SelectFdr", "sklearn/feature_selection/_univariate_selection.py::sklearn.feature_selection._univariate_selection.SelectFpr", "sklearn/feature_selection/_univariate_selection.py::sklearn.feature_selection._univariate_selection.SelectFwe", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_fit_idempotent]", "sklearn/feature_selection/_univariate_selection.py::sklearn.feature_selection._univariate_selection.SelectKBest", "sklearn/feature_selection/_univariate_selection.py::sklearn.feature_selection._univariate_selection.SelectPercentile", "sklearn/feature_selection/_univariate_selection.py::sklearn.feature_selection._univariate_selection.chi2", "sklearn/feature_selection/tests/test_chi2.py::test_chi2[csr_matrix]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_fit_check_is_fitted]", "sklearn/feature_selection/tests/test_chi2.py::test_chi2[csr_array]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_n_features_in]", "sklearn/feature_selection/tests/test_chi2.py::test_chi2_coo[coo_matrix]", "sklearn/feature_selection/tests/test_chi2.py::test_chi2_coo[coo_array]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[ComplementNB()-check_fit_non_negative]", "sklearn/feature_selection/tests/test_chi2.py::test_chi2_unused_feature", "sklearn/naive_bayes.py::sklearn.naive_bayes.BernoulliNB", "sklearn/naive_bayes.py::sklearn.naive_bayes.CategoricalNB", "sklearn/naive_bayes.py::sklearn.naive_bayes.ComplementNB", "sklearn/naive_bayes.py::sklearn.naive_bayes.MultinomialNB", "sklearn/linear_model/_ridge.py::sklearn.linear_model._ridge.RidgeClassifier", "sklearn/linear_model/_ridge.py::sklearn.linear_model._ridge.RidgeClassifierCV", "sklearn/preprocessing/_label.py::sklearn.preprocessing._label.LabelBinarizer", "sklearn/gaussian_process/kernels.py::sklearn.gaussian_process.kernels.Matern", "sklearn/gaussian_process/kernels.py::sklearn.gaussian_process.kernels.PairwiseKernel", "sklearn/gaussian_process/kernels.py::sklearn.gaussian_process.kernels.RBF", "sklearn/gaussian_process/kernels.py::sklearn.gaussian_process.kernels.RationalQuadratic", "sklearn/multiclass.py::sklearn.multiclass.OneVsRestClassifier", "sklearn/feature_extraction/_dict_vectorizer.py::sklearn.feature_extraction._dict_vectorizer.DictVectorizer.restrict", "sklearn/tests/test_calibration.py::test_calibration_prefit[csr_matrix]", "sklearn/tests/test_calibration.py::test_calibration_prefit[csr_array]", "sklearn/neural_network/_multilayer_perceptron.py::sklearn.neural_network._multilayer_perceptron.MLPClassifier", "sklearn/gaussian_process/_gpc.py::sklearn.gaussian_process._gpc.GaussianProcessClassifier", "sklearn/svm/_bounds.py::sklearn.svm._bounds.l1_min_c", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[GaussianProcessClassifier()-check_fit2d_predict1d]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_non_consuming_estimator_works[OneVsRestClassifier]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_metadata_is_routed_correctly_to_scorer[RidgeClassifierCV0]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_metadata_is_routed_correctly_to_scorer[RidgeClassifierCV1]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_metadata_is_routed_correctly_to_splitter[RidgeClassifierCV1]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_estimators_partial_fit_n_features]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_classifiers_multilabel_representation_invariance]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_classifiers_multilabel_output_format_predict]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_classifiers_multilabel_output_format_predict_proba]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_non_transformer_estimators_n_iter]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[MultinomialNB()-check_fit_non_negative]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_classifier_multioutput]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_classifiers_multilabel_representation_invariance]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_classifiers_multilabel_output_format_predict]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_classifiers_multilabel_output_format_decision_function]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_class_weight_classifiers]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_class_weight_balanced_linear_classifier0]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_class_weight_balanced_linear_classifier1]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifier()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_classifiers_multilabel_representation_invariance]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_classifiers_multilabel_output_format_predict]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_classifiers_multilabel_output_format_decision_function]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_class_weight_classifiers]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_class_weight_balanced_linear_classifier0]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_class_weight_balanced_linear_classifier1]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[RidgeClassifierCV()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[TargetEncoder(cv=3)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[TargetEncoder(cv=3)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[TargetEncoder(cv=3)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[TargetEncoder(cv=3)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[TargetEncoder(cv=3)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[TargetEncoder(cv=3)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[TargetEncoder(cv=3)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[TargetEncoder(cv=3)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[TargetEncoder(cv=3)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[TargetEncoder(cv=3)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[TargetEncoder(cv=3)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[BernoulliNB()]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[CategoricalNB()]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[ComplementNB()]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[MLPClassifier(max_iter=100)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[MultinomialNB()]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[OneVsRestClassifier(estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[RidgeClassifier()]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[RidgeClassifierCV()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[BernoulliNB()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[CategoricalNB()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[ComplementNB()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[MLPClassifier(max_iter=100)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[MultinomialNB()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[OneVsRestClassifier(estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RidgeClassifier()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RidgeClassifierCV()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[RidgeClassifier()]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-86
1.0
{ "code": "diff --git b/sklearn/preprocessing/_label.py a/sklearn/preprocessing/_label.py\nindex 84c9ead16..345d55556 100644\n--- b/sklearn/preprocessing/_label.py\n+++ a/sklearn/preprocessing/_label.py\n@@ -146,6 +146,22 @@ class LabelEncoder(TransformerMixin, BaseEstimator, auto_wrap_output_keys=None):\n y : ndarray of shape (n_samples,)\n Original encoding.\n \"\"\"\n+ check_is_fitted(self)\n+ xp, _ = get_namespace(y)\n+ y = column_or_1d(y, warn=True)\n+ # inverse transform of empty array is empty array\n+ if _num_samples(y) == 0:\n+ return xp.asarray([])\n+\n+ diff = _setdiff1d(\n+ ar1=y,\n+ ar2=xp.arange(self.classes_.shape[0], device=device(y)),\n+ xp=xp,\n+ )\n+ if diff.shape[0]:\n+ raise ValueError(\"y contains previously unseen labels: %s\" % str(diff))\n+ y = xp.asarray(y)\n+ return xp.take(self.classes_, y, axis=0)\n \n def __sklearn_tags__(self):\n tags = super().__sklearn_tags__()\n", "test": null }
null
{ "code": "diff --git a/sklearn/preprocessing/_label.py b/sklearn/preprocessing/_label.py\nindex 345d55556..84c9ead16 100644\n--- a/sklearn/preprocessing/_label.py\n+++ b/sklearn/preprocessing/_label.py\n@@ -146,22 +146,6 @@ class LabelEncoder(TransformerMixin, BaseEstimator, auto_wrap_output_keys=None):\n y : ndarray of shape (n_samples,)\n Original encoding.\n \"\"\"\n- check_is_fitted(self)\n- xp, _ = get_namespace(y)\n- y = column_or_1d(y, warn=True)\n- # inverse transform of empty array is empty array\n- if _num_samples(y) == 0:\n- return xp.asarray([])\n-\n- diff = _setdiff1d(\n- ar1=y,\n- ar2=xp.arange(self.classes_.shape[0], device=device(y)),\n- xp=xp,\n- )\n- if diff.shape[0]:\n- raise ValueError(\"y contains previously unseen labels: %s\" % str(diff))\n- y = xp.asarray(y)\n- return xp.take(self.classes_, y, axis=0)\n \n def __sklearn_tags__(self):\n tags = super().__sklearn_tags__()\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/preprocessing/_label.py.\nHere is the description for the function:\n def inverse_transform(self, y):\n \"\"\"Transform labels back to original encoding.\n\n Parameters\n ----------\n y : array-like of shape (n_samples,)\n Target values.\n\n Returns\n -------\n y : ndarray of shape (n_samples,)\n Original encoding.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/linear_model/tests/test_logistic.py::test_multinomial_logistic_regression_string_inputs", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[False-None-3]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[False-None-cv1]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[False-final_estimator1-3]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[False-final_estimator1-cv1]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[True-None-3]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[True-None-cv1]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[True-final_estimator1-3]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[True-final_estimator1-cv1]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_drop_estimator", "sklearn/preprocessing/tests/test_label.py::test_label_encoder[int64]", "sklearn/preprocessing/tests/test_label.py::test_label_encoder[object]", "sklearn/preprocessing/tests/test_label.py::test_label_encoder[str]", "sklearn/preprocessing/tests/test_label.py::test_label_encoder_negative_ints", "sklearn/preprocessing/tests/test_label.py::test_label_encoder_errors", "sklearn/preprocessing/tests/test_label.py::test_label_encoder_empty_array[int64]", "sklearn/preprocessing/tests/test_label.py::test_label_encoder_empty_array[object]", "sklearn/preprocessing/tests/test_label.py::test_label_encoder_empty_array[str]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_with_sample_weight[StackingClassifier]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_predict_proba[MLPClassifier]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_predict_proba[RandomForestClassifier]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_decision_function", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_auto_predict[False-auto]", "sklearn/ensemble/tests/test_voting.py::test_majority_label_iris[42]", "sklearn/ensemble/tests/test_voting.py::test_tie_situation", "sklearn/ensemble/tests/test_voting.py::test_weights_iris[42]", "sklearn/ensemble/tests/test_voting.py::test_predict_on_toy_problem[42]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_auto_predict[False-predict]", "sklearn/ensemble/tests/test_voting.py::test_parallel_fit[42]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_auto_predict[True-auto]", "sklearn/ensemble/tests/test_voting.py::test_sample_weight[42]", "sklearn/ensemble/tests/test_voting.py::test_voting_classifier_set_params[42]", "sklearn/ensemble/tests/test_voting.py::test_set_estimator_drop", "sklearn/ensemble/tests/test_voting.py::test_none_estimator_with_weights[X0-y0-voter0]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_auto_predict[True-predict]", "sklearn/ensemble/tests/test_common.py::test_heterogeneous_ensemble_support_missing_values[StackingClassifier-LogisticRegression-X0-y0]", "sklearn/ensemble/tests/test_common.py::test_heterogeneous_ensemble_support_missing_values[VotingClassifier-LogisticRegression-X2-y2]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_base_regressor", "sklearn/ensemble/tests/test_stacking.py::test_metadata_routing_for_stacking_estimators[sample_weight-prop_value0-StackingClassifier-ConsumingClassifier]", "sklearn/ensemble/tests/test_stacking.py::test_metadata_routing_for_stacking_estimators[metadata-a-StackingClassifier-ConsumingClassifier]", "sklearn/preprocessing/_label.py::sklearn.preprocessing._label.LabelEncoder", "sklearn/ensemble/_voting.py::sklearn.ensemble._voting.VotingClassifier", "sklearn/ensemble/_stacking.py::sklearn.ensemble._stacking.StackingClassifier", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit_idempotent]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[VotingClassifier(estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-87
1.0
{ "code": "diff --git b/sklearn/linear_model/_least_angle.py a/sklearn/linear_model/_least_angle.py\nindex 1d7347217..403090f85 100644\n--- b/sklearn/linear_model/_least_angle.py\n+++ a/sklearn/linear_model/_least_angle.py\n@@ -2218,6 +2218,7 @@ class LassoLarsIC(LassoLars):\n tags.target_tags.multi_output = False\n return tags\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y, copy_X=None):\n \"\"\"Fit the model using X, y as training data.\n \n@@ -2239,6 +2240,74 @@ class LassoLarsIC(LassoLars):\n self : object\n Returns an instance of self.\n \"\"\"\n+ if copy_X is None:\n+ copy_X = self.copy_X\n+ X, y = validate_data(self, X, y, force_writeable=True, y_numeric=True)\n+\n+ X, y, Xmean, ymean, Xstd = _preprocess_data(\n+ X, y, fit_intercept=self.fit_intercept, copy=copy_X\n+ )\n+\n+ Gram = self.precompute\n+\n+ alphas_, _, coef_path_, self.n_iter_ = lars_path(\n+ X,\n+ y,\n+ Gram=Gram,\n+ copy_X=copy_X,\n+ copy_Gram=True,\n+ alpha_min=0.0,\n+ method=\"lasso\",\n+ verbose=self.verbose,\n+ max_iter=self.max_iter,\n+ eps=self.eps,\n+ return_n_iter=True,\n+ positive=self.positive,\n+ )\n+\n+ n_samples = X.shape[0]\n+\n+ if self.criterion == \"aic\":\n+ criterion_factor = 2\n+ elif self.criterion == \"bic\":\n+ criterion_factor = log(n_samples)\n+ else:\n+ raise ValueError(\n+ f\"criterion should be either bic or aic, got {self.criterion!r}\"\n+ )\n+\n+ residuals = y[:, np.newaxis] - np.dot(X, coef_path_)\n+ residuals_sum_squares = np.sum(residuals**2, axis=0)\n+ degrees_of_freedom = np.zeros(coef_path_.shape[1], dtype=int)\n+ for k, coef in enumerate(coef_path_.T):\n+ mask = np.abs(coef) > np.finfo(coef.dtype).eps\n+ if not np.any(mask):\n+ continue\n+ # get the number of degrees of freedom equal to:\n+ # Xc = X[:, mask]\n+ # Trace(Xc * inv(Xc.T, Xc) * Xc.T) ie the number of non-zero coefs\n+ degrees_of_freedom[k] = np.sum(mask)\n+\n+ self.alphas_ = alphas_\n+\n+ if self.noise_variance is None:\n+ self.noise_variance_ = self._estimate_noise_variance(\n+ X, y, positive=self.positive\n+ )\n+ else:\n+ self.noise_variance_ = self.noise_variance\n+\n+ self.criterion_ = (\n+ n_samples * np.log(2 * np.pi * self.noise_variance_)\n+ + residuals_sum_squares / self.noise_variance_\n+ + criterion_factor * degrees_of_freedom\n+ )\n+ n_best = np.argmin(self.criterion_)\n+\n+ self.alpha_ = alphas_[n_best]\n+ self.coef_ = coef_path_[:, n_best]\n+ self._set_intercept(Xmean, ymean, Xstd)\n+ return self\n \n def _estimate_noise_variance(self, X, y, positive):\n \"\"\"Compute an estimate of the variance with an OLS model.\n", "test": null }
null
{ "code": "diff --git a/sklearn/linear_model/_least_angle.py b/sklearn/linear_model/_least_angle.py\nindex 403090f85..1d7347217 100644\n--- a/sklearn/linear_model/_least_angle.py\n+++ b/sklearn/linear_model/_least_angle.py\n@@ -2218,7 +2218,6 @@ class LassoLarsIC(LassoLars):\n tags.target_tags.multi_output = False\n return tags\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y, copy_X=None):\n \"\"\"Fit the model using X, y as training data.\n \n@@ -2240,74 +2239,6 @@ class LassoLarsIC(LassoLars):\n self : object\n Returns an instance of self.\n \"\"\"\n- if copy_X is None:\n- copy_X = self.copy_X\n- X, y = validate_data(self, X, y, force_writeable=True, y_numeric=True)\n-\n- X, y, Xmean, ymean, Xstd = _preprocess_data(\n- X, y, fit_intercept=self.fit_intercept, copy=copy_X\n- )\n-\n- Gram = self.precompute\n-\n- alphas_, _, coef_path_, self.n_iter_ = lars_path(\n- X,\n- y,\n- Gram=Gram,\n- copy_X=copy_X,\n- copy_Gram=True,\n- alpha_min=0.0,\n- method=\"lasso\",\n- verbose=self.verbose,\n- max_iter=self.max_iter,\n- eps=self.eps,\n- return_n_iter=True,\n- positive=self.positive,\n- )\n-\n- n_samples = X.shape[0]\n-\n- if self.criterion == \"aic\":\n- criterion_factor = 2\n- elif self.criterion == \"bic\":\n- criterion_factor = log(n_samples)\n- else:\n- raise ValueError(\n- f\"criterion should be either bic or aic, got {self.criterion!r}\"\n- )\n-\n- residuals = y[:, np.newaxis] - np.dot(X, coef_path_)\n- residuals_sum_squares = np.sum(residuals**2, axis=0)\n- degrees_of_freedom = np.zeros(coef_path_.shape[1], dtype=int)\n- for k, coef in enumerate(coef_path_.T):\n- mask = np.abs(coef) > np.finfo(coef.dtype).eps\n- if not np.any(mask):\n- continue\n- # get the number of degrees of freedom equal to:\n- # Xc = X[:, mask]\n- # Trace(Xc * inv(Xc.T, Xc) * Xc.T) ie the number of non-zero coefs\n- degrees_of_freedom[k] = np.sum(mask)\n-\n- self.alphas_ = alphas_\n-\n- if self.noise_variance is None:\n- self.noise_variance_ = self._estimate_noise_variance(\n- X, y, positive=self.positive\n- )\n- else:\n- self.noise_variance_ = self.noise_variance\n-\n- self.criterion_ = (\n- n_samples * np.log(2 * np.pi * self.noise_variance_)\n- + residuals_sum_squares / self.noise_variance_\n- + criterion_factor * degrees_of_freedom\n- )\n- n_best = np.argmin(self.criterion_)\n-\n- self.alpha_ = alphas_[n_best]\n- self.coef_ = coef_path_[:, n_best]\n- self._set_intercept(Xmean, ymean, Xstd)\n- return self\n \n def _estimate_noise_variance(self, X, y, positive):\n \"\"\"Compute an estimate of the variance with an OLS model.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/linear_model/_least_angle.py.\nHere is the description for the function:\n def fit(self, X, y, copy_X=None):\n \"\"\"Fit the model using X, y as training data.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n Training data.\n\n y : array-like of shape (n_samples,)\n Target values. Will be cast to X's dtype if necessary.\n\n copy_X : bool, default=None\n If provided, this parameter will override the choice\n of copy_X made at instance creation.\n If ``True``, X will be copied; else, it may be overwritten.\n\n Returns\n -------\n self : object\n Returns an instance of self.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/linear_model/tests/test_least_angle.py::test_lars_precompute[LassoLarsIC]", "sklearn/linear_model/tests/test_least_angle.py::test_lasso_lars_ic", "sklearn/linear_model/tests/test_least_angle.py::test_estimatorclasses_positive_constraint", "sklearn/linear_model/tests/test_least_angle.py::test_lasso_lars_copyX_behaviour[True]", "sklearn/linear_model/tests/test_least_angle.py::test_lasso_lars_copyX_behaviour[False]", "sklearn/linear_model/tests/test_least_angle.py::test_lasso_lars_fit_copyX_behaviour[True]", "sklearn/linear_model/tests/test_least_angle.py::test_lasso_lars_fit_copyX_behaviour[False]", "sklearn/linear_model/tests/test_least_angle.py::test_lars_dtype_match[float32-LassoLarsIC-False-args2]", "sklearn/linear_model/tests/test_least_angle.py::test_lars_dtype_match[float64-LassoLarsIC-False-args2]", "sklearn/linear_model/tests/test_least_angle.py::test_lars_numeric_consistency[LassoLarsIC-False-args2]", "sklearn/linear_model/tests/test_least_angle.py::test_lassolarsic_alpha_selection[aic]", "sklearn/linear_model/tests/test_least_angle.py::test_lassolarsic_alpha_selection[bic]", "sklearn/linear_model/tests/test_least_angle.py::test_lassolarsic_noise_variance[True]", "sklearn/linear_model/tests/test_least_angle.py::test_lassolarsic_noise_variance[False]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-False-LassoLarsIC]", "sklearn/linear_model/_least_angle.py::sklearn.linear_model._least_angle.LassoLarsIC", "sklearn/tests/test_common.py::test_estimators[LassoLarsIC(max_iter=5,noise_variance=1.0)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[LassoLarsIC(max_iter=5,noise_variance=1.0)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[LassoLarsIC(max_iter=5,noise_variance=1.0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[LassoLarsIC(max_iter=5,noise_variance=1.0)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[LassoLarsIC(max_iter=5,noise_variance=1.0)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[LassoLarsIC(max_iter=5,noise_variance=1.0)-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[LassoLarsIC(max_iter=5,noise_variance=1.0)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[LassoLarsIC(max_iter=5,noise_variance=1.0)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[LassoLarsIC(max_iter=5,noise_variance=1.0)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[LassoLarsIC(max_iter=5,noise_variance=1.0)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[LassoLarsIC(max_iter=5,noise_variance=1.0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[LassoLarsIC(max_iter=5,noise_variance=1.0)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[LassoLarsIC(max_iter=5,noise_variance=1.0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[LassoLarsIC(max_iter=5,noise_variance=1.0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[LassoLarsIC(max_iter=5,noise_variance=1.0)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[LassoLarsIC(max_iter=5,noise_variance=1.0)-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[LassoLarsIC(max_iter=5,noise_variance=1.0)-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[LassoLarsIC(max_iter=5,noise_variance=1.0)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[LassoLarsIC(max_iter=5,noise_variance=1.0)-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[LassoLarsIC(max_iter=5,noise_variance=1.0)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[LassoLarsIC(max_iter=5,noise_variance=1.0)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[LassoLarsIC(max_iter=5,noise_variance=1.0)-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[LassoLarsIC(max_iter=5,noise_variance=1.0)-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[LassoLarsIC(max_iter=5,noise_variance=1.0)-check_non_transformer_estimators_n_iter]", "sklearn/tests/test_common.py::test_estimators[LassoLarsIC(max_iter=5,noise_variance=1.0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[LassoLarsIC(max_iter=5,noise_variance=1.0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[LassoLarsIC(max_iter=5,noise_variance=1.0)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[LassoLarsIC(max_iter=5,noise_variance=1.0)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[LassoLarsIC(max_iter=5,noise_variance=1.0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[LassoLarsIC(max_iter=5,noise_variance=1.0)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[LassoLarsIC(max_iter=5,noise_variance=1.0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[LassoLarsIC(max_iter=5,noise_variance=1.0)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[LassoLarsIC(max_iter=5,noise_variance=1.0)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[LassoLarsIC(max_iter=5,noise_variance=1.0)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[LassoLarsIC(max_iter=5,noise_variance=1.0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[LassoLarsIC(max_iter=5,noise_variance=1.0)-check_requires_y_none]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[LassoLarsIC(max_iter=5,noise_variance=1.0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[LassoLarsIC(max_iter=5,noise_variance=1.0)]", "sklearn/tests/test_common.py::test_check_param_validation[LassoLarsIC(max_iter=5,noise_variance=1.0)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[LassoLarsIC(max_iter=5,noise_variance=1.0)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-88
1.0
{ "code": "diff --git b/sklearn/decomposition/_lda.py a/sklearn/decomposition/_lda.py\nindex ac966a105..0082272a1 100644\n--- b/sklearn/decomposition/_lda.py\n+++ a/sklearn/decomposition/_lda.py\n@@ -872,6 +872,28 @@ class LatentDirichletAllocation(\n score : float\n Perplexity score.\n \"\"\"\n+ if doc_topic_distr is None:\n+ doc_topic_distr = self._unnormalized_transform(X)\n+ else:\n+ n_samples, n_components = doc_topic_distr.shape\n+ if n_samples != X.shape[0]:\n+ raise ValueError(\n+ \"Number of samples in X and doc_topic_distr do not match.\"\n+ )\n+\n+ if n_components != self.n_components:\n+ raise ValueError(\"Number of topics does not match.\")\n+\n+ current_samples = X.shape[0]\n+ bound = self._approx_bound(X, doc_topic_distr, sub_sampling)\n+\n+ if sub_sampling:\n+ word_cnt = X.sum() * (float(self.total_samples) / current_samples)\n+ else:\n+ word_cnt = X.sum()\n+ perword_bound = bound / word_cnt\n+\n+ return np.exp(-1.0 * perword_bound)\n \n def perplexity(self, X, sub_sampling=False):\n \"\"\"Calculate approximate perplexity for data X.\n", "test": null }
null
{ "code": "diff --git a/sklearn/decomposition/_lda.py b/sklearn/decomposition/_lda.py\nindex 0082272a1..ac966a105 100644\n--- a/sklearn/decomposition/_lda.py\n+++ b/sklearn/decomposition/_lda.py\n@@ -872,28 +872,6 @@ class LatentDirichletAllocation(\n score : float\n Perplexity score.\n \"\"\"\n- if doc_topic_distr is None:\n- doc_topic_distr = self._unnormalized_transform(X)\n- else:\n- n_samples, n_components = doc_topic_distr.shape\n- if n_samples != X.shape[0]:\n- raise ValueError(\n- \"Number of samples in X and doc_topic_distr do not match.\"\n- )\n-\n- if n_components != self.n_components:\n- raise ValueError(\"Number of topics does not match.\")\n-\n- current_samples = X.shape[0]\n- bound = self._approx_bound(X, doc_topic_distr, sub_sampling)\n-\n- if sub_sampling:\n- word_cnt = X.sum() * (float(self.total_samples) / current_samples)\n- else:\n- word_cnt = X.sum()\n- perword_bound = bound / word_cnt\n-\n- return np.exp(-1.0 * perword_bound)\n \n def perplexity(self, X, sub_sampling=False):\n \"\"\"Calculate approximate perplexity for data X.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/decomposition/_lda.py.\nHere is the description for the function:\n def _perplexity_precomp_distr(self, X, doc_topic_distr=None, sub_sampling=False):\n \"\"\"Calculate approximate perplexity for data X with ability to accept\n precomputed doc_topic_distr\n\n Perplexity is defined as exp(-1. * log-likelihood per word)\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n Document word matrix.\n\n doc_topic_distr : ndarray of shape (n_samples, n_components), \\\n default=None\n Document topic distribution.\n If it is None, it will be generated by applying transform on X.\n\n Returns\n -------\n score : float\n Perplexity score.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/decomposition/tests/test_online_lda.py::test_lda_default_prior_params[csr_matrix]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_default_prior_params[csr_array]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_fit_batch[csr_matrix]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_fit_batch[csr_array]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_fit_online[csr_matrix]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_fit_online[csr_array]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_dense_input[csr_matrix]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_dense_input[csr_array]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_transform", "sklearn/decomposition/tests/test_online_lda.py::test_lda_fit_transform[online]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_fit_transform[batch]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_multi_jobs[online-csr_matrix]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_multi_jobs[online-csr_array]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_multi_jobs[batch-csr_matrix]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_multi_jobs[batch-csr_array]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_preplexity_mismatch", "sklearn/decomposition/tests/test_online_lda.py::test_lda_perplexity[csr_matrix-online]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_perplexity[csr_matrix-batch]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_perplexity[csr_array-online]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_perplexity[csr_array-batch]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_score[csr_matrix-online]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_score[csr_matrix-batch]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_score[csr_array-online]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_score[csr_array-batch]", "sklearn/decomposition/tests/test_online_lda.py::test_perplexity_input_format[csr_matrix]", "sklearn/decomposition/tests/test_online_lda.py::test_perplexity_input_format[csr_array]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_score_perplexity[csr_matrix]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_score_perplexity[csr_array]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_fit_perplexity[csr_matrix]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_fit_perplexity[csr_array]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_empty_docs[csr_matrix]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_empty_docs[csr_array]", "sklearn/decomposition/tests/test_online_lda.py::test_verbosity[csr_matrix-False-1-0-0]", "sklearn/decomposition/tests/test_online_lda.py::test_verbosity[csr_matrix-False-0-0-0]", "sklearn/decomposition/tests/test_online_lda.py::test_verbosity[csr_matrix-True-0-3-0]", "sklearn/decomposition/tests/test_online_lda.py::test_verbosity[csr_matrix-True-1-3-3]", "sklearn/decomposition/tests/test_online_lda.py::test_verbosity[csr_matrix-True-2-3-1]", "sklearn/decomposition/tests/test_online_lda.py::test_verbosity[csr_array-False-1-0-0]", "sklearn/decomposition/tests/test_online_lda.py::test_verbosity[csr_array-False-0-0-0]", "sklearn/decomposition/tests/test_online_lda.py::test_verbosity[csr_array-True-0-3-0]", "sklearn/decomposition/tests/test_online_lda.py::test_verbosity[csr_array-True-1-3-3]", "sklearn/decomposition/tests/test_online_lda.py::test_verbosity[csr_array-True-2-3-1]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_feature_names_out[csr_matrix]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_feature_names_out[csr_array]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_dtype_match[float64-batch]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_dtype_match[float64-online]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_numerical_consistency[42-batch]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_numerical_consistency[42-online]", "sklearn/decomposition/_lda.py::sklearn.decomposition._lda.LatentDirichletAllocation", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_transformer_n_iter]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5,n_components=1)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[LatentDirichletAllocation(batch_size=10,max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[LatentDirichletAllocation(batch_size=10,max_iter=5)]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[LatentDirichletAllocation(batch_size=10,max_iter=5)]", "sklearn/tests/test_common.py::test_set_output_transform[LatentDirichletAllocation(batch_size=10,max_iter=5)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-LatentDirichletAllocation(batch_size=10,max_iter=5)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-LatentDirichletAllocation(batch_size=10,max_iter=5)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-89
1.0
{ "code": "diff --git b/sklearn/decomposition/_lda.py a/sklearn/decomposition/_lda.py\nindex bb840765d..0082272a1 100644\n--- b/sklearn/decomposition/_lda.py\n+++ a/sklearn/decomposition/_lda.py\n@@ -623,6 +623,7 @@ class LatentDirichletAllocation(\n \n return self\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None):\n \"\"\"Learn model for the data X with variational Bayes method.\n \n@@ -642,6 +643,68 @@ class LatentDirichletAllocation(\n self\n Fitted estimator.\n \"\"\"\n+ X = self._check_non_neg_array(\n+ X, reset_n_features=True, whom=\"LatentDirichletAllocation.fit\"\n+ )\n+ n_samples, n_features = X.shape\n+ max_iter = self.max_iter\n+ evaluate_every = self.evaluate_every\n+ learning_method = self.learning_method\n+\n+ batch_size = self.batch_size\n+\n+ # initialize parameters\n+ self._init_latent_vars(n_features, dtype=X.dtype)\n+ # change to perplexity later\n+ last_bound = None\n+ n_jobs = effective_n_jobs(self.n_jobs)\n+ with Parallel(n_jobs=n_jobs, verbose=max(0, self.verbose - 1)) as parallel:\n+ for i in range(max_iter):\n+ if learning_method == \"online\":\n+ for idx_slice in gen_batches(n_samples, batch_size):\n+ self._em_step(\n+ X[idx_slice, :],\n+ total_samples=n_samples,\n+ batch_update=False,\n+ parallel=parallel,\n+ )\n+ else:\n+ # batch update\n+ self._em_step(\n+ X, total_samples=n_samples, batch_update=True, parallel=parallel\n+ )\n+\n+ # check perplexity\n+ if evaluate_every > 0 and (i + 1) % evaluate_every == 0:\n+ doc_topics_distr, _ = self._e_step(\n+ X, cal_sstats=False, random_init=False, parallel=parallel\n+ )\n+ bound = self._perplexity_precomp_distr(\n+ X, doc_topics_distr, sub_sampling=False\n+ )\n+ if self.verbose:\n+ print(\n+ \"iteration: %d of max_iter: %d, perplexity: %.4f\"\n+ % (i + 1, max_iter, bound)\n+ )\n+\n+ if last_bound and abs(last_bound - bound) < self.perp_tol:\n+ break\n+ last_bound = bound\n+\n+ elif self.verbose:\n+ print(\"iteration: %d of max_iter: %d\" % (i + 1, max_iter))\n+ self.n_iter_ += 1\n+\n+ # calculate final perplexity value on train set\n+ doc_topics_distr, _ = self._e_step(\n+ X, cal_sstats=False, random_init=False, parallel=parallel\n+ )\n+ self.bound_ = self._perplexity_precomp_distr(\n+ X, doc_topics_distr, sub_sampling=False\n+ )\n+\n+ return self\n \n def _unnormalized_transform(self, X):\n \"\"\"Transform data X according to fitted model.\n", "test": null }
null
{ "code": "diff --git a/sklearn/decomposition/_lda.py b/sklearn/decomposition/_lda.py\nindex 0082272a1..bb840765d 100644\n--- a/sklearn/decomposition/_lda.py\n+++ b/sklearn/decomposition/_lda.py\n@@ -623,7 +623,6 @@ class LatentDirichletAllocation(\n \n return self\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None):\n \"\"\"Learn model for the data X with variational Bayes method.\n \n@@ -643,68 +642,6 @@ class LatentDirichletAllocation(\n self\n Fitted estimator.\n \"\"\"\n- X = self._check_non_neg_array(\n- X, reset_n_features=True, whom=\"LatentDirichletAllocation.fit\"\n- )\n- n_samples, n_features = X.shape\n- max_iter = self.max_iter\n- evaluate_every = self.evaluate_every\n- learning_method = self.learning_method\n-\n- batch_size = self.batch_size\n-\n- # initialize parameters\n- self._init_latent_vars(n_features, dtype=X.dtype)\n- # change to perplexity later\n- last_bound = None\n- n_jobs = effective_n_jobs(self.n_jobs)\n- with Parallel(n_jobs=n_jobs, verbose=max(0, self.verbose - 1)) as parallel:\n- for i in range(max_iter):\n- if learning_method == \"online\":\n- for idx_slice in gen_batches(n_samples, batch_size):\n- self._em_step(\n- X[idx_slice, :],\n- total_samples=n_samples,\n- batch_update=False,\n- parallel=parallel,\n- )\n- else:\n- # batch update\n- self._em_step(\n- X, total_samples=n_samples, batch_update=True, parallel=parallel\n- )\n-\n- # check perplexity\n- if evaluate_every > 0 and (i + 1) % evaluate_every == 0:\n- doc_topics_distr, _ = self._e_step(\n- X, cal_sstats=False, random_init=False, parallel=parallel\n- )\n- bound = self._perplexity_precomp_distr(\n- X, doc_topics_distr, sub_sampling=False\n- )\n- if self.verbose:\n- print(\n- \"iteration: %d of max_iter: %d, perplexity: %.4f\"\n- % (i + 1, max_iter, bound)\n- )\n-\n- if last_bound and abs(last_bound - bound) < self.perp_tol:\n- break\n- last_bound = bound\n-\n- elif self.verbose:\n- print(\"iteration: %d of max_iter: %d\" % (i + 1, max_iter))\n- self.n_iter_ += 1\n-\n- # calculate final perplexity value on train set\n- doc_topics_distr, _ = self._e_step(\n- X, cal_sstats=False, random_init=False, parallel=parallel\n- )\n- self.bound_ = self._perplexity_precomp_distr(\n- X, doc_topics_distr, sub_sampling=False\n- )\n-\n- return self\n \n def _unnormalized_transform(self, X):\n \"\"\"Transform data X according to fitted model.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/decomposition/_lda.py.\nHere is the description for the function:\n def fit(self, X, y=None):\n \"\"\"Learn model for the data X with variational Bayes method.\n\n When `learning_method` is 'online', use mini-batch update.\n Otherwise, use batch update.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n Document word matrix.\n\n y : Ignored\n Not used, present here for API consistency by convention.\n\n Returns\n -------\n self\n Fitted estimator.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/decomposition/tests/test_online_lda.py::test_lda_default_prior_params[csr_matrix]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_default_prior_params[csr_array]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_fit_batch[csr_matrix]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_fit_batch[csr_array]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_fit_online[csr_matrix]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_fit_online[csr_array]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_dense_input[csr_matrix]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_dense_input[csr_array]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_transform", "sklearn/decomposition/tests/test_online_lda.py::test_lda_fit_transform[online]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_fit_transform[batch]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_negative_input", "sklearn/decomposition/tests/test_online_lda.py::test_lda_multi_jobs[online-csr_matrix]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_multi_jobs[online-csr_array]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_multi_jobs[batch-csr_matrix]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_multi_jobs[batch-csr_array]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_preplexity_mismatch", "sklearn/decomposition/tests/test_online_lda.py::test_lda_perplexity[csr_matrix-online]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_perplexity[csr_matrix-batch]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_perplexity[csr_array-online]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_perplexity[csr_array-batch]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_score[csr_matrix-online]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_score[csr_matrix-batch]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_score[csr_array-online]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_score[csr_array-batch]", "sklearn/decomposition/tests/test_online_lda.py::test_perplexity_input_format[csr_matrix]", "sklearn/decomposition/tests/test_online_lda.py::test_perplexity_input_format[csr_array]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_score_perplexity[csr_matrix]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_score_perplexity[csr_array]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_fit_perplexity[csr_matrix]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_fit_perplexity[csr_array]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_empty_docs[csr_matrix]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_empty_docs[csr_array]", "sklearn/decomposition/tests/test_online_lda.py::test_verbosity[csr_matrix-False-1-0-0]", "sklearn/decomposition/tests/test_online_lda.py::test_verbosity[csr_matrix-False-0-0-0]", "sklearn/decomposition/tests/test_online_lda.py::test_verbosity[csr_matrix-True-0-3-0]", "sklearn/decomposition/tests/test_online_lda.py::test_verbosity[csr_matrix-True-1-3-3]", "sklearn/decomposition/tests/test_online_lda.py::test_verbosity[csr_matrix-True-2-3-1]", "sklearn/decomposition/tests/test_online_lda.py::test_verbosity[csr_array-False-1-0-0]", "sklearn/decomposition/tests/test_online_lda.py::test_verbosity[csr_array-False-0-0-0]", "sklearn/decomposition/tests/test_online_lda.py::test_verbosity[csr_array-True-0-3-0]", "sklearn/decomposition/tests/test_online_lda.py::test_verbosity[csr_array-True-1-3-3]", "sklearn/decomposition/tests/test_online_lda.py::test_verbosity[csr_array-True-2-3-1]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_feature_names_out[csr_matrix]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_feature_names_out[csr_array]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_dtype_match[float64-batch]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_dtype_match[float64-online]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_numerical_consistency[42-batch]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_numerical_consistency[42-online]", "sklearn/decomposition/_lda.py::sklearn.decomposition._lda.LatentDirichletAllocation", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_transformer_n_iter]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5,n_components=1)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_fit_non_negative]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[LatentDirichletAllocation(batch_size=10,max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[LatentDirichletAllocation(batch_size=10,max_iter=5)]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[LatentDirichletAllocation(batch_size=10,max_iter=5)]", "sklearn/tests/test_common.py::test_check_param_validation[LatentDirichletAllocation(batch_size=10,max_iter=5)]", "sklearn/tests/test_common.py::test_set_output_transform[LatentDirichletAllocation(batch_size=10,max_iter=5)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-LatentDirichletAllocation(batch_size=10,max_iter=5)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-LatentDirichletAllocation(batch_size=10,max_iter=5)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-90
1.0
{ "code": "diff --git b/sklearn/decomposition/_lda.py a/sklearn/decomposition/_lda.py\nindex beae442da..0082272a1 100644\n--- b/sklearn/decomposition/_lda.py\n+++ a/sklearn/decomposition/_lda.py\n@@ -575,6 +575,7 @@ class LatentDirichletAllocation(\n \n return X\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def partial_fit(self, X, y=None):\n \"\"\"Online VB with Mini-Batch update.\n \n@@ -591,6 +592,36 @@ class LatentDirichletAllocation(\n self\n Partially fitted estimator.\n \"\"\"\n+ first_time = not hasattr(self, \"components_\")\n+\n+ X = self._check_non_neg_array(\n+ X, reset_n_features=first_time, whom=\"LatentDirichletAllocation.partial_fit\"\n+ )\n+ n_samples, n_features = X.shape\n+ batch_size = self.batch_size\n+\n+ # initialize parameters or check\n+ if first_time:\n+ self._init_latent_vars(n_features, dtype=X.dtype)\n+\n+ if n_features != self.components_.shape[1]:\n+ raise ValueError(\n+ \"The provided data has %d dimensions while \"\n+ \"the model was trained with feature size %d.\"\n+ % (n_features, self.components_.shape[1])\n+ )\n+\n+ n_jobs = effective_n_jobs(self.n_jobs)\n+ with Parallel(n_jobs=n_jobs, verbose=max(0, self.verbose - 1)) as parallel:\n+ for idx_slice in gen_batches(n_samples, batch_size):\n+ self._em_step(\n+ X[idx_slice, :],\n+ total_samples=self.total_samples,\n+ batch_update=False,\n+ parallel=parallel,\n+ )\n+\n+ return self\n \n @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None):\n", "test": null }
null
{ "code": "diff --git a/sklearn/decomposition/_lda.py b/sklearn/decomposition/_lda.py\nindex 0082272a1..beae442da 100644\n--- a/sklearn/decomposition/_lda.py\n+++ b/sklearn/decomposition/_lda.py\n@@ -575,7 +575,6 @@ class LatentDirichletAllocation(\n \n return X\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def partial_fit(self, X, y=None):\n \"\"\"Online VB with Mini-Batch update.\n \n@@ -592,36 +591,6 @@ class LatentDirichletAllocation(\n self\n Partially fitted estimator.\n \"\"\"\n- first_time = not hasattr(self, \"components_\")\n-\n- X = self._check_non_neg_array(\n- X, reset_n_features=first_time, whom=\"LatentDirichletAllocation.partial_fit\"\n- )\n- n_samples, n_features = X.shape\n- batch_size = self.batch_size\n-\n- # initialize parameters or check\n- if first_time:\n- self._init_latent_vars(n_features, dtype=X.dtype)\n-\n- if n_features != self.components_.shape[1]:\n- raise ValueError(\n- \"The provided data has %d dimensions while \"\n- \"the model was trained with feature size %d.\"\n- % (n_features, self.components_.shape[1])\n- )\n-\n- n_jobs = effective_n_jobs(self.n_jobs)\n- with Parallel(n_jobs=n_jobs, verbose=max(0, self.verbose - 1)) as parallel:\n- for idx_slice in gen_batches(n_samples, batch_size):\n- self._em_step(\n- X[idx_slice, :],\n- total_samples=self.total_samples,\n- batch_update=False,\n- parallel=parallel,\n- )\n-\n- return self\n \n @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None):\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/decomposition/_lda.py.\nHere is the description for the function:\n def partial_fit(self, X, y=None):\n \"\"\"Online VB with Mini-Batch update.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n Document word matrix.\n\n y : Ignored\n Not used, present here for API consistency by convention.\n\n Returns\n -------\n self\n Partially fitted estimator.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/decomposition/tests/test_online_lda.py::test_lda_partial_fit[csr_matrix]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_partial_fit[csr_array]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_partial_fit_multi_jobs[csr_matrix]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_partial_fit_multi_jobs[csr_array]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[LatentDirichletAllocation(batch_size=10,max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[LatentDirichletAllocation(batch_size=10,max_iter=5)]", "sklearn/tests/test_common.py::test_check_param_validation[LatentDirichletAllocation(batch_size=10,max_iter=5)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-91
1.0
{ "code": "diff --git b/sklearn/decomposition/_lda.py a/sklearn/decomposition/_lda.py\nindex a0ebedc22..0082272a1 100644\n--- b/sklearn/decomposition/_lda.py\n+++ a/sklearn/decomposition/_lda.py\n@@ -842,6 +842,14 @@ class LatentDirichletAllocation(\n score : float\n Use approximate bound as score.\n \"\"\"\n+ check_is_fitted(self)\n+ X = self._check_non_neg_array(\n+ X, reset_n_features=False, whom=\"LatentDirichletAllocation.score\"\n+ )\n+\n+ doc_topic_distr = self._unnormalized_transform(X)\n+ score = self._approx_bound(X, doc_topic_distr, sub_sampling=False)\n+ return score\n \n def _perplexity_precomp_distr(self, X, doc_topic_distr=None, sub_sampling=False):\n \"\"\"Calculate approximate perplexity for data X with ability to accept\n", "test": null }
null
{ "code": "diff --git a/sklearn/decomposition/_lda.py b/sklearn/decomposition/_lda.py\nindex 0082272a1..a0ebedc22 100644\n--- a/sklearn/decomposition/_lda.py\n+++ b/sklearn/decomposition/_lda.py\n@@ -842,14 +842,6 @@ class LatentDirichletAllocation(\n score : float\n Use approximate bound as score.\n \"\"\"\n- check_is_fitted(self)\n- X = self._check_non_neg_array(\n- X, reset_n_features=False, whom=\"LatentDirichletAllocation.score\"\n- )\n-\n- doc_topic_distr = self._unnormalized_transform(X)\n- score = self._approx_bound(X, doc_topic_distr, sub_sampling=False)\n- return score\n \n def _perplexity_precomp_distr(self, X, doc_topic_distr=None, sub_sampling=False):\n \"\"\"Calculate approximate perplexity for data X with ability to accept\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/decomposition/_lda.py.\nHere is the description for the function:\n def score(self, X, y=None):\n \"\"\"Calculate approximate log-likelihood as score.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n Document word matrix.\n\n y : Ignored\n Not used, present here for API consistency by convention.\n\n Returns\n -------\n score : float\n Use approximate bound as score.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/decomposition/tests/test_online_lda.py::test_lda_score[csr_matrix-online]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_score[csr_matrix-batch]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_score[csr_array-online]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_score[csr_array-batch]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_score_perplexity[csr_matrix]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_score_perplexity[csr_array]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[LatentDirichletAllocation(batch_size=10,max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[LatentDirichletAllocation(batch_size=10,max_iter=5)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-92
1.0
{ "code": "diff --git b/sklearn/decomposition/_lda.py a/sklearn/decomposition/_lda.py\nindex 547548808..0082272a1 100644\n--- b/sklearn/decomposition/_lda.py\n+++ a/sklearn/decomposition/_lda.py\n@@ -739,6 +739,13 @@ class LatentDirichletAllocation(\n doc_topic_distr : ndarray of shape (n_samples, n_components)\n Document topic distribution for X.\n \"\"\"\n+ check_is_fitted(self)\n+ X = self._check_non_neg_array(\n+ X, reset_n_features=False, whom=\"LatentDirichletAllocation.transform\"\n+ )\n+ doc_topic_distr = self._unnormalized_transform(X)\n+ doc_topic_distr /= doc_topic_distr.sum(axis=1)[:, np.newaxis]\n+ return doc_topic_distr\n \n def _approx_bound(self, X, doc_topic_distr, sub_sampling):\n \"\"\"Estimate the variational bound.\n", "test": null }
null
{ "code": "diff --git a/sklearn/decomposition/_lda.py b/sklearn/decomposition/_lda.py\nindex 0082272a1..547548808 100644\n--- a/sklearn/decomposition/_lda.py\n+++ b/sklearn/decomposition/_lda.py\n@@ -739,13 +739,6 @@ class LatentDirichletAllocation(\n doc_topic_distr : ndarray of shape (n_samples, n_components)\n Document topic distribution for X.\n \"\"\"\n- check_is_fitted(self)\n- X = self._check_non_neg_array(\n- X, reset_n_features=False, whom=\"LatentDirichletAllocation.transform\"\n- )\n- doc_topic_distr = self._unnormalized_transform(X)\n- doc_topic_distr /= doc_topic_distr.sum(axis=1)[:, np.newaxis]\n- return doc_topic_distr\n \n def _approx_bound(self, X, doc_topic_distr, sub_sampling):\n \"\"\"Estimate the variational bound.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/decomposition/_lda.py.\nHere is the description for the function:\n def transform(self, X):\n \"\"\"Transform data X according to the fitted model.\n\n .. versionchanged:: 0.18\n `doc_topic_distr` is now normalized.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n Document word matrix.\n\n Returns\n -------\n doc_topic_distr : ndarray of shape (n_samples, n_components)\n Document topic distribution for X.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/decomposition/tests/test_online_lda.py::test_lda_default_prior_params[csr_matrix]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_default_prior_params[csr_array]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_transform", "sklearn/decomposition/tests/test_online_lda.py::test_lda_fit_transform[online]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_fit_transform[batch]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_score[csr_matrix-online]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_score[csr_matrix-batch]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_score[csr_array-online]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_score[csr_array-batch]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_numerical_consistency[42-batch]", "sklearn/decomposition/tests/test_online_lda.py::test_lda_numerical_consistency[42-online]", "sklearn/decomposition/_lda.py::sklearn.decomposition._lda.LatentDirichletAllocation", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_transformers_unfitted]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5,n_components=1)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[LatentDirichletAllocation(batch_size=10,max_iter=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[LatentDirichletAllocation(batch_size=10,max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[LatentDirichletAllocation(batch_size=10,max_iter=5)]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[LatentDirichletAllocation(batch_size=10,max_iter=5)]", "sklearn/tests/test_common.py::test_set_output_transform[LatentDirichletAllocation(batch_size=10,max_iter=5)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-LatentDirichletAllocation(batch_size=10,max_iter=5)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-LatentDirichletAllocation(batch_size=10,max_iter=5)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-93
1.0
{ "code": "diff --git b/sklearn/covariance/_shrunk_covariance.py a/sklearn/covariance/_shrunk_covariance.py\nindex a5329de87..2a5e09f2c 100644\n--- b/sklearn/covariance/_shrunk_covariance.py\n+++ a/sklearn/covariance/_shrunk_covariance.py\n@@ -576,6 +576,7 @@ class LedoitWolf(EmpiricalCovariance):\n )\n self.block_size = block_size\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None):\n \"\"\"Fit the Ledoit-Wolf shrunk covariance model to X.\n \n@@ -592,6 +593,20 @@ class LedoitWolf(EmpiricalCovariance):\n self : object\n Returns the instance itself.\n \"\"\"\n+ # Not calling the parent object to fit, to avoid computing the\n+ # covariance matrix (and potentially the precision)\n+ X = validate_data(self, X)\n+ if self.assume_centered:\n+ self.location_ = np.zeros(X.shape[1])\n+ else:\n+ self.location_ = X.mean(0)\n+ covariance, shrinkage = _ledoit_wolf(\n+ X - self.location_, assume_centered=True, block_size=self.block_size\n+ )\n+ self.shrinkage_ = shrinkage\n+ self._set_covariance(covariance)\n+\n+ return self\n \n \n # OAS estimator\n", "test": null }
null
{ "code": "diff --git a/sklearn/covariance/_shrunk_covariance.py b/sklearn/covariance/_shrunk_covariance.py\nindex 2a5e09f2c..a5329de87 100644\n--- a/sklearn/covariance/_shrunk_covariance.py\n+++ b/sklearn/covariance/_shrunk_covariance.py\n@@ -576,7 +576,6 @@ class LedoitWolf(EmpiricalCovariance):\n )\n self.block_size = block_size\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None):\n \"\"\"Fit the Ledoit-Wolf shrunk covariance model to X.\n \n@@ -593,20 +592,6 @@ class LedoitWolf(EmpiricalCovariance):\n self : object\n Returns the instance itself.\n \"\"\"\n- # Not calling the parent object to fit, to avoid computing the\n- # covariance matrix (and potentially the precision)\n- X = validate_data(self, X)\n- if self.assume_centered:\n- self.location_ = np.zeros(X.shape[1])\n- else:\n- self.location_ = X.mean(0)\n- covariance, shrinkage = _ledoit_wolf(\n- X - self.location_, assume_centered=True, block_size=self.block_size\n- )\n- self.shrinkage_ = shrinkage\n- self._set_covariance(covariance)\n-\n- return self\n \n \n # OAS estimator\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/covariance/_shrunk_covariance.py.\nHere is the description for the function:\n def fit(self, X, y=None):\n \"\"\"Fit the Ledoit-Wolf shrunk covariance model to X.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n Training data, where `n_samples` is the number of samples\n and `n_features` is the number of features.\n y : Ignored\n Not used, present for API consistency by convention.\n\n Returns\n -------\n self : object\n Returns the instance itself.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_public_functions.py::test_class_wrapper_param_validation[sklearn.covariance.ledoit_wolf-sklearn.covariance.LedoitWolf]", "sklearn/tests/test_discriminant_analysis.py::test_lda_predict", "sklearn/tests/test_discriminant_analysis.py::test_lda_ledoitwolf", "sklearn/tests/test_discriminant_analysis.py::test_lda_dtype_match[float32-float32]", "sklearn/tests/test_discriminant_analysis.py::test_lda_dtype_match[float64-float64]", "sklearn/tests/test_discriminant_analysis.py::test_lda_dtype_match[int32-float64]", "sklearn/tests/test_discriminant_analysis.py::test_lda_dtype_match[int64-float64]", "sklearn/tests/test_discriminant_analysis.py::test_lda_numeric_consistency_float32_float64", "sklearn/tests/test_discriminant_analysis.py::test_covariance", "sklearn/covariance/tests/test_covariance.py::test_ledoit_wolf", "sklearn/covariance/tests/test_covariance.py::test_ledoit_wolf_small", "sklearn/covariance/tests/test_covariance.py::test_ledoit_wolf_large", "sklearn/covariance/tests/test_covariance.py::test_ledoit_wolf_empty_array[fit]", "sklearn/covariance/_shrunk_covariance.py::sklearn.covariance._shrunk_covariance.LedoitWolf", "sklearn/covariance/_shrunk_covariance.py::sklearn.covariance._shrunk_covariance.ledoit_wolf", "sklearn/tests/test_common.py::test_estimators[LedoitWolf()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[LedoitWolf()-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[LedoitWolf()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[LedoitWolf()-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[LedoitWolf()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[LedoitWolf()-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[LedoitWolf()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[LedoitWolf()-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[LedoitWolf()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[LedoitWolf()-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[LedoitWolf()-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[LedoitWolf()-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[LedoitWolf()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[LedoitWolf()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[LedoitWolf()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[LedoitWolf()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[LedoitWolf()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[LedoitWolf()-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[LedoitWolf()-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[LedoitWolf()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[LedoitWolf()-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[LedoitWolf()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[LedoitWolf()-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[LedoitWolf()-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[LedoitWolf()-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[LedoitWolf()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[LedoitWolf()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[LedoitWolf()]", "sklearn/tests/test_common.py::test_check_param_validation[LedoitWolf()]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-94
1.0
{ "code": "diff --git b/sklearn/discriminant_analysis.py a/sklearn/discriminant_analysis.py\nindex 846e1c4ff..69339491d 100644\n--- b/sklearn/discriminant_analysis.py\n+++ a/sklearn/discriminant_analysis.py\n@@ -554,6 +554,10 @@ class LinearDiscriminantAnalysis(\n self.coef_ = coef @ self.scalings_.T\n self.intercept_ -= self.xbar_ @ self.coef_.T\n \n+ @_fit_context(\n+ # LinearDiscriminantAnalysis.covariance_estimator is not validated yet\n+ prefer_skip_nested_validation=False\n+ )\n def fit(self, X, y):\n \"\"\"Fit the Linear Discriminant Analysis model.\n \n@@ -573,6 +577,79 @@ class LinearDiscriminantAnalysis(\n self : object\n Fitted estimator.\n \"\"\"\n+ xp, _ = get_namespace(X)\n+\n+ X, y = validate_data(\n+ self, X, y, ensure_min_samples=2, dtype=[xp.float64, xp.float32]\n+ )\n+ self.classes_ = unique_labels(y)\n+ n_samples, _ = X.shape\n+ n_classes = self.classes_.shape[0]\n+\n+ if n_samples == n_classes:\n+ raise ValueError(\n+ \"The number of samples must be more than the number of classes.\"\n+ )\n+\n+ if self.priors is None: # estimate priors from sample\n+ _, cnts = xp.unique_counts(y) # non-negative ints\n+ self.priors_ = xp.astype(cnts, X.dtype) / float(y.shape[0])\n+ else:\n+ self.priors_ = xp.asarray(self.priors, dtype=X.dtype)\n+\n+ if xp.any(self.priors_ < 0):\n+ raise ValueError(\"priors must be non-negative\")\n+\n+ if xp.abs(xp.sum(self.priors_) - 1.0) > 1e-5:\n+ warnings.warn(\"The priors do not sum to 1. Renormalizing\", UserWarning)\n+ self.priors_ = self.priors_ / self.priors_.sum()\n+\n+ # Maximum number of components no matter what n_components is\n+ # specified:\n+ max_components = min(n_classes - 1, X.shape[1])\n+\n+ if self.n_components is None:\n+ self._max_components = max_components\n+ else:\n+ if self.n_components > max_components:\n+ raise ValueError(\n+ \"n_components cannot be larger than min(n_features, n_classes - 1).\"\n+ )\n+ self._max_components = self.n_components\n+\n+ if self.solver == \"svd\":\n+ if self.shrinkage is not None:\n+ raise NotImplementedError(\"shrinkage not supported with 'svd' solver.\")\n+ if self.covariance_estimator is not None:\n+ raise ValueError(\n+ \"covariance estimator \"\n+ \"is not supported \"\n+ \"with svd solver. Try another solver\"\n+ )\n+ self._solve_svd(X, y)\n+ elif self.solver == \"lsqr\":\n+ self._solve_lstsq(\n+ X,\n+ y,\n+ shrinkage=self.shrinkage,\n+ covariance_estimator=self.covariance_estimator,\n+ )\n+ elif self.solver == \"eigen\":\n+ self._solve_eigen(\n+ X,\n+ y,\n+ shrinkage=self.shrinkage,\n+ covariance_estimator=self.covariance_estimator,\n+ )\n+ if size(self.classes_) == 2: # treat binary case as a special case\n+ coef_ = xp.asarray(self.coef_[1, :] - self.coef_[0, :], dtype=X.dtype)\n+ self.coef_ = xp.reshape(coef_, (1, -1))\n+ intercept_ = xp.asarray(\n+ self.intercept_[1] - self.intercept_[0], dtype=X.dtype\n+ )\n+ self.intercept_ = xp.reshape(intercept_, (1,))\n+ self._n_features_out = self._max_components\n+ return self\n \n def transform(self, X):\n \"\"\"Project data to maximize class separation.\n", "test": null }
null
{ "code": "diff --git a/sklearn/discriminant_analysis.py b/sklearn/discriminant_analysis.py\nindex 69339491d..846e1c4ff 100644\n--- a/sklearn/discriminant_analysis.py\n+++ b/sklearn/discriminant_analysis.py\n@@ -554,10 +554,6 @@ class LinearDiscriminantAnalysis(\n self.coef_ = coef @ self.scalings_.T\n self.intercept_ -= self.xbar_ @ self.coef_.T\n \n- @_fit_context(\n- # LinearDiscriminantAnalysis.covariance_estimator is not validated yet\n- prefer_skip_nested_validation=False\n- )\n def fit(self, X, y):\n \"\"\"Fit the Linear Discriminant Analysis model.\n \n@@ -577,79 +573,6 @@ class LinearDiscriminantAnalysis(\n self : object\n Fitted estimator.\n \"\"\"\n- xp, _ = get_namespace(X)\n-\n- X, y = validate_data(\n- self, X, y, ensure_min_samples=2, dtype=[xp.float64, xp.float32]\n- )\n- self.classes_ = unique_labels(y)\n- n_samples, _ = X.shape\n- n_classes = self.classes_.shape[0]\n-\n- if n_samples == n_classes:\n- raise ValueError(\n- \"The number of samples must be more than the number of classes.\"\n- )\n-\n- if self.priors is None: # estimate priors from sample\n- _, cnts = xp.unique_counts(y) # non-negative ints\n- self.priors_ = xp.astype(cnts, X.dtype) / float(y.shape[0])\n- else:\n- self.priors_ = xp.asarray(self.priors, dtype=X.dtype)\n-\n- if xp.any(self.priors_ < 0):\n- raise ValueError(\"priors must be non-negative\")\n-\n- if xp.abs(xp.sum(self.priors_) - 1.0) > 1e-5:\n- warnings.warn(\"The priors do not sum to 1. Renormalizing\", UserWarning)\n- self.priors_ = self.priors_ / self.priors_.sum()\n-\n- # Maximum number of components no matter what n_components is\n- # specified:\n- max_components = min(n_classes - 1, X.shape[1])\n-\n- if self.n_components is None:\n- self._max_components = max_components\n- else:\n- if self.n_components > max_components:\n- raise ValueError(\n- \"n_components cannot be larger than min(n_features, n_classes - 1).\"\n- )\n- self._max_components = self.n_components\n-\n- if self.solver == \"svd\":\n- if self.shrinkage is not None:\n- raise NotImplementedError(\"shrinkage not supported with 'svd' solver.\")\n- if self.covariance_estimator is not None:\n- raise ValueError(\n- \"covariance estimator \"\n- \"is not supported \"\n- \"with svd solver. Try another solver\"\n- )\n- self._solve_svd(X, y)\n- elif self.solver == \"lsqr\":\n- self._solve_lstsq(\n- X,\n- y,\n- shrinkage=self.shrinkage,\n- covariance_estimator=self.covariance_estimator,\n- )\n- elif self.solver == \"eigen\":\n- self._solve_eigen(\n- X,\n- y,\n- shrinkage=self.shrinkage,\n- covariance_estimator=self.covariance_estimator,\n- )\n- if size(self.classes_) == 2: # treat binary case as a special case\n- coef_ = xp.asarray(self.coef_[1, :] - self.coef_[0, :], dtype=X.dtype)\n- self.coef_ = xp.reshape(coef_, (1, -1))\n- intercept_ = xp.asarray(\n- self.intercept_[1] - self.intercept_[0], dtype=X.dtype\n- )\n- self.intercept_ = xp.reshape(intercept_, (1,))\n- self._n_features_out = self._max_components\n- return self\n \n def transform(self, X):\n \"\"\"Project data to maximize class separation.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/discriminant_analysis.py.\nHere is the description for the function:\n def fit(self, X, y):\n \"\"\"Fit the Linear Discriminant Analysis model.\n\n .. versionchanged:: 0.19\n `store_covariance` and `tol` has been moved to main constructor.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n Training data.\n\n y : array-like of shape (n_samples,)\n Target values.\n\n Returns\n -------\n self : object\n Fitted estimator.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/neighbors/tests/test_nca.py::test_init_transformation", "sklearn/neighbors/tests/test_nca.py::test_auto_init[3-5-3-7]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[3-5-3-11]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[3-5-5-7]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[3-5-5-11]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[3-5-7-7]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[3-5-7-11]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[3-5-11-7]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[3-5-11-11]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[3-7-3-11]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[3-7-5-11]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[3-7-7-11]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[3-7-11-11]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[5-7-5-11]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[5-7-7-11]", "sklearn/neighbors/tests/test_nca.py::test_auto_init[5-7-11-11]", "sklearn/neighbors/tests/test_nca.py::test_verbose[lda]", "sklearn/neighbors/tests/test_nca.py::test_nca_feature_names_out[2]", "sklearn/tests/test_discriminant_analysis.py::test_lda_predict", "sklearn/tests/test_discriminant_analysis.py::test_lda_predict_proba[svd-2]", "sklearn/tests/test_discriminant_analysis.py::test_lda_predict_proba[svd-3]", "sklearn/tests/test_discriminant_analysis.py::test_lda_predict_proba[lsqr-2]", "sklearn/tests/test_discriminant_analysis.py::test_lda_predict_proba[lsqr-3]", "sklearn/tests/test_discriminant_analysis.py::test_lda_predict_proba[eigen-2]", "sklearn/tests/test_discriminant_analysis.py::test_lda_predict_proba[eigen-3]", "sklearn/tests/test_discriminant_analysis.py::test_lda_priors", "sklearn/tests/test_discriminant_analysis.py::test_lda_coefs", "sklearn/tests/test_discriminant_analysis.py::test_lda_transform", "sklearn/tests/test_discriminant_analysis.py::test_lda_explained_variance_ratio", "sklearn/tests/test_discriminant_analysis.py::test_lda_orthogonality", "sklearn/tests/test_discriminant_analysis.py::test_lda_scaling", "sklearn/tests/test_discriminant_analysis.py::test_lda_store_covariance", "sklearn/tests/test_discriminant_analysis.py::test_lda_shrinkage[0]", "sklearn/tests/test_discriminant_analysis.py::test_lda_shrinkage[1]", "sklearn/tests/test_discriminant_analysis.py::test_lda_shrinkage[2]", "sklearn/tests/test_discriminant_analysis.py::test_lda_shrinkage[3]", "sklearn/tests/test_discriminant_analysis.py::test_lda_shrinkage[4]", "sklearn/tests/test_discriminant_analysis.py::test_lda_shrinkage[5]", "sklearn/tests/test_discriminant_analysis.py::test_lda_shrinkage[6]", "sklearn/tests/test_discriminant_analysis.py::test_lda_shrinkage[7]", "sklearn/tests/test_discriminant_analysis.py::test_lda_shrinkage[8]", "sklearn/tests/test_discriminant_analysis.py::test_lda_shrinkage[9]", "sklearn/tests/test_discriminant_analysis.py::test_lda_ledoitwolf", "sklearn/tests/test_discriminant_analysis.py::test_lda_dimension_warning[5-3]", "sklearn/tests/test_discriminant_analysis.py::test_lda_dimension_warning[5-5]", "sklearn/tests/test_discriminant_analysis.py::test_lda_dimension_warning[3-3]", "sklearn/tests/test_discriminant_analysis.py::test_lda_dimension_warning[3-5]", "sklearn/tests/test_discriminant_analysis.py::test_lda_dtype_match[float32-float32]", "sklearn/tests/test_discriminant_analysis.py::test_lda_dtype_match[float64-float64]", "sklearn/tests/test_discriminant_analysis.py::test_lda_dtype_match[int32-float64]", "sklearn/tests/test_discriminant_analysis.py::test_lda_dtype_match[int64-float64]", "sklearn/tests/test_discriminant_analysis.py::test_lda_numeric_consistency_float32_float64", "sklearn/tests/test_discriminant_analysis.py::test_raises_value_error_on_same_number_of_classes_and_samples[svd]", "sklearn/tests/test_discriminant_analysis.py::test_raises_value_error_on_same_number_of_classes_and_samples[lsqr]", "sklearn/tests/test_discriminant_analysis.py::test_raises_value_error_on_same_number_of_classes_and_samples[eigen]", "sklearn/tests/test_discriminant_analysis.py::test_get_feature_names_out", "sklearn/discriminant_analysis.py::sklearn.discriminant_analysis.LinearDiscriminantAnalysis", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_classifiers_regression_target]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis(n_components=1)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_requires_y_none]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5,n_components=1)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[NeighborhoodComponentsAnalysis(max_iter=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[LinearDiscriminantAnalysis()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[LinearDiscriminantAnalysis()]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[LinearDiscriminantAnalysis()]", "sklearn/tests/test_common.py::test_check_param_validation[LinearDiscriminantAnalysis()]", "sklearn/tests/test_common.py::test_set_output_transform[LinearDiscriminantAnalysis()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-LinearDiscriminantAnalysis()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-LinearDiscriminantAnalysis()]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-95
1.0
{ "code": "diff --git b/sklearn/discriminant_analysis.py a/sklearn/discriminant_analysis.py\nindex 68c9680b2..69339491d 100644\n--- b/sklearn/discriminant_analysis.py\n+++ a/sklearn/discriminant_analysis.py\n@@ -716,6 +716,18 @@ class LinearDiscriminantAnalysis(\n C : ndarray of shape (n_samples, n_classes)\n Estimated log probabilities.\n \"\"\"\n+ xp, _ = get_namespace(X)\n+ prediction = self.predict_proba(X)\n+\n+ info = xp.finfo(prediction.dtype)\n+ if hasattr(info, \"smallest_normal\"):\n+ smallest_normal = info.smallest_normal\n+ else:\n+ # smallest_normal was introduced in NumPy 1.22\n+ smallest_normal = info.tiny\n+\n+ prediction[prediction == 0.0] += smallest_normal\n+ return xp.log(prediction)\n \n def decision_function(self, X):\n \"\"\"Apply decision function to an array of samples.\n", "test": null }
null
{ "code": "diff --git a/sklearn/discriminant_analysis.py b/sklearn/discriminant_analysis.py\nindex 69339491d..68c9680b2 100644\n--- a/sklearn/discriminant_analysis.py\n+++ b/sklearn/discriminant_analysis.py\n@@ -716,18 +716,6 @@ class LinearDiscriminantAnalysis(\n C : ndarray of shape (n_samples, n_classes)\n Estimated log probabilities.\n \"\"\"\n- xp, _ = get_namespace(X)\n- prediction = self.predict_proba(X)\n-\n- info = xp.finfo(prediction.dtype)\n- if hasattr(info, \"smallest_normal\"):\n- smallest_normal = info.smallest_normal\n- else:\n- # smallest_normal was introduced in NumPy 1.22\n- smallest_normal = info.tiny\n-\n- prediction[prediction == 0.0] += smallest_normal\n- return xp.log(prediction)\n \n def decision_function(self, X):\n \"\"\"Apply decision function to an array of samples.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/discriminant_analysis.py.\nHere is the description for the function:\n def predict_log_proba(self, X):\n \"\"\"Estimate log probability.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n Input data.\n\n Returns\n -------\n C : ndarray of shape (n_samples, n_classes)\n Estimated log probabilities.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_discriminant_analysis.py::test_lda_predict", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_estimators_unfitted]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[LinearDiscriminantAnalysis()]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-96
1.0
{ "code": "diff --git b/sklearn/discriminant_analysis.py a/sklearn/discriminant_analysis.py\nindex adbcc6acb..69339491d 100644\n--- b/sklearn/discriminant_analysis.py\n+++ a/sklearn/discriminant_analysis.py\n@@ -694,6 +694,14 @@ class LinearDiscriminantAnalysis(\n C : ndarray of shape (n_samples, n_classes)\n Estimated probabilities.\n \"\"\"\n+ check_is_fitted(self)\n+ xp, is_array_api_compliant = get_namespace(X)\n+ decision = self.decision_function(X)\n+ if size(self.classes_) == 2:\n+ proba = _expit(decision, xp)\n+ return xp.stack([1 - proba, proba], axis=1)\n+ else:\n+ return softmax(decision)\n \n def predict_log_proba(self, X):\n \"\"\"Estimate log probability.\n", "test": null }
null
{ "code": "diff --git a/sklearn/discriminant_analysis.py b/sklearn/discriminant_analysis.py\nindex 69339491d..adbcc6acb 100644\n--- a/sklearn/discriminant_analysis.py\n+++ b/sklearn/discriminant_analysis.py\n@@ -694,14 +694,6 @@ class LinearDiscriminantAnalysis(\n C : ndarray of shape (n_samples, n_classes)\n Estimated probabilities.\n \"\"\"\n- check_is_fitted(self)\n- xp, is_array_api_compliant = get_namespace(X)\n- decision = self.decision_function(X)\n- if size(self.classes_) == 2:\n- proba = _expit(decision, xp)\n- return xp.stack([1 - proba, proba], axis=1)\n- else:\n- return softmax(decision)\n \n def predict_log_proba(self, X):\n \"\"\"Estimate log probability.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/discriminant_analysis.py.\nHere is the description for the function:\n def predict_proba(self, X):\n \"\"\"Estimate probability.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n Input data.\n\n Returns\n -------\n C : ndarray of shape (n_samples, n_classes)\n Estimated probabilities.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_discriminant_analysis.py::test_lda_predict", "sklearn/tests/test_discriminant_analysis.py::test_lda_predict_proba[svd-2]", "sklearn/tests/test_discriminant_analysis.py::test_lda_predict_proba[svd-3]", "sklearn/tests/test_discriminant_analysis.py::test_lda_predict_proba[lsqr-2]", "sklearn/tests/test_discriminant_analysis.py::test_lda_predict_proba[lsqr-3]", "sklearn/tests/test_discriminant_analysis.py::test_lda_predict_proba[eigen-2]", "sklearn/tests/test_discriminant_analysis.py::test_lda_predict_proba[eigen-3]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_estimators_unfitted]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis(n_components=1)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[LinearDiscriminantAnalysis()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[LinearDiscriminantAnalysis()]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-97
1.0
{ "code": "diff --git b/sklearn/discriminant_analysis.py a/sklearn/discriminant_analysis.py\nindex 78842789f..69339491d 100644\n--- b/sklearn/discriminant_analysis.py\n+++ a/sklearn/discriminant_analysis.py\n@@ -666,6 +666,20 @@ class LinearDiscriminantAnalysis(\n Transformed data. In the case of the 'svd' solver, the shape\n is (n_samples, min(rank, n_components)).\n \"\"\"\n+ if self.solver == \"lsqr\":\n+ raise NotImplementedError(\n+ \"transform not implemented for 'lsqr' solver (use 'svd' or 'eigen').\"\n+ )\n+ check_is_fitted(self)\n+ xp, _ = get_namespace(X)\n+ X = validate_data(self, X, reset=False)\n+\n+ if self.solver == \"svd\":\n+ X_new = (X - self.xbar_) @ self.scalings_\n+ elif self.solver == \"eigen\":\n+ X_new = X @ self.scalings_\n+\n+ return X_new[:, : self._max_components]\n \n def predict_proba(self, X):\n \"\"\"Estimate probability.\n", "test": null }
null
{ "code": "diff --git a/sklearn/discriminant_analysis.py b/sklearn/discriminant_analysis.py\nindex 69339491d..78842789f 100644\n--- a/sklearn/discriminant_analysis.py\n+++ b/sklearn/discriminant_analysis.py\n@@ -666,20 +666,6 @@ class LinearDiscriminantAnalysis(\n Transformed data. In the case of the 'svd' solver, the shape\n is (n_samples, min(rank, n_components)).\n \"\"\"\n- if self.solver == \"lsqr\":\n- raise NotImplementedError(\n- \"transform not implemented for 'lsqr' solver (use 'svd' or 'eigen').\"\n- )\n- check_is_fitted(self)\n- xp, _ = get_namespace(X)\n- X = validate_data(self, X, reset=False)\n-\n- if self.solver == \"svd\":\n- X_new = (X - self.xbar_) @ self.scalings_\n- elif self.solver == \"eigen\":\n- X_new = X @ self.scalings_\n-\n- return X_new[:, : self._max_components]\n \n def predict_proba(self, X):\n \"\"\"Estimate probability.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/discriminant_analysis.py.\nHere is the description for the function:\n def transform(self, X):\n \"\"\"Project data to maximize class separation.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n Input data.\n\n Returns\n -------\n X_new : ndarray of shape (n_samples, n_components) or \\\n (n_samples, min(rank, n_components))\n Transformed data. In the case of the 'svd' solver, the shape\n is (n_samples, min(rank, n_components)).\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_discriminant_analysis.py::test_lda_transform", "sklearn/tests/test_discriminant_analysis.py::test_lda_orthogonality", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_transformers_unfitted]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis(n_components=1)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[LinearDiscriminantAnalysis()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[LinearDiscriminantAnalysis()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[LinearDiscriminantAnalysis()]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[LinearDiscriminantAnalysis()]", "sklearn/tests/test_common.py::test_set_output_transform[LinearDiscriminantAnalysis()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-LinearDiscriminantAnalysis()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-LinearDiscriminantAnalysis()]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-98
1.0
{ "code": "diff --git b/sklearn/linear_model/_linear_loss.py a/sklearn/linear_model/_linear_loss.py\nindex 3085b2d50..cfac0a273 100644\n--- b/sklearn/linear_model/_linear_loss.py\n+++ a/sklearn/linear_model/_linear_loss.py\n@@ -348,6 +348,39 @@ class LinearModelLoss:\n gradient : ndarray of shape coef.shape\n The gradient of the loss.\n \"\"\"\n+ (n_samples, n_features), n_classes = X.shape, self.base_loss.n_classes\n+ n_dof = n_features + int(self.fit_intercept)\n+\n+ if raw_prediction is None:\n+ weights, intercept, raw_prediction = self.weight_intercept_raw(coef, X)\n+ else:\n+ weights, intercept = self.weight_intercept(coef)\n+\n+ grad_pointwise = self.base_loss.gradient(\n+ y_true=y,\n+ raw_prediction=raw_prediction,\n+ sample_weight=sample_weight,\n+ n_threads=n_threads,\n+ )\n+ sw_sum = n_samples if sample_weight is None else np.sum(sample_weight)\n+ grad_pointwise /= sw_sum\n+\n+ if not self.base_loss.is_multiclass:\n+ grad = np.empty_like(coef, dtype=weights.dtype)\n+ grad[:n_features] = X.T @ grad_pointwise + l2_reg_strength * weights\n+ if self.fit_intercept:\n+ grad[-1] = grad_pointwise.sum()\n+ return grad\n+ else:\n+ grad = np.empty((n_classes, n_dof), dtype=weights.dtype, order=\"F\")\n+ # gradient.shape = (n_samples, n_classes)\n+ grad[:, :n_features] = grad_pointwise.T @ X + l2_reg_strength * weights\n+ if self.fit_intercept:\n+ grad[:, -1] = grad_pointwise.sum(axis=0)\n+ if coef.ndim == 1:\n+ return grad.ravel(order=\"F\")\n+ else:\n+ return grad\n \n def gradient_hessian(\n self,\n", "test": null }
null
{ "code": "diff --git a/sklearn/linear_model/_linear_loss.py b/sklearn/linear_model/_linear_loss.py\nindex cfac0a273..3085b2d50 100644\n--- a/sklearn/linear_model/_linear_loss.py\n+++ b/sklearn/linear_model/_linear_loss.py\n@@ -348,39 +348,6 @@ class LinearModelLoss:\n gradient : ndarray of shape coef.shape\n The gradient of the loss.\n \"\"\"\n- (n_samples, n_features), n_classes = X.shape, self.base_loss.n_classes\n- n_dof = n_features + int(self.fit_intercept)\n-\n- if raw_prediction is None:\n- weights, intercept, raw_prediction = self.weight_intercept_raw(coef, X)\n- else:\n- weights, intercept = self.weight_intercept(coef)\n-\n- grad_pointwise = self.base_loss.gradient(\n- y_true=y,\n- raw_prediction=raw_prediction,\n- sample_weight=sample_weight,\n- n_threads=n_threads,\n- )\n- sw_sum = n_samples if sample_weight is None else np.sum(sample_weight)\n- grad_pointwise /= sw_sum\n-\n- if not self.base_loss.is_multiclass:\n- grad = np.empty_like(coef, dtype=weights.dtype)\n- grad[:n_features] = X.T @ grad_pointwise + l2_reg_strength * weights\n- if self.fit_intercept:\n- grad[-1] = grad_pointwise.sum()\n- return grad\n- else:\n- grad = np.empty((n_classes, n_dof), dtype=weights.dtype, order=\"F\")\n- # gradient.shape = (n_samples, n_classes)\n- grad[:, :n_features] = grad_pointwise.T @ X + l2_reg_strength * weights\n- if self.fit_intercept:\n- grad[:, -1] = grad_pointwise.sum(axis=0)\n- if coef.ndim == 1:\n- return grad.ravel(order=\"F\")\n- else:\n- return grad\n \n def gradient_hessian(\n self,\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/linear_model/_linear_loss.py.\nHere is the description for the function:\n def gradient(\n self,\n coef,\n X,\n y,\n sample_weight=None,\n l2_reg_strength=0.0,\n n_threads=1,\n raw_prediction=None,\n ):\n \"\"\"Computes the gradient w.r.t. coef.\n\n Parameters\n ----------\n coef : ndarray of shape (n_dof,), (n_classes, n_dof) or (n_classes * n_dof,)\n Coefficients of a linear model.\n If shape (n_classes * n_dof,), the classes of one feature are contiguous,\n i.e. one reconstructs the 2d-array via\n coef.reshape((n_classes, -1), order=\"F\").\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n Training data.\n y : contiguous array of shape (n_samples,)\n Observed, true target values.\n sample_weight : None or contiguous array of shape (n_samples,), default=None\n Sample weights.\n l2_reg_strength : float, default=0.0\n L2 regularization strength\n n_threads : int, default=1\n Number of OpenMP threads to use.\n raw_prediction : C-contiguous array of shape (n_samples,) or array of \\\n shape (n_samples, n_classes)\n Raw prediction values (in link space). If provided, these are used. If\n None, then raw_prediction = X @ coef + intercept is calculated.\n\n Returns\n -------\n gradient : ndarray of shape coef.shape\n The gradient of the loss.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-BinomialRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-BinomialRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-PoissonRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-PoissonRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-GammaRegressor()-42-False-lbfgs]", "sklearn/linear_model/tests/test_logistic.py::test_predict_iris[clf2]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-GammaRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-TweedieRegressor(power=1.5)-42-False-lbfgs]", "sklearn/linear_model/tests/test_logistic.py::test_multinomial_binary[newton-cg]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-TweedieRegressor(power=1.5)-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-BinomialRegressor()-42-False-lbfgs]", "sklearn/linear_model/tests/test_logistic.py::test_consistency_path", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-BinomialRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_ovr_multinomial_iris", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-PoissonRegressor()-42-False-lbfgs]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_solvers", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_solvers_multiclass", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-PoissonRegressor()-42-True-lbfgs]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regressioncv_class_weights[42-weight-weight0]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regressioncv_class_weights[42-weight-weight1]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-GammaRegressor()-42-False-lbfgs]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regressioncv_class_weights[42-balanced-weight0]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regressioncv_class_weights[42-balanced-weight1]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-GammaRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-TweedieRegressor(power=1.5)-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-TweedieRegressor(power=1.5)-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-BinomialRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-BinomialRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-PoissonRegressor()-42-True-lbfgs]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_sample_weights[42-newton-cg-single]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_sample_weights[42-newton-cg-cv]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-PoissonRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-GammaRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-GammaRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-TweedieRegressor(power=1.5)-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-TweedieRegressor(power=1.5)-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-BinomialRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-BinomialRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-PoissonRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-PoissonRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-GammaRegressor()-42-True-lbfgs]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_solver_class_weights[42-newton-cg]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-GammaRegressor()-42-False-lbfgs]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_class_weights[<lambda>]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_class_weights[csr_matrix]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_class_weights[csr_array]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_multinomial", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-TweedieRegressor(power=1.5)-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-TweedieRegressor(power=1.5)-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-BinomialRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-BinomialRegressor()-42-False-lbfgs]", "sklearn/linear_model/tests/test_logistic.py::test_max_iter[newton-cg-newton-cg failed to converge.* Increase the number of iterations.-ovr-max_iter0]", "sklearn/linear_model/tests/test_logistic.py::test_max_iter[newton-cg-newton-cg failed to converge.* Increase the number of iterations.-ovr-max_iter1]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_max_iter[newton-cg-newton-cg failed to converge.* Increase the number of iterations.-ovr-max_iter2]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-PoissonRegressor()-42-True-lbfgs]", "sklearn/linear_model/tests/test_logistic.py::test_max_iter[newton-cg-newton-cg failed to converge.* Increase the number of iterations.-ovr-max_iter3]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-PoissonRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-GammaRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-GammaRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_max_iter[newton-cg-newton-cg failed to converge.* Increase the number of iterations.-multinomial-max_iter0]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-TweedieRegressor(power=1.5)-42-True-lbfgs]", "sklearn/linear_model/tests/test_logistic.py::test_max_iter[newton-cg-newton-cg failed to converge.* Increase the number of iterations.-multinomial-max_iter1]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-TweedieRegressor(power=1.5)-42-False-lbfgs]", "sklearn/linear_model/tests/test_logistic.py::test_max_iter[newton-cg-newton-cg failed to converge.* Increase the number of iterations.-multinomial-max_iter2]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_max_iter[newton-cg-newton-cg failed to converge.* Increase the number of iterations.-multinomial-max_iter3]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-BinomialRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-BinomialRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-PoissonRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_n_iter[newton-cg]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-PoissonRegressor()-42-False-lbfgs]", "sklearn/linear_model/tests/test_logistic.py::test_warm_start[True-True-newton-cg]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_warm_start[True-False-newton-cg]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-GammaRegressor()-42-True-lbfgs]", "sklearn/linear_model/tests/test_logistic.py::test_warm_start[False-True-newton-cg]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-GammaRegressor()-42-False-lbfgs]", "sklearn/linear_model/tests/test_logistic.py::test_warm_start[False-False-newton-cg]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_dtype_match[csr_matrix-False-newton-cg-ovr]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-TweedieRegressor(power=1.5)-42-True-lbfgs]", "sklearn/linear_model/tests/test_logistic.py::test_dtype_match[csr_matrix-False-newton-cg-multinomial]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_dtype_match[csr_matrix-True-newton-cg-ovr]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-TweedieRegressor(power=1.5)-42-False-lbfgs]", "sklearn/linear_model/tests/test_logistic.py::test_dtype_match[csr_matrix-True-newton-cg-multinomial]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_dtype_match[csr_array-False-newton-cg-ovr]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-BinomialRegressor()-42-True-lbfgs]", "sklearn/linear_model/tests/test_logistic.py::test_dtype_match[csr_array-False-newton-cg-multinomial]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-BinomialRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_dtype_match[csr_array-True-newton-cg-ovr]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-PoissonRegressor()-42-True-lbfgs]", "sklearn/linear_model/tests/test_logistic.py::test_dtype_match[csr_array-True-newton-cg-multinomial]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-PoissonRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-GammaRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-GammaRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-TweedieRegressor(power=1.5)-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-TweedieRegressor(power=1.5)-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-BinomialRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-BinomialRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-PoissonRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-PoissonRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-GammaRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_multi_class_auto[newton-cg-LogisticRegression]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-GammaRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_multi_class_auto[newton-cg-LogisticRegressionCV]", "sklearn/linear_model/tests/test_logistic.py::test_penalty_none[newton-cg]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-TweedieRegressor(power=1.5)-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-TweedieRegressor(power=1.5)-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-BinomialRegressor()-42-True-lbfgs]", "sklearn/linear_model/tests/test_logistic.py::test_large_sparse_matrix[42-csr_matrix-newton-cg]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-BinomialRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-PoissonRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-PoissonRegressor()-42-False-lbfgs]", "sklearn/linear_model/tests/test_logistic.py::test_large_sparse_matrix[42-csr_array-newton-cg]", "sklearn/linear_model/tests/test_logistic.py::test_single_feature_newton_cg", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-GammaRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-GammaRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-TweedieRegressor(power=1.5)-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-TweedieRegressor(power=1.5)-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-BinomialRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-BinomialRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-PoissonRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-PoissonRegressor()-42-False-lbfgs]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-None-False-HalfBinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-None-False-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-None-False-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-None-True-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-None-True-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-None-True-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-range-False-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-range-False-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-range-False-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-range-True-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-range-True-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-range-True-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-None-False-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-None-False-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-None-False-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-None-True-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-None-True-HalfMultinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-GammaRegressor()-42-True-lbfgs]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-None-True-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-range-False-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-range-False-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-range-False-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-range-True-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-range-True-HalfMultinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-range-True-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-None-False-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-None-False-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-None-False-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-None-True-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-None-True-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-None-True-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-range-False-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-range-False-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-range-False-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-range-True-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-range-True-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-range-True-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-None-False-HalfBinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-GammaRegressor()-42-False-lbfgs]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-None-False-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-None-False-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-None-True-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-None-True-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-None-True-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-range-False-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-range-False-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-range-False-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-range-True-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-range-True-HalfMultinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-range-True-HalfPoissonLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-TweedieRegressor(power=1.5)-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-None-False-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-None-False-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-None-False-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-None-True-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-None-True-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-None-True-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-range-False-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-range-False-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-range-False-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-range-True-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-range-True-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-range-True-HalfPoissonLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-TweedieRegressor(power=1.5)-42-False-lbfgs]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-None-False-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-None-False-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-None-False-HalfPoissonLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-BinomialRegressor()-42-True-lbfgs]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-None-True-HalfBinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-None-True-HalfMultinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-BinomialRegressor()-42-False-lbfgs]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-None-True-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-range-False-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-range-False-HalfMultinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-range-False-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-range-True-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-range-True-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-range-True-HalfPoissonLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-PoissonRegressor()-42-True-lbfgs]", "sklearn/linear_model/tests/test_linear_loss.py::test_multinomial_coef_shape[False]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-PoissonRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-GammaRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-GammaRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-TweedieRegressor(power=1.5)-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-TweedieRegressor(power=1.5)-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-BinomialRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-BinomialRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-PoissonRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-PoissonRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-GammaRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-GammaRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-TweedieRegressor(power=1.5)-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-TweedieRegressor(power=1.5)-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_linear_loss.py::test_multinomial_coef_shape[True]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-99
1.0
{ "code": "diff --git b/sklearn/linear_model/_linear_loss.py a/sklearn/linear_model/_linear_loss.py\nindex 0d9714309..cfac0a273 100644\n--- b/sklearn/linear_model/_linear_loss.py\n+++ a/sklearn/linear_model/_linear_loss.py\n@@ -435,6 +435,91 @@ class LinearModelLoss:\n hessian_warning : bool\n True if pointwise hessian has more than half of its elements non-positive.\n \"\"\"\n+ n_samples, n_features = X.shape\n+ n_dof = n_features + int(self.fit_intercept)\n+\n+ if raw_prediction is None:\n+ weights, intercept, raw_prediction = self.weight_intercept_raw(coef, X)\n+ else:\n+ weights, intercept = self.weight_intercept(coef)\n+\n+ grad_pointwise, hess_pointwise = self.base_loss.gradient_hessian(\n+ y_true=y,\n+ raw_prediction=raw_prediction,\n+ sample_weight=sample_weight,\n+ n_threads=n_threads,\n+ )\n+ sw_sum = n_samples if sample_weight is None else np.sum(sample_weight)\n+ grad_pointwise /= sw_sum\n+ hess_pointwise /= sw_sum\n+\n+ # For non-canonical link functions and far away from the optimum, the pointwise\n+ # hessian can be negative. We take care that 75% of the hessian entries are\n+ # positive.\n+ hessian_warning = np.mean(hess_pointwise <= 0) > 0.25\n+ hess_pointwise = np.abs(hess_pointwise)\n+\n+ if not self.base_loss.is_multiclass:\n+ # gradient\n+ if gradient_out is None:\n+ grad = np.empty_like(coef, dtype=weights.dtype)\n+ else:\n+ grad = gradient_out\n+ grad[:n_features] = X.T @ grad_pointwise + l2_reg_strength * weights\n+ if self.fit_intercept:\n+ grad[-1] = grad_pointwise.sum()\n+\n+ # hessian\n+ if hessian_out is None:\n+ hess = np.empty(shape=(n_dof, n_dof), dtype=weights.dtype)\n+ else:\n+ hess = hessian_out\n+\n+ if hessian_warning:\n+ # Exit early without computing the hessian.\n+ return grad, hess, hessian_warning\n+\n+ # TODO: This \"sandwich product\", X' diag(W) X, is the main computational\n+ # bottleneck for solvers. A dedicated Cython routine might improve it\n+ # exploiting the symmetry (as opposed to, e.g., BLAS gemm).\n+ if sparse.issparse(X):\n+ hess[:n_features, :n_features] = (\n+ X.T\n+ @ sparse.dia_matrix(\n+ (hess_pointwise, 0), shape=(n_samples, n_samples)\n+ )\n+ @ X\n+ ).toarray()\n+ else:\n+ # np.einsum may use less memory but the following, using BLAS matrix\n+ # multiplication (gemm), is by far faster.\n+ WX = hess_pointwise[:, None] * X\n+ hess[:n_features, :n_features] = np.dot(X.T, WX)\n+\n+ if l2_reg_strength > 0:\n+ # The L2 penalty enters the Hessian on the diagonal only. To add those\n+ # terms, we use a flattened view on the array.\n+ hess.reshape(-1)[\n+ : (n_features * n_dof) : (n_dof + 1)\n+ ] += l2_reg_strength\n+\n+ if self.fit_intercept:\n+ # With intercept included as added column to X, the hessian becomes\n+ # hess = (X, 1)' @ diag(h) @ (X, 1)\n+ # = (X' @ diag(h) @ X, X' @ h)\n+ # ( h @ X, sum(h))\n+ # The left upper part has already been filled, it remains to compute\n+ # the last row and the last column.\n+ Xh = X.T @ hess_pointwise\n+ hess[:-1, -1] = Xh\n+ hess[-1, :-1] = Xh\n+ hess[-1, -1] = hess_pointwise.sum()\n+ else:\n+ # Here we may safely assume HalfMultinomialLoss aka categorical\n+ # cross-entropy.\n+ raise NotImplementedError\n+\n+ return grad, hess, hessian_warning\n \n def gradient_hessian_product(\n self, coef, X, y, sample_weight=None, l2_reg_strength=0.0, n_threads=1\n", "test": null }
null
{ "code": "diff --git a/sklearn/linear_model/_linear_loss.py b/sklearn/linear_model/_linear_loss.py\nindex cfac0a273..0d9714309 100644\n--- a/sklearn/linear_model/_linear_loss.py\n+++ b/sklearn/linear_model/_linear_loss.py\n@@ -435,91 +435,6 @@ class LinearModelLoss:\n hessian_warning : bool\n True if pointwise hessian has more than half of its elements non-positive.\n \"\"\"\n- n_samples, n_features = X.shape\n- n_dof = n_features + int(self.fit_intercept)\n-\n- if raw_prediction is None:\n- weights, intercept, raw_prediction = self.weight_intercept_raw(coef, X)\n- else:\n- weights, intercept = self.weight_intercept(coef)\n-\n- grad_pointwise, hess_pointwise = self.base_loss.gradient_hessian(\n- y_true=y,\n- raw_prediction=raw_prediction,\n- sample_weight=sample_weight,\n- n_threads=n_threads,\n- )\n- sw_sum = n_samples if sample_weight is None else np.sum(sample_weight)\n- grad_pointwise /= sw_sum\n- hess_pointwise /= sw_sum\n-\n- # For non-canonical link functions and far away from the optimum, the pointwise\n- # hessian can be negative. We take care that 75% of the hessian entries are\n- # positive.\n- hessian_warning = np.mean(hess_pointwise <= 0) > 0.25\n- hess_pointwise = np.abs(hess_pointwise)\n-\n- if not self.base_loss.is_multiclass:\n- # gradient\n- if gradient_out is None:\n- grad = np.empty_like(coef, dtype=weights.dtype)\n- else:\n- grad = gradient_out\n- grad[:n_features] = X.T @ grad_pointwise + l2_reg_strength * weights\n- if self.fit_intercept:\n- grad[-1] = grad_pointwise.sum()\n-\n- # hessian\n- if hessian_out is None:\n- hess = np.empty(shape=(n_dof, n_dof), dtype=weights.dtype)\n- else:\n- hess = hessian_out\n-\n- if hessian_warning:\n- # Exit early without computing the hessian.\n- return grad, hess, hessian_warning\n-\n- # TODO: This \"sandwich product\", X' diag(W) X, is the main computational\n- # bottleneck for solvers. A dedicated Cython routine might improve it\n- # exploiting the symmetry (as opposed to, e.g., BLAS gemm).\n- if sparse.issparse(X):\n- hess[:n_features, :n_features] = (\n- X.T\n- @ sparse.dia_matrix(\n- (hess_pointwise, 0), shape=(n_samples, n_samples)\n- )\n- @ X\n- ).toarray()\n- else:\n- # np.einsum may use less memory but the following, using BLAS matrix\n- # multiplication (gemm), is by far faster.\n- WX = hess_pointwise[:, None] * X\n- hess[:n_features, :n_features] = np.dot(X.T, WX)\n-\n- if l2_reg_strength > 0:\n- # The L2 penalty enters the Hessian on the diagonal only. To add those\n- # terms, we use a flattened view on the array.\n- hess.reshape(-1)[\n- : (n_features * n_dof) : (n_dof + 1)\n- ] += l2_reg_strength\n-\n- if self.fit_intercept:\n- # With intercept included as added column to X, the hessian becomes\n- # hess = (X, 1)' @ diag(h) @ (X, 1)\n- # = (X' @ diag(h) @ X, X' @ h)\n- # ( h @ X, sum(h))\n- # The left upper part has already been filled, it remains to compute\n- # the last row and the last column.\n- Xh = X.T @ hess_pointwise\n- hess[:-1, -1] = Xh\n- hess[-1, :-1] = Xh\n- hess[-1, -1] = hess_pointwise.sum()\n- else:\n- # Here we may safely assume HalfMultinomialLoss aka categorical\n- # cross-entropy.\n- raise NotImplementedError\n-\n- return grad, hess, hessian_warning\n \n def gradient_hessian_product(\n self, coef, X, y, sample_weight=None, l2_reg_strength=0.0, n_threads=1\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/linear_model/_linear_loss.py.\nHere is the description for the function:\n def gradient_hessian(\n self,\n coef,\n X,\n y,\n sample_weight=None,\n l2_reg_strength=0.0,\n n_threads=1,\n gradient_out=None,\n hessian_out=None,\n raw_prediction=None,\n ):\n \"\"\"Computes gradient and hessian w.r.t. coef.\n\n Parameters\n ----------\n coef : ndarray of shape (n_dof,), (n_classes, n_dof) or (n_classes * n_dof,)\n Coefficients of a linear model.\n If shape (n_classes * n_dof,), the classes of one feature are contiguous,\n i.e. one reconstructs the 2d-array via\n coef.reshape((n_classes, -1), order=\"F\").\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n Training data.\n y : contiguous array of shape (n_samples,)\n Observed, true target values.\n sample_weight : None or contiguous array of shape (n_samples,), default=None\n Sample weights.\n l2_reg_strength : float, default=0.0\n L2 regularization strength\n n_threads : int, default=1\n Number of OpenMP threads to use.\n gradient_out : None or ndarray of shape coef.shape\n A location into which the gradient is stored. If None, a new array\n might be created.\n hessian_out : None or ndarray\n A location into which the hessian is stored. If None, a new array\n might be created.\n raw_prediction : C-contiguous array of shape (n_samples,) or array of \\\n shape (n_samples, n_classes)\n Raw prediction values (in link space). If provided, these are used. If\n None, then raw_prediction = X @ coef + intercept is calculated.\n\n Returns\n -------\n gradient : ndarray of shape coef.shape\n The gradient of the loss.\n\n hessian : ndarray\n Hessian matrix.\n\n hessian_warning : bool\n True if pointwise hessian has more than half of its elements non-positive.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_predict_iris[clf5]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_consistency_path", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_solvers", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_sample_weights[42-newton-cholesky-single]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_sample_weights[42-newton-cholesky-cv]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_solver_class_weights[42-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_class_weights[<lambda>]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_class_weights[csr_matrix]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_class_weights[csr_array]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_max_iter[newton-cholesky-Newton solver did not converge after [0-9]* iterations-ovr-max_iter0]", "sklearn/linear_model/tests/test_logistic.py::test_n_iter[newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_dtype_match[csr_matrix-False-newton-cholesky-ovr]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_dtype_match[csr_matrix-True-newton-cholesky-ovr]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_dtype_match[csr_array-False-newton-cholesky-ovr]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_dtype_match[csr_array-True-newton-cholesky-ovr]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_multi_class_auto[newton-cholesky-LogisticRegression]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_multi_class_auto[newton-cholesky-LogisticRegressionCV]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_penalty_none[newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_large_sparse_matrix[42-csr_matrix-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_large_sparse_matrix[42-csr_array-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-None-False-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-None-False-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-None-False-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-None-True-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-None-True-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-None-True-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-range-False-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-range-False-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-range-False-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-range-True-HalfBinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-range-True-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-range-True-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-None-False-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-None-False-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-None-False-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-None-True-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-None-True-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-None-True-HalfPoissonLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-range-False-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-range-False-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-range-False-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-range-True-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-range-True-HalfMultinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-range-True-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-None-False-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-None-False-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-None-False-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-None-True-HalfBinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-None-True-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-None-True-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-range-False-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-range-False-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-range-False-HalfPoissonLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-range-True-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-range-True-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-range-True-HalfPoissonLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-None-False-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-None-False-HalfMultinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-None-False-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-None-True-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-None-True-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-None-True-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-range-False-HalfBinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-range-False-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-range-False-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-range-True-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-range-True-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-range-True-HalfPoissonLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator0-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator0-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator1-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator1-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator2-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator2-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator3-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator3-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator4-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator4-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator5-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator5-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_warm_start[42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_warm_start[42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_poisson_glmnet[newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_linalg_warning_with_newton_solver[42]", "sklearn/linear_model/_glm/tests/test_glm.py::test_newton_solver_verbosity[0]", "sklearn/linear_model/_glm/tests/test_glm.py::test_newton_solver_verbosity[1]", "sklearn/linear_model/_glm/tests/test_glm.py::test_newton_solver_verbosity[2]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-100
1.0
{ "code": "diff --git b/sklearn/linear_model/_linear_loss.py a/sklearn/linear_model/_linear_loss.py\nindex c53997ce4..cfac0a273 100644\n--- b/sklearn/linear_model/_linear_loss.py\n+++ a/sklearn/linear_model/_linear_loss.py\n@@ -553,3 +553,123 @@ class LinearModelLoss:\n Function that takes in a vector input of shape of gradient and\n and returns matrix-vector product with hessian.\n \"\"\"\n+ (n_samples, n_features), n_classes = X.shape, self.base_loss.n_classes\n+ n_dof = n_features + int(self.fit_intercept)\n+ weights, intercept, raw_prediction = self.weight_intercept_raw(coef, X)\n+ sw_sum = n_samples if sample_weight is None else np.sum(sample_weight)\n+\n+ if not self.base_loss.is_multiclass:\n+ grad_pointwise, hess_pointwise = self.base_loss.gradient_hessian(\n+ y_true=y,\n+ raw_prediction=raw_prediction,\n+ sample_weight=sample_weight,\n+ n_threads=n_threads,\n+ )\n+ grad_pointwise /= sw_sum\n+ hess_pointwise /= sw_sum\n+ grad = np.empty_like(coef, dtype=weights.dtype)\n+ grad[:n_features] = X.T @ grad_pointwise + l2_reg_strength * weights\n+ if self.fit_intercept:\n+ grad[-1] = grad_pointwise.sum()\n+\n+ # Precompute as much as possible: hX, hX_sum and hessian_sum\n+ hessian_sum = hess_pointwise.sum()\n+ if sparse.issparse(X):\n+ hX = (\n+ sparse.dia_matrix((hess_pointwise, 0), shape=(n_samples, n_samples))\n+ @ X\n+ )\n+ else:\n+ hX = hess_pointwise[:, np.newaxis] * X\n+\n+ if self.fit_intercept:\n+ # Calculate the double derivative with respect to intercept.\n+ # Note: In case hX is sparse, hX.sum is a matrix object.\n+ hX_sum = np.squeeze(np.asarray(hX.sum(axis=0)))\n+ # prevent squeezing to zero-dim array if n_features == 1\n+ hX_sum = np.atleast_1d(hX_sum)\n+\n+ # With intercept included and l2_reg_strength = 0, hessp returns\n+ # res = (X, 1)' @ diag(h) @ (X, 1) @ s\n+ # = (X, 1)' @ (hX @ s[:n_features], sum(h) * s[-1])\n+ # res[:n_features] = X' @ hX @ s[:n_features] + sum(h) * s[-1]\n+ # res[-1] = 1' @ hX @ s[:n_features] + sum(h) * s[-1]\n+ def hessp(s):\n+ ret = np.empty_like(s)\n+ if sparse.issparse(X):\n+ ret[:n_features] = X.T @ (hX @ s[:n_features])\n+ else:\n+ ret[:n_features] = np.linalg.multi_dot([X.T, hX, s[:n_features]])\n+ ret[:n_features] += l2_reg_strength * s[:n_features]\n+\n+ if self.fit_intercept:\n+ ret[:n_features] += s[-1] * hX_sum\n+ ret[-1] = hX_sum @ s[:n_features] + hessian_sum * s[-1]\n+ return ret\n+\n+ else:\n+ # Here we may safely assume HalfMultinomialLoss aka categorical\n+ # cross-entropy.\n+ # HalfMultinomialLoss computes only the diagonal part of the hessian, i.e.\n+ # diagonal in the classes. Here, we want the matrix-vector product of the\n+ # full hessian. Therefore, we call gradient_proba.\n+ grad_pointwise, proba = self.base_loss.gradient_proba(\n+ y_true=y,\n+ raw_prediction=raw_prediction,\n+ sample_weight=sample_weight,\n+ n_threads=n_threads,\n+ )\n+ grad_pointwise /= sw_sum\n+ grad = np.empty((n_classes, n_dof), dtype=weights.dtype, order=\"F\")\n+ grad[:, :n_features] = grad_pointwise.T @ X + l2_reg_strength * weights\n+ if self.fit_intercept:\n+ grad[:, -1] = grad_pointwise.sum(axis=0)\n+\n+ # Full hessian-vector product, i.e. not only the diagonal part of the\n+ # hessian. Derivation with some index battle for input vector s:\n+ # - sample index i\n+ # - feature indices j, m\n+ # - class indices k, l\n+ # - 1_{k=l} is one if k=l else 0\n+ # - p_i_k is the (predicted) probability that sample i belongs to class k\n+ # for all i: sum_k p_i_k = 1\n+ # - s_l_m is input vector for class l and feature m\n+ # - X' = X transposed\n+ #\n+ # Note: Hessian with dropping most indices is just:\n+ # X' @ p_k (1(k=l) - p_l) @ X\n+ #\n+ # result_{k j} = sum_{i, l, m} Hessian_{i, k j, m l} * s_l_m\n+ # = sum_{i, l, m} (X')_{ji} * p_i_k * (1_{k=l} - p_i_l)\n+ # * X_{im} s_l_m\n+ # = sum_{i, m} (X')_{ji} * p_i_k\n+ # * (X_{im} * s_k_m - sum_l p_i_l * X_{im} * s_l_m)\n+ #\n+ # See also https://github.com/scikit-learn/scikit-learn/pull/3646#discussion_r17461411 # noqa\n+ def hessp(s):\n+ s = s.reshape((n_classes, -1), order=\"F\") # shape = (n_classes, n_dof)\n+ if self.fit_intercept:\n+ s_intercept = s[:, -1]\n+ s = s[:, :-1] # shape = (n_classes, n_features)\n+ else:\n+ s_intercept = 0\n+ tmp = X @ s.T + s_intercept # X_{im} * s_k_m\n+ tmp += (-proba * tmp).sum(axis=1)[:, np.newaxis] # - sum_l ..\n+ tmp *= proba # * p_i_k\n+ if sample_weight is not None:\n+ tmp *= sample_weight[:, np.newaxis]\n+ # hess_prod = empty_like(grad), but we ravel grad below and this\n+ # function is run after that.\n+ hess_prod = np.empty((n_classes, n_dof), dtype=weights.dtype, order=\"F\")\n+ hess_prod[:, :n_features] = (tmp.T @ X) / sw_sum + l2_reg_strength * s\n+ if self.fit_intercept:\n+ hess_prod[:, -1] = tmp.sum(axis=0) / sw_sum\n+ if coef.ndim == 1:\n+ return hess_prod.ravel(order=\"F\")\n+ else:\n+ return hess_prod\n+\n+ if coef.ndim == 1:\n+ return grad.ravel(order=\"F\"), hessp\n+\n+ return grad, hessp\n", "test": null }
null
{ "code": "diff --git a/sklearn/linear_model/_linear_loss.py b/sklearn/linear_model/_linear_loss.py\nindex cfac0a273..c53997ce4 100644\n--- a/sklearn/linear_model/_linear_loss.py\n+++ b/sklearn/linear_model/_linear_loss.py\n@@ -553,123 +553,3 @@ class LinearModelLoss:\n Function that takes in a vector input of shape of gradient and\n and returns matrix-vector product with hessian.\n \"\"\"\n- (n_samples, n_features), n_classes = X.shape, self.base_loss.n_classes\n- n_dof = n_features + int(self.fit_intercept)\n- weights, intercept, raw_prediction = self.weight_intercept_raw(coef, X)\n- sw_sum = n_samples if sample_weight is None else np.sum(sample_weight)\n-\n- if not self.base_loss.is_multiclass:\n- grad_pointwise, hess_pointwise = self.base_loss.gradient_hessian(\n- y_true=y,\n- raw_prediction=raw_prediction,\n- sample_weight=sample_weight,\n- n_threads=n_threads,\n- )\n- grad_pointwise /= sw_sum\n- hess_pointwise /= sw_sum\n- grad = np.empty_like(coef, dtype=weights.dtype)\n- grad[:n_features] = X.T @ grad_pointwise + l2_reg_strength * weights\n- if self.fit_intercept:\n- grad[-1] = grad_pointwise.sum()\n-\n- # Precompute as much as possible: hX, hX_sum and hessian_sum\n- hessian_sum = hess_pointwise.sum()\n- if sparse.issparse(X):\n- hX = (\n- sparse.dia_matrix((hess_pointwise, 0), shape=(n_samples, n_samples))\n- @ X\n- )\n- else:\n- hX = hess_pointwise[:, np.newaxis] * X\n-\n- if self.fit_intercept:\n- # Calculate the double derivative with respect to intercept.\n- # Note: In case hX is sparse, hX.sum is a matrix object.\n- hX_sum = np.squeeze(np.asarray(hX.sum(axis=0)))\n- # prevent squeezing to zero-dim array if n_features == 1\n- hX_sum = np.atleast_1d(hX_sum)\n-\n- # With intercept included and l2_reg_strength = 0, hessp returns\n- # res = (X, 1)' @ diag(h) @ (X, 1) @ s\n- # = (X, 1)' @ (hX @ s[:n_features], sum(h) * s[-1])\n- # res[:n_features] = X' @ hX @ s[:n_features] + sum(h) * s[-1]\n- # res[-1] = 1' @ hX @ s[:n_features] + sum(h) * s[-1]\n- def hessp(s):\n- ret = np.empty_like(s)\n- if sparse.issparse(X):\n- ret[:n_features] = X.T @ (hX @ s[:n_features])\n- else:\n- ret[:n_features] = np.linalg.multi_dot([X.T, hX, s[:n_features]])\n- ret[:n_features] += l2_reg_strength * s[:n_features]\n-\n- if self.fit_intercept:\n- ret[:n_features] += s[-1] * hX_sum\n- ret[-1] = hX_sum @ s[:n_features] + hessian_sum * s[-1]\n- return ret\n-\n- else:\n- # Here we may safely assume HalfMultinomialLoss aka categorical\n- # cross-entropy.\n- # HalfMultinomialLoss computes only the diagonal part of the hessian, i.e.\n- # diagonal in the classes. Here, we want the matrix-vector product of the\n- # full hessian. Therefore, we call gradient_proba.\n- grad_pointwise, proba = self.base_loss.gradient_proba(\n- y_true=y,\n- raw_prediction=raw_prediction,\n- sample_weight=sample_weight,\n- n_threads=n_threads,\n- )\n- grad_pointwise /= sw_sum\n- grad = np.empty((n_classes, n_dof), dtype=weights.dtype, order=\"F\")\n- grad[:, :n_features] = grad_pointwise.T @ X + l2_reg_strength * weights\n- if self.fit_intercept:\n- grad[:, -1] = grad_pointwise.sum(axis=0)\n-\n- # Full hessian-vector product, i.e. not only the diagonal part of the\n- # hessian. Derivation with some index battle for input vector s:\n- # - sample index i\n- # - feature indices j, m\n- # - class indices k, l\n- # - 1_{k=l} is one if k=l else 0\n- # - p_i_k is the (predicted) probability that sample i belongs to class k\n- # for all i: sum_k p_i_k = 1\n- # - s_l_m is input vector for class l and feature m\n- # - X' = X transposed\n- #\n- # Note: Hessian with dropping most indices is just:\n- # X' @ p_k (1(k=l) - p_l) @ X\n- #\n- # result_{k j} = sum_{i, l, m} Hessian_{i, k j, m l} * s_l_m\n- # = sum_{i, l, m} (X')_{ji} * p_i_k * (1_{k=l} - p_i_l)\n- # * X_{im} s_l_m\n- # = sum_{i, m} (X')_{ji} * p_i_k\n- # * (X_{im} * s_k_m - sum_l p_i_l * X_{im} * s_l_m)\n- #\n- # See also https://github.com/scikit-learn/scikit-learn/pull/3646#discussion_r17461411 # noqa\n- def hessp(s):\n- s = s.reshape((n_classes, -1), order=\"F\") # shape = (n_classes, n_dof)\n- if self.fit_intercept:\n- s_intercept = s[:, -1]\n- s = s[:, :-1] # shape = (n_classes, n_features)\n- else:\n- s_intercept = 0\n- tmp = X @ s.T + s_intercept # X_{im} * s_k_m\n- tmp += (-proba * tmp).sum(axis=1)[:, np.newaxis] # - sum_l ..\n- tmp *= proba # * p_i_k\n- if sample_weight is not None:\n- tmp *= sample_weight[:, np.newaxis]\n- # hess_prod = empty_like(grad), but we ravel grad below and this\n- # function is run after that.\n- hess_prod = np.empty((n_classes, n_dof), dtype=weights.dtype, order=\"F\")\n- hess_prod[:, :n_features] = (tmp.T @ X) / sw_sum + l2_reg_strength * s\n- if self.fit_intercept:\n- hess_prod[:, -1] = tmp.sum(axis=0) / sw_sum\n- if coef.ndim == 1:\n- return hess_prod.ravel(order=\"F\")\n- else:\n- return hess_prod\n-\n- if coef.ndim == 1:\n- return grad.ravel(order=\"F\"), hessp\n-\n- return grad, hessp\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/linear_model/_linear_loss.py.\nHere is the description for the function:\n def gradient_hessian_product(\n self, coef, X, y, sample_weight=None, l2_reg_strength=0.0, n_threads=1\n ):\n \"\"\"Computes gradient and hessp (hessian product function) w.r.t. coef.\n\n Parameters\n ----------\n coef : ndarray of shape (n_dof,), (n_classes, n_dof) or (n_classes * n_dof,)\n Coefficients of a linear model.\n If shape (n_classes * n_dof,), the classes of one feature are contiguous,\n i.e. one reconstructs the 2d-array via\n coef.reshape((n_classes, -1), order=\"F\").\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n Training data.\n y : contiguous array of shape (n_samples,)\n Observed, true target values.\n sample_weight : None or contiguous array of shape (n_samples,), default=None\n Sample weights.\n l2_reg_strength : float, default=0.0\n L2 regularization strength\n n_threads : int, default=1\n Number of OpenMP threads to use.\n\n Returns\n -------\n gradient : ndarray of shape coef.shape\n The gradient of the loss.\n\n hessp : callable\n Function that takes in a vector input of shape of gradient and\n and returns matrix-vector product with hessian.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/linear_model/tests/test_logistic.py::test_predict_iris[clf2]", "sklearn/linear_model/tests/test_logistic.py::test_multinomial_binary[newton-cg]", "sklearn/linear_model/tests/test_logistic.py::test_consistency_path", "sklearn/linear_model/tests/test_logistic.py::test_ovr_multinomial_iris", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_solvers", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_solvers_multiclass", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regressioncv_class_weights[42-weight-weight0]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regressioncv_class_weights[42-weight-weight1]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regressioncv_class_weights[42-balanced-weight0]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regressioncv_class_weights[42-balanced-weight1]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_sample_weights[42-newton-cg-single]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_sample_weights[42-newton-cg-cv]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_solver_class_weights[42-newton-cg]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_class_weights[<lambda>]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_class_weights[csr_matrix]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_class_weights[csr_array]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_multinomial", "sklearn/linear_model/tests/test_logistic.py::test_max_iter[newton-cg-newton-cg failed to converge.* Increase the number of iterations.-ovr-max_iter0]", "sklearn/linear_model/tests/test_logistic.py::test_max_iter[newton-cg-newton-cg failed to converge.* Increase the number of iterations.-ovr-max_iter1]", "sklearn/linear_model/tests/test_logistic.py::test_max_iter[newton-cg-newton-cg failed to converge.* Increase the number of iterations.-ovr-max_iter2]", "sklearn/linear_model/tests/test_logistic.py::test_max_iter[newton-cg-newton-cg failed to converge.* Increase the number of iterations.-ovr-max_iter3]", "sklearn/linear_model/tests/test_logistic.py::test_max_iter[newton-cg-newton-cg failed to converge.* Increase the number of iterations.-multinomial-max_iter0]", "sklearn/linear_model/tests/test_logistic.py::test_max_iter[newton-cg-newton-cg failed to converge.* Increase the number of iterations.-multinomial-max_iter1]", "sklearn/linear_model/tests/test_logistic.py::test_max_iter[newton-cg-newton-cg failed to converge.* Increase the number of iterations.-multinomial-max_iter2]", "sklearn/linear_model/tests/test_logistic.py::test_max_iter[newton-cg-newton-cg failed to converge.* Increase the number of iterations.-multinomial-max_iter3]", "sklearn/linear_model/tests/test_logistic.py::test_n_iter[newton-cg]", "sklearn/linear_model/tests/test_logistic.py::test_warm_start[True-True-newton-cg]", "sklearn/linear_model/tests/test_logistic.py::test_warm_start[True-False-newton-cg]", "sklearn/linear_model/tests/test_logistic.py::test_warm_start[False-True-newton-cg]", "sklearn/linear_model/tests/test_logistic.py::test_warm_start[False-False-newton-cg]", "sklearn/linear_model/tests/test_logistic.py::test_dtype_match[csr_matrix-False-newton-cg-ovr]", "sklearn/linear_model/tests/test_logistic.py::test_dtype_match[csr_matrix-False-newton-cg-multinomial]", "sklearn/linear_model/tests/test_logistic.py::test_dtype_match[csr_matrix-True-newton-cg-ovr]", "sklearn/linear_model/tests/test_logistic.py::test_dtype_match[csr_matrix-True-newton-cg-multinomial]", "sklearn/linear_model/tests/test_logistic.py::test_dtype_match[csr_array-False-newton-cg-ovr]", "sklearn/linear_model/tests/test_logistic.py::test_dtype_match[csr_array-False-newton-cg-multinomial]", "sklearn/linear_model/tests/test_logistic.py::test_dtype_match[csr_array-True-newton-cg-ovr]", "sklearn/linear_model/tests/test_logistic.py::test_dtype_match[csr_array-True-newton-cg-multinomial]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_multi_class_auto[newton-cg-LogisticRegression]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_multi_class_auto[newton-cg-LogisticRegressionCV]", "sklearn/linear_model/tests/test_logistic.py::test_penalty_none[newton-cg]", "sklearn/linear_model/tests/test_logistic.py::test_large_sparse_matrix[42-csr_matrix-newton-cg]", "sklearn/linear_model/tests/test_logistic.py::test_large_sparse_matrix[42-csr_array-newton-cg]", "sklearn/linear_model/tests/test_logistic.py::test_single_feature_newton_cg", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-None-False-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-None-False-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-None-False-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-None-True-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-None-True-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-None-True-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-range-False-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-range-False-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-range-False-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-range-True-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-range-True-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-range-True-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-None-False-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-None-False-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-None-False-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-None-True-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-None-True-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-None-True-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-range-False-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-range-False-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-range-False-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-range-True-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-range-True-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-range-True-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-None-False-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-None-False-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-None-False-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-None-True-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-None-True-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-None-True-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-range-False-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-range-False-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-range-False-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-range-True-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-range-True-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-range-True-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-None-False-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-None-False-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-None-False-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-None-True-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-None-True-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-None-True-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-range-False-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-range-False-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-range-False-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-range-True-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-range-True-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-range-True-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[csr_matrix-0-None-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[csr_matrix-0-None-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[csr_matrix-0-None-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[csr_matrix-0-range-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[csr_matrix-0-range-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[csr_matrix-0-range-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[csr_matrix-1-None-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[csr_matrix-1-None-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[csr_matrix-1-None-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[csr_matrix-1-range-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[csr_matrix-1-range-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[csr_matrix-1-range-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[csr_array-0-None-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[csr_array-0-None-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[csr_array-0-None-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[csr_array-0-range-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[csr_array-0-range-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[csr_array-0-range-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[csr_array-1-None-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[csr_array-1-None-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[csr_array-1-None-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[csr_array-1-range-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[csr_array-1-range-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[csr_array-1-range-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[None-0-None-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[None-0-None-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[None-0-None-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[None-0-range-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[None-0-range-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[None-0-range-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[None-1-None-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[None-1-None-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[None-1-None-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[None-1-range-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[None-1-range-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[None-1-range-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-None-False-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-None-False-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-None-False-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-None-True-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-None-True-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-None-True-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-range-False-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-range-False-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-range-False-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-range-True-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-range-True-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-range-True-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-None-False-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-None-False-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-None-False-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-None-True-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-None-True-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-None-True-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-range-False-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-range-False-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-range-False-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-range-True-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-range-True-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-range-True-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_multinomial_coef_shape[False]", "sklearn/linear_model/tests/test_linear_loss.py::test_multinomial_coef_shape[True]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-101
1.0
{ "code": "diff --git b/sklearn/linear_model/_linear_loss.py a/sklearn/linear_model/_linear_loss.py\nindex 0bd2950f4..cfac0a273 100644\n--- b/sklearn/linear_model/_linear_loss.py\n+++ a/sklearn/linear_model/_linear_loss.py\n@@ -89,6 +89,17 @@ class LinearModelLoss:\n coef : ndarray of shape (n_dof,) or (n_classes, n_dof)\n Coefficients of a linear model.\n \"\"\"\n+ n_features = X.shape[1]\n+ n_classes = self.base_loss.n_classes\n+ if self.fit_intercept:\n+ n_dof = n_features + 1\n+ else:\n+ n_dof = n_features\n+ if self.base_loss.is_multiclass:\n+ coef = np.zeros_like(X, shape=(n_classes, n_dof), dtype=dtype, order=\"F\")\n+ else:\n+ coef = np.zeros_like(X, shape=n_dof, dtype=dtype)\n+ return coef\n \n def weight_intercept(self, coef):\n \"\"\"Helper function to get coefficients and intercept.\n", "test": null }
null
{ "code": "diff --git a/sklearn/linear_model/_linear_loss.py b/sklearn/linear_model/_linear_loss.py\nindex cfac0a273..0bd2950f4 100644\n--- a/sklearn/linear_model/_linear_loss.py\n+++ b/sklearn/linear_model/_linear_loss.py\n@@ -89,17 +89,6 @@ class LinearModelLoss:\n coef : ndarray of shape (n_dof,) or (n_classes, n_dof)\n Coefficients of a linear model.\n \"\"\"\n- n_features = X.shape[1]\n- n_classes = self.base_loss.n_classes\n- if self.fit_intercept:\n- n_dof = n_features + 1\n- else:\n- n_dof = n_features\n- if self.base_loss.is_multiclass:\n- coef = np.zeros_like(X, shape=(n_classes, n_dof), dtype=dtype, order=\"F\")\n- else:\n- coef = np.zeros_like(X, shape=n_dof, dtype=dtype)\n- return coef\n \n def weight_intercept(self, coef):\n \"\"\"Helper function to get coefficients and intercept.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/linear_model/_linear_loss.py.\nHere is the description for the function:\n def init_zero_coef(self, X, dtype=None):\n \"\"\"Allocate coef of correct shape with zeros.\n\n Parameters:\n -----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n Training data.\n dtype : data-type, default=None\n Overrides the data type of coef. With dtype=None, coef will have the same\n dtype as X.\n\n Returns\n -------\n coef : ndarray of shape (n_dof,) or (n_classes, n_dof)\n Coefficients of a linear model.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-BinomialRegressor()-42-False-lbfgs]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[None-0-False-HalfBinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[None-0-False-HalfMultinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-BinomialRegressor()-42-True-lbfgs]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[None-0-False-HalfPoissonLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[None-0-True-HalfBinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-PoissonRegressor()-42-False-lbfgs]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[None-0-True-HalfMultinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[None-0-True-HalfPoissonLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-PoissonRegressor()-42-True-lbfgs]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[None-1-False-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[None-1-False-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[None-1-False-HalfPoissonLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[None-1-True-HalfBinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-GammaRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[None-1-True-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[None-1-True-HalfPoissonLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-GammaRegressor()-42-True-lbfgs]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[None-10-False-HalfBinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[None-10-False-HalfMultinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-TweedieRegressor(power=1.5)-42-False-lbfgs]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[None-10-False-HalfPoissonLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[None-10-True-HalfBinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-TweedieRegressor(power=1.5)-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[None-10-True-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[None-10-True-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[float32-0-False-HalfBinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-BinomialRegressor()-42-False-lbfgs]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[float32-0-False-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[float32-0-False-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[float32-0-True-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[float32-0-True-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[float32-0-True-HalfPoissonLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[float32-1-False-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[float32-1-False-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[float32-1-False-HalfPoissonLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-BinomialRegressor()-42-True-lbfgs]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[float32-1-True-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[float32-1-True-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[float32-1-True-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[float32-10-False-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[float32-10-False-HalfMultinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[float32-10-False-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[float32-10-True-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[float32-10-True-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[float32-10-True-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[float64-0-False-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[float64-0-False-HalfMultinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-PoissonRegressor()-42-False-lbfgs]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[float64-0-False-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[float64-0-True-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[float64-0-True-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[float64-0-True-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[float64-1-False-HalfBinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[float64-1-False-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[float64-1-False-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[float64-1-True-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[float64-1-True-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[float64-1-True-HalfPoissonLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-PoissonRegressor()-42-True-lbfgs]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[float64-10-False-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[float64-10-False-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[float64-10-False-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[float64-10-True-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[float64-10-True-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[float64-10-True-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[int64-0-False-HalfBinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[int64-0-False-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[int64-0-False-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[int64-0-True-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[int64-0-True-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[int64-0-True-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[int64-1-False-HalfBinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-GammaRegressor()-42-False-lbfgs]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[int64-1-False-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[int64-1-False-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[int64-1-True-HalfBinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[int64-1-True-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[int64-1-True-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[int64-10-False-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[int64-10-False-HalfMultinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-GammaRegressor()-42-True-lbfgs]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[int64-10-False-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[int64-10-True-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[int64-10-True-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_init_zero_coef[int64-10-True-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-None-False-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-None-False-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-None-False-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-None-True-HalfBinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-None-True-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-None-True-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-range-False-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-range-False-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-range-False-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-range-True-HalfBinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-TweedieRegressor(power=1.5)-42-False-lbfgs]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-range-True-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-range-True-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-None-False-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-None-False-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-None-False-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-None-True-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-None-True-HalfMultinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-None-True-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-range-False-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-range-False-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-range-False-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-range-True-HalfBinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-TweedieRegressor(power=1.5)-42-True-lbfgs]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-range-True-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-range-True-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-None-False-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-None-False-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-None-False-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-None-True-HalfBinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-None-True-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-None-True-HalfPoissonLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-BinomialRegressor()-42-True-lbfgs]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-range-False-HalfBinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-range-False-HalfMultinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-BinomialRegressor()-42-False-lbfgs]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-range-False-HalfPoissonLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-PoissonRegressor()-42-True-lbfgs]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-range-True-HalfBinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-range-True-HalfMultinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-PoissonRegressor()-42-False-lbfgs]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-range-True-HalfPoissonLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-None-False-HalfBinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-GammaRegressor()-42-True-lbfgs]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-None-False-HalfMultinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-None-False-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-None-True-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-None-True-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-None-True-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-range-False-HalfBinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-GammaRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-range-False-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-range-False-HalfPoissonLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-TweedieRegressor(power=1.5)-42-True-lbfgs]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-range-True-HalfBinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-range-True-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-range-True-HalfPoissonLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-TweedieRegressor(power=1.5)-42-False-lbfgs]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[csr_matrix-0-None-HalfBinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[csr_matrix-0-None-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[csr_matrix-0-None-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[csr_matrix-0-range-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[csr_matrix-0-range-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[csr_matrix-0-range-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[csr_matrix-1-None-HalfBinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-BinomialRegressor()-42-True-lbfgs]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[csr_matrix-1-None-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[csr_matrix-1-None-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[csr_matrix-1-range-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[csr_matrix-1-range-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[csr_matrix-1-range-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[csr_array-0-None-HalfBinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[csr_array-0-None-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[csr_array-0-None-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[csr_array-0-range-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[csr_array-0-range-HalfMultinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-BinomialRegressor()-42-False-lbfgs]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[csr_array-0-range-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[csr_array-1-None-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[csr_array-1-None-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[csr_array-1-None-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[csr_array-1-range-HalfBinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[csr_array-1-range-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[csr_array-1-range-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[None-0-None-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[None-0-None-HalfMultinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-PoissonRegressor()-42-True-lbfgs]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[None-0-None-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[None-0-range-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[None-0-range-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[None-0-range-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[None-1-None-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[None-1-None-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[None-1-None-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[None-1-range-HalfBinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[None-1-range-HalfMultinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-PoissonRegressor()-42-False-lbfgs]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_gradients_hessp_intercept[None-1-range-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-None-False-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-None-False-HalfMultinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-None-False-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-None-True-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-None-True-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-None-True-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-range-False-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-range-False-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-range-False-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-range-True-HalfBinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-GammaRegressor()-42-True-lbfgs]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-range-True-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-range-True-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-None-False-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-None-False-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-None-False-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-None-True-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-None-True-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-None-True-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-range-False-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-range-False-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-range-False-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-range-True-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-range-True-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-range-True-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_multinomial_coef_shape[False]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-GammaRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-TweedieRegressor(power=1.5)-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-TweedieRegressor(power=1.5)-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-BinomialRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-BinomialRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-PoissonRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-PoissonRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-GammaRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-GammaRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-TweedieRegressor(power=1.5)-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-TweedieRegressor(power=1.5)-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-BinomialRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-BinomialRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-PoissonRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-PoissonRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-GammaRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-GammaRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-TweedieRegressor(power=1.5)-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-TweedieRegressor(power=1.5)-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-BinomialRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-BinomialRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-PoissonRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-PoissonRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-GammaRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-GammaRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-TweedieRegressor(power=1.5)-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-TweedieRegressor(power=1.5)-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-BinomialRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-BinomialRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-PoissonRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-PoissonRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-GammaRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-GammaRegressor()-42-False-lbfgs]", "sklearn/linear_model/tests/test_linear_loss.py::test_multinomial_coef_shape[True]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-TweedieRegressor(power=1.5)-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-TweedieRegressor(power=1.5)-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-BinomialRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-BinomialRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-PoissonRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-PoissonRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-GammaRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-GammaRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-TweedieRegressor(power=1.5)-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-TweedieRegressor(power=1.5)-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-BinomialRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-BinomialRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-PoissonRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-PoissonRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-GammaRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-GammaRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-TweedieRegressor(power=1.5)-42-True-lbfgs]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_fit_score_takes_y]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_estimators_overwrite_params]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-TweedieRegressor(power=1.5)-42-False-lbfgs]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_estimators_dtypes]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_sample_weights_not_an_array]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-BinomialRegressor()-42-True-lbfgs]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_sample_weights_list]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_sample_weights_shape]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-BinomialRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-PoissonRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-PoissonRegressor()-42-False-lbfgs]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_sample_weights_not_overwritten]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-GammaRegressor()-42-True-lbfgs]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-False-PoissonRegressor]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_estimators_fit_returns_self]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-GammaRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-GammaRegressor()-42-False-newton-cholesky]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-TweedieRegressor(power=1.5)-42-True-lbfgs]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-False-TweedieRegressor]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-TweedieRegressor(power=1.5)-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-True-PoissonRegressor]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_estimator_sparse_array]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-BinomialRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_estimators_pickle]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-BinomialRegressor()-42-False-lbfgs]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_f_contiguous_array_estimator]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_regressors_train(readonly_memmap=True)]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-PoissonRegressor()-42-True-lbfgs]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_regressor_data_not_an_array]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-True-TweedieRegressor]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_regressors_no_decision_function]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-PoissonRegressor()-42-False-lbfgs]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_non_transformer_estimators_n_iter]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_methods_sample_order_invariance]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-GammaRegressor()-42-True-lbfgs]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_fit2d_1sample]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-GammaRegressor()-42-True-newton-cholesky]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_dict_unchanged]", "sklearn/linear_model/_glm/glm.py::sklearn.linear_model._glm.glm.GammaRegressor", "sklearn/linear_model/_glm/glm.py::sklearn.linear_model._glm.glm.PoissonRegressor", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-GammaRegressor()-42-False-lbfgs]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_dont_overwrite_parameters]", "sklearn/linear_model/_glm/glm.py::sklearn.linear_model._glm.glm.TweedieRegressor", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_fit_check_is_fitted]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-GammaRegressor()-42-False-newton-cholesky]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[GammaRegressor(max_iter=5)-check_fit2d_predict1d]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-TweedieRegressor(power=1.5)-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-TweedieRegressor(power=1.5)-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_sample_weights_validation", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_identity_regression[False]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_identity_regression[True]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_sample_weight_consistency[_GeneralizedLinearRegressor-0.0-False]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_sample_weight_consistency[_GeneralizedLinearRegressor-0.0-True]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_sample_weight_consistency[_GeneralizedLinearRegressor-1.0-False]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_sample_weight_consistency[_GeneralizedLinearRegressor-1.0-True]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_sample_weight_consistency[PoissonRegressor-0.0-False]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_sample_weight_consistency[PoissonRegressor-0.0-True]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_sample_weight_consistency[PoissonRegressor-1.0-False]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_sample_weight_consistency[PoissonRegressor-1.0-True]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_sample_weight_consistency[GammaRegressor-0.0-False]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_sample_weight_consistency[GammaRegressor-0.0-True]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_sample_weight_consistency[GammaRegressor-1.0-False]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_sample_weight_consistency[GammaRegressor-1.0-True]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator0-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator0-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator0-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator0-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator1-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator1-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator1-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator1-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator2-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator2-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator2-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator2-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator3-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator3-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator3-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator3-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator4-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator4-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator4-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator4-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator5-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator5-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator5-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator5-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_warm_start[42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_warm_start[42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_warm_start[42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_warm_start[42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_normal_ridge_comparison[None-True-100-10]", "sklearn/linear_model/_glm/tests/test_glm.py::test_normal_ridge_comparison[None-True-10-100]", "sklearn/linear_model/_glm/tests/test_glm.py::test_normal_ridge_comparison[None-False-100-10]", "sklearn/linear_model/_glm/tests/test_glm.py::test_normal_ridge_comparison[None-False-10-100]", "sklearn/linear_model/_glm/tests/test_glm.py::test_normal_ridge_comparison[True-True-100-10]", "sklearn/linear_model/_glm/tests/test_glm.py::test_normal_ridge_comparison[True-True-10-100]", "sklearn/linear_model/_glm/tests/test_glm.py::test_normal_ridge_comparison[True-False-100-10]", "sklearn/linear_model/_glm/tests/test_glm.py::test_normal_ridge_comparison[True-False-10-100]", "sklearn/linear_model/_glm/tests/test_glm.py::test_poisson_glmnet[lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_poisson_glmnet[newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_convergence_warning", "sklearn/linear_model/_glm/tests/test_glm.py::test_tweedie_link_argument[identity-IdentityLink]", "sklearn/linear_model/_glm/tests/test_glm.py::test_tweedie_link_argument[log-LogLink]", "sklearn/linear_model/_glm/tests/test_glm.py::test_tweedie_link_auto[0-IdentityLink]", "sklearn/linear_model/_glm/tests/test_glm.py::test_tweedie_link_auto[1-LogLink]", "sklearn/linear_model/_glm/tests/test_glm.py::test_tweedie_link_auto[2-LogLink]", "sklearn/linear_model/_glm/tests/test_glm.py::test_tweedie_link_auto[3-LogLink]", "sklearn/linear_model/_glm/tests/test_glm.py::test_tweedie_score[log-0]", "sklearn/linear_model/_glm/tests/test_glm.py::test_tweedie_score[log-1]", "sklearn/linear_model/_glm/tests/test_glm.py::test_tweedie_score[log-1.5]", "sklearn/linear_model/_glm/tests/test_glm.py::test_tweedie_score[log-2]", "sklearn/linear_model/_glm/tests/test_glm.py::test_tweedie_score[log-3]", "sklearn/linear_model/_glm/tests/test_glm.py::test_tweedie_score[identity-0]", "sklearn/linear_model/_glm/tests/test_glm.py::test_tweedie_score[identity-1]", "sklearn/linear_model/_glm/tests/test_glm.py::test_tweedie_score[identity-1.5]", "sklearn/linear_model/_glm/tests/test_glm.py::test_tweedie_score[identity-2]", "sklearn/linear_model/_glm/tests/test_glm.py::test_tweedie_score[identity-3]", "sklearn/linear_model/_glm/tests/test_glm.py::test_linalg_warning_with_newton_solver[42]", "sklearn/linear_model/_glm/tests/test_glm.py::test_newton_solver_verbosity[0]", "sklearn/linear_model/_glm/tests/test_glm.py::test_newton_solver_verbosity[1]", "sklearn/linear_model/_glm/tests/test_glm.py::test_newton_solver_verbosity[2]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_non_transformer_estimators_n_iter]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[PoissonRegressor(max_iter=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_non_transformer_estimators_n_iter]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[TweedieRegressor(max_iter=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[GammaRegressor(max_iter=5)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[PoissonRegressor(max_iter=5)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[TweedieRegressor(max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GammaRegressor(max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[PoissonRegressor(max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[TweedieRegressor(max_iter=5)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-102
1.0
{ "code": "diff --git b/sklearn/linear_model/_linear_loss.py a/sklearn/linear_model/_linear_loss.py\nindex 5787f15ec..cfac0a273 100644\n--- b/sklearn/linear_model/_linear_loss.py\n+++ a/sklearn/linear_model/_linear_loss.py\n@@ -216,6 +216,20 @@ class LinearModelLoss:\n loss : float\n Weighted average of losses per sample, plus penalty.\n \"\"\"\n+ if raw_prediction is None:\n+ weights, intercept, raw_prediction = self.weight_intercept_raw(coef, X)\n+ else:\n+ weights, intercept = self.weight_intercept(coef)\n+\n+ loss = self.base_loss.loss(\n+ y_true=y,\n+ raw_prediction=raw_prediction,\n+ sample_weight=None,\n+ n_threads=n_threads,\n+ )\n+ loss = np.average(loss, weights=sample_weight)\n+\n+ return loss + self.l2_penalty(weights, l2_reg_strength)\n \n def loss_gradient(\n self,\n", "test": null }
null
{ "code": "diff --git a/sklearn/linear_model/_linear_loss.py b/sklearn/linear_model/_linear_loss.py\nindex cfac0a273..5787f15ec 100644\n--- a/sklearn/linear_model/_linear_loss.py\n+++ b/sklearn/linear_model/_linear_loss.py\n@@ -216,20 +216,6 @@ class LinearModelLoss:\n loss : float\n Weighted average of losses per sample, plus penalty.\n \"\"\"\n- if raw_prediction is None:\n- weights, intercept, raw_prediction = self.weight_intercept_raw(coef, X)\n- else:\n- weights, intercept = self.weight_intercept(coef)\n-\n- loss = self.base_loss.loss(\n- y_true=y,\n- raw_prediction=raw_prediction,\n- sample_weight=None,\n- n_threads=n_threads,\n- )\n- loss = np.average(loss, weights=sample_weight)\n-\n- return loss + self.l2_penalty(weights, l2_reg_strength)\n \n def loss_gradient(\n self,\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/linear_model/_linear_loss.py.\nHere is the description for the function:\n def loss(\n self,\n coef,\n X,\n y,\n sample_weight=None,\n l2_reg_strength=0.0,\n n_threads=1,\n raw_prediction=None,\n ):\n \"\"\"Compute the loss as weighted average over point-wise losses.\n\n Parameters\n ----------\n coef : ndarray of shape (n_dof,), (n_classes, n_dof) or (n_classes * n_dof,)\n Coefficients of a linear model.\n If shape (n_classes * n_dof,), the classes of one feature are contiguous,\n i.e. one reconstructs the 2d-array via\n coef.reshape((n_classes, -1), order=\"F\").\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n Training data.\n y : contiguous array of shape (n_samples,)\n Observed, true target values.\n sample_weight : None or contiguous array of shape (n_samples,), default=None\n Sample weights.\n l2_reg_strength : float, default=0.0\n L2 regularization strength\n n_threads : int, default=1\n Number of OpenMP threads to use.\n raw_prediction : C-contiguous array of shape (n_samples,) or array of \\\n shape (n_samples, n_classes)\n Raw prediction values (in link space). If provided, these are used. If\n None, then raw_prediction = X @ coef + intercept is calculated.\n\n Returns\n -------\n loss : float\n Weighted average of losses per sample, plus penalty.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-BinomialRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-BinomialRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-PoissonRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_predict_iris[clf2]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-PoissonRegressor()-42-True-lbfgs]", "sklearn/linear_model/tests/test_logistic.py::test_predict_iris[clf5]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-GammaRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_multinomial_binary[newton-cg]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-GammaRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_consistency_path", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-TweedieRegressor(power=1.5)-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-TweedieRegressor(power=1.5)-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[long-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-BinomialRegressor()-42-False-lbfgs]", "sklearn/linear_model/tests/test_logistic.py::test_ovr_multinomial_iris", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_solvers", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_solvers_multiclass", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-BinomialRegressor()-42-True-lbfgs]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regressioncv_class_weights[42-weight-weight0]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regressioncv_class_weights[42-weight-weight1]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-PoissonRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regressioncv_class_weights[42-balanced-weight0]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-PoissonRegressor()-42-True-lbfgs]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regressioncv_class_weights[42-balanced-weight1]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-GammaRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-GammaRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-TweedieRegressor(power=1.5)-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-TweedieRegressor(power=1.5)-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression[wide-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-BinomialRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-BinomialRegressor()-42-False-lbfgs]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_sample_weights[42-newton-cg-single]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_sample_weights[42-newton-cg-cv]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_sample_weights[42-newton-cholesky-single]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-PoissonRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_sample_weights[42-newton-cholesky-cv]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-PoissonRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-GammaRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-GammaRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-TweedieRegressor(power=1.5)-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-TweedieRegressor(power=1.5)-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[long-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-BinomialRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-BinomialRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_solver_class_weights[42-newton-cg]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-PoissonRegressor()-42-True-lbfgs]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_solver_class_weights[42-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-PoissonRegressor()-42-False-lbfgs]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_class_weights[<lambda>]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_class_weights[csr_matrix]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_class_weights[csr_array]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-GammaRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_multinomial", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-GammaRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-TweedieRegressor(power=1.5)-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-TweedieRegressor(power=1.5)-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_hstacked_X[wide-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-BinomialRegressor()-42-True-lbfgs]", "sklearn/linear_model/tests/test_logistic.py::test_max_iter[newton-cg-newton-cg failed to converge.* Increase the number of iterations.-ovr-max_iter0]", "sklearn/linear_model/tests/test_logistic.py::test_max_iter[newton-cg-newton-cg failed to converge.* Increase the number of iterations.-ovr-max_iter1]", "sklearn/linear_model/tests/test_logistic.py::test_max_iter[newton-cg-newton-cg failed to converge.* Increase the number of iterations.-ovr-max_iter2]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_max_iter[newton-cg-newton-cg failed to converge.* Increase the number of iterations.-ovr-max_iter3]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-BinomialRegressor()-42-False-lbfgs]", "sklearn/linear_model/tests/test_logistic.py::test_max_iter[newton-cg-newton-cg failed to converge.* Increase the number of iterations.-multinomial-max_iter0]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_max_iter[newton-cg-newton-cg failed to converge.* Increase the number of iterations.-multinomial-max_iter1]", "sklearn/linear_model/tests/test_logistic.py::test_max_iter[newton-cg-newton-cg failed to converge.* Increase the number of iterations.-multinomial-max_iter2]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-PoissonRegressor()-42-True-lbfgs]", "sklearn/linear_model/tests/test_logistic.py::test_max_iter[newton-cg-newton-cg failed to converge.* Increase the number of iterations.-multinomial-max_iter3]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-PoissonRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-GammaRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-GammaRegressor()-42-False-lbfgs]", "sklearn/linear_model/tests/test_logistic.py::test_max_iter[newton-cholesky-Newton solver did not converge after [0-9]* iterations-ovr-max_iter0]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_n_iter[newton-cg]", "sklearn/linear_model/tests/test_logistic.py::test_n_iter[newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-TweedieRegressor(power=1.5)-42-True-lbfgs]", "sklearn/linear_model/tests/test_logistic.py::test_warm_start[True-True-newton-cg]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-TweedieRegressor(power=1.5)-42-False-lbfgs]", "sklearn/linear_model/tests/test_logistic.py::test_warm_start[True-False-newton-cg]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[long-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-BinomialRegressor()-42-True-lbfgs]", "sklearn/linear_model/tests/test_logistic.py::test_warm_start[False-True-newton-cg]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_warm_start[False-False-newton-cg]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-BinomialRegressor()-42-False-lbfgs]", "sklearn/linear_model/tests/test_logistic.py::test_dtype_match[csr_matrix-False-newton-cg-ovr]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_dtype_match[csr_matrix-False-newton-cg-multinomial]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-PoissonRegressor()-42-True-lbfgs]", "sklearn/linear_model/tests/test_logistic.py::test_dtype_match[csr_matrix-False-newton-cholesky-ovr]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-PoissonRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-GammaRegressor()-42-True-lbfgs]", "sklearn/linear_model/tests/test_logistic.py::test_dtype_match[csr_matrix-True-newton-cg-ovr]", "sklearn/linear_model/tests/test_logistic.py::test_dtype_match[csr_matrix-True-newton-cg-multinomial]", "sklearn/linear_model/tests/test_logistic.py::test_dtype_match[csr_matrix-True-newton-cholesky-ovr]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_dtype_match[csr_array-False-newton-cg-ovr]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-GammaRegressor()-42-False-lbfgs]", "sklearn/linear_model/tests/test_logistic.py::test_dtype_match[csr_array-False-newton-cg-multinomial]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-TweedieRegressor(power=1.5)-42-True-lbfgs]", "sklearn/linear_model/tests/test_logistic.py::test_dtype_match[csr_array-False-newton-cholesky-ovr]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_dtype_match[csr_array-True-newton-cg-ovr]", "sklearn/linear_model/tests/test_logistic.py::test_dtype_match[csr_array-True-newton-cg-multinomial]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-TweedieRegressor(power=1.5)-42-False-lbfgs]", "sklearn/linear_model/tests/test_logistic.py::test_dtype_match[csr_array-True-newton-cholesky-ovr]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_vstacked_X[wide-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-BinomialRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-BinomialRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-PoissonRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-PoissonRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-GammaRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-GammaRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-TweedieRegressor(power=1.5)-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-TweedieRegressor(power=1.5)-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[long-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-BinomialRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-BinomialRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_multi_class_auto[newton-cg-LogisticRegression]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-PoissonRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_multi_class_auto[newton-cg-LogisticRegressionCV]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-PoissonRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_multi_class_auto[newton-cholesky-LogisticRegression]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-GammaRegressor()-42-True-lbfgs]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_multi_class_auto[newton-cholesky-LogisticRegressionCV]", "sklearn/linear_model/tests/test_logistic.py::test_penalty_none[newton-cg]", "sklearn/linear_model/tests/test_logistic.py::test_penalty_none[newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-GammaRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-TweedieRegressor(power=1.5)-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-TweedieRegressor(power=1.5)-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized[wide-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-BinomialRegressor()-42-True-lbfgs]", "sklearn/linear_model/tests/test_logistic.py::test_large_sparse_matrix[42-csr_matrix-newton-cg]", "sklearn/linear_model/tests/test_logistic.py::test_large_sparse_matrix[42-csr_matrix-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-BinomialRegressor()-42-False-lbfgs]", "sklearn/linear_model/tests/test_logistic.py::test_large_sparse_matrix[42-csr_array-newton-cg]", "sklearn/linear_model/tests/test_logistic.py::test_large_sparse_matrix[42-csr_array-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-PoissonRegressor()-42-True-lbfgs]", "sklearn/linear_model/tests/test_logistic.py::test_single_feature_newton_cg", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-PoissonRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-GammaRegressor()-42-True-lbfgs]", "sklearn/linear_model/tests/test_logistic.py::test_zero_max_iter[newton-cg]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-GammaRegressor()-42-False-lbfgs]", "sklearn/linear_model/tests/test_logistic.py::test_zero_max_iter[newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-TweedieRegressor(power=1.5)-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-TweedieRegressor(power=1.5)-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[long-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-BinomialRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-BinomialRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-PoissonRegressor()-42-True-lbfgs]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-None-False-HalfBinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-None-False-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-None-False-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-None-True-HalfBinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-PoissonRegressor()-42-False-lbfgs]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-None-True-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-None-True-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-range-False-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-range-False-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-range-False-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-range-True-HalfBinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-range-True-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-0-range-True-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-None-False-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-None-False-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-None-False-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-None-True-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-None-True-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-None-True-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-range-False-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-range-False-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-range-False-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-range-True-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-range-True-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_matrix-1-range-True-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-None-False-HalfBinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-GammaRegressor()-42-True-lbfgs]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-None-False-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-None-False-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-None-True-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-None-True-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-None-True-HalfPoissonLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-range-False-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-range-False-HalfMultinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-GammaRegressor()-42-False-lbfgs]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-range-False-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-range-True-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-range-True-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-0-range-True-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-None-False-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-None-False-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-None-False-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-None-True-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-None-True-HalfMultinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-None-True-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-range-False-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-range-False-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-range-False-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-range-True-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-range-True-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_loss_grad_hess_are_the_same[csr_array-1-range-True-HalfPoissonLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-TweedieRegressor(power=1.5)-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-None-False-HalfBinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-TweedieRegressor(power=1.5)-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_hstacked_X[wide-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-BinomialRegressor()-42-True-lbfgs]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-None-False-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-None-False-HalfPoissonLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-BinomialRegressor()-42-False-lbfgs]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-None-True-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-None-True-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-None-True-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-range-False-HalfBinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-range-False-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-range-False-HalfPoissonLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-PoissonRegressor()-42-True-lbfgs]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-range-True-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-range-True-HalfMultinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[0-range-True-HalfPoissonLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-PoissonRegressor()-42-False-lbfgs]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-None-False-HalfBinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-None-False-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-None-False-HalfPoissonLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-GammaRegressor()-42-True-lbfgs]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-None-True-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-None-True-HalfMultinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-None-True-HalfPoissonLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-GammaRegressor()-42-False-lbfgs]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-range-False-HalfBinomialLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-range-False-HalfMultinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-range-False-HalfPoissonLoss]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-range-True-HalfBinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-TweedieRegressor(power=1.5)-42-True-lbfgs]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-range-True-HalfMultinomialLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/tests/test_linear_loss.py::test_gradients_hessians_numerically[1-range-True-HalfPoissonLoss]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-TweedieRegressor(power=1.5)-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[long-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-BinomialRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-BinomialRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-BinomialRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-BinomialRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-PoissonRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-PoissonRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-PoissonRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-PoissonRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-GammaRegressor()-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-GammaRegressor()-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-GammaRegressor()-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-GammaRegressor()-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-TweedieRegressor(power=1.5)-42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-TweedieRegressor(power=1.5)-42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-TweedieRegressor(power=1.5)-42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_regression_unpenalized_vstacked_X[wide-TweedieRegressor(power=1.5)-42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator0-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator0-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator1-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator1-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator2-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator2-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator3-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator3-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator4-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator4-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator5-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_glm_log_regression[estimator5-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_warm_start[42-True-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_warm_start[42-True-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_warm_start[42-False-lbfgs]", "sklearn/linear_model/_glm/tests/test_glm.py::test_warm_start[42-False-newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_poisson_glmnet[newton-cholesky]", "sklearn/linear_model/_glm/tests/test_glm.py::test_linalg_warning_with_newton_solver[42]", "sklearn/linear_model/_glm/tests/test_glm.py::test_newton_solver_verbosity[0]", "sklearn/linear_model/_glm/tests/test_glm.py::test_newton_solver_verbosity[1]", "sklearn/linear_model/_glm/tests/test_glm.py::test_newton_solver_verbosity[2]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-103
1.0
{ "code": "diff --git b/sklearn/linear_model/_base.py a/sklearn/linear_model/_base.py\nindex 343fd21a6..02e6e7575 100644\n--- b/sklearn/linear_model/_base.py\n+++ a/sklearn/linear_model/_base.py\n@@ -566,6 +566,7 @@ class LinearRegression(MultiOutputMixin, RegressorMixin, LinearModel):\n self.n_jobs = n_jobs\n self.positive = positive\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y, sample_weight=None):\n \"\"\"\n Fit linear model.\n@@ -589,6 +590,96 @@ class LinearRegression(MultiOutputMixin, RegressorMixin, LinearModel):\n self : object\n Fitted Estimator.\n \"\"\"\n+ n_jobs_ = self.n_jobs\n+\n+ accept_sparse = False if self.positive else [\"csr\", \"csc\", \"coo\"]\n+\n+ X, y = validate_data(\n+ self,\n+ X,\n+ y,\n+ accept_sparse=accept_sparse,\n+ y_numeric=True,\n+ multi_output=True,\n+ force_writeable=True,\n+ )\n+\n+ has_sw = sample_weight is not None\n+ if has_sw:\n+ sample_weight = _check_sample_weight(\n+ sample_weight, X, dtype=X.dtype, ensure_non_negative=True\n+ )\n+\n+ # Note that neither _rescale_data nor the rest of the fit method of\n+ # LinearRegression can benefit from in-place operations when X is a\n+ # sparse matrix. Therefore, let's not copy X when it is sparse.\n+ copy_X_in_preprocess_data = self.copy_X and not sp.issparse(X)\n+\n+ X, y, X_offset, y_offset, X_scale = _preprocess_data(\n+ X,\n+ y,\n+ fit_intercept=self.fit_intercept,\n+ copy=copy_X_in_preprocess_data,\n+ sample_weight=sample_weight,\n+ )\n+\n+ if has_sw:\n+ # Sample weight can be implemented via a simple rescaling. Note\n+ # that we safely do inplace rescaling when _preprocess_data has\n+ # already made a copy if requested.\n+ X, y, sample_weight_sqrt = _rescale_data(\n+ X, y, sample_weight, inplace=copy_X_in_preprocess_data\n+ )\n+\n+ if self.positive:\n+ if y.ndim < 2:\n+ self.coef_ = optimize.nnls(X, y)[0]\n+ else:\n+ # scipy.optimize.nnls cannot handle y with shape (M, K)\n+ outs = Parallel(n_jobs=n_jobs_)(\n+ delayed(optimize.nnls)(X, y[:, j]) for j in range(y.shape[1])\n+ )\n+ self.coef_ = np.vstack([out[0] for out in outs])\n+ elif sp.issparse(X):\n+ X_offset_scale = X_offset / X_scale\n+\n+ if has_sw:\n+\n+ def matvec(b):\n+ return X.dot(b) - sample_weight_sqrt * b.dot(X_offset_scale)\n+\n+ def rmatvec(b):\n+ return X.T.dot(b) - X_offset_scale * b.dot(sample_weight_sqrt)\n+\n+ else:\n+\n+ def matvec(b):\n+ return X.dot(b) - b.dot(X_offset_scale)\n+\n+ def rmatvec(b):\n+ return X.T.dot(b) - X_offset_scale * b.sum()\n+\n+ X_centered = sparse.linalg.LinearOperator(\n+ shape=X.shape, matvec=matvec, rmatvec=rmatvec\n+ )\n+\n+ if y.ndim < 2:\n+ self.coef_ = lsqr(X_centered, y)[0]\n+ else:\n+ # sparse_lstsq cannot handle y with shape (M, K)\n+ outs = Parallel(n_jobs=n_jobs_)(\n+ delayed(lsqr)(X_centered, y[:, j].ravel())\n+ for j in range(y.shape[1])\n+ )\n+ self.coef_ = np.vstack([out[0] for out in outs])\n+ else:\n+ self.coef_, _, self.rank_, self.singular_ = linalg.lstsq(X, y)\n+ self.coef_ = self.coef_.T\n+\n+ if y.ndim == 1:\n+ self.coef_ = np.ravel(self.coef_)\n+ self._set_intercept(X_offset, y_offset, X_scale)\n+ return self\n \n \n def _check_precomputed_gram_matrix(\n", "test": null }
null
{ "code": "diff --git a/sklearn/linear_model/_base.py b/sklearn/linear_model/_base.py\nindex 02e6e7575..343fd21a6 100644\n--- a/sklearn/linear_model/_base.py\n+++ b/sklearn/linear_model/_base.py\n@@ -566,7 +566,6 @@ class LinearRegression(MultiOutputMixin, RegressorMixin, LinearModel):\n self.n_jobs = n_jobs\n self.positive = positive\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y, sample_weight=None):\n \"\"\"\n Fit linear model.\n@@ -590,96 +589,6 @@ class LinearRegression(MultiOutputMixin, RegressorMixin, LinearModel):\n self : object\n Fitted Estimator.\n \"\"\"\n- n_jobs_ = self.n_jobs\n-\n- accept_sparse = False if self.positive else [\"csr\", \"csc\", \"coo\"]\n-\n- X, y = validate_data(\n- self,\n- X,\n- y,\n- accept_sparse=accept_sparse,\n- y_numeric=True,\n- multi_output=True,\n- force_writeable=True,\n- )\n-\n- has_sw = sample_weight is not None\n- if has_sw:\n- sample_weight = _check_sample_weight(\n- sample_weight, X, dtype=X.dtype, ensure_non_negative=True\n- )\n-\n- # Note that neither _rescale_data nor the rest of the fit method of\n- # LinearRegression can benefit from in-place operations when X is a\n- # sparse matrix. Therefore, let's not copy X when it is sparse.\n- copy_X_in_preprocess_data = self.copy_X and not sp.issparse(X)\n-\n- X, y, X_offset, y_offset, X_scale = _preprocess_data(\n- X,\n- y,\n- fit_intercept=self.fit_intercept,\n- copy=copy_X_in_preprocess_data,\n- sample_weight=sample_weight,\n- )\n-\n- if has_sw:\n- # Sample weight can be implemented via a simple rescaling. Note\n- # that we safely do inplace rescaling when _preprocess_data has\n- # already made a copy if requested.\n- X, y, sample_weight_sqrt = _rescale_data(\n- X, y, sample_weight, inplace=copy_X_in_preprocess_data\n- )\n-\n- if self.positive:\n- if y.ndim < 2:\n- self.coef_ = optimize.nnls(X, y)[0]\n- else:\n- # scipy.optimize.nnls cannot handle y with shape (M, K)\n- outs = Parallel(n_jobs=n_jobs_)(\n- delayed(optimize.nnls)(X, y[:, j]) for j in range(y.shape[1])\n- )\n- self.coef_ = np.vstack([out[0] for out in outs])\n- elif sp.issparse(X):\n- X_offset_scale = X_offset / X_scale\n-\n- if has_sw:\n-\n- def matvec(b):\n- return X.dot(b) - sample_weight_sqrt * b.dot(X_offset_scale)\n-\n- def rmatvec(b):\n- return X.T.dot(b) - X_offset_scale * b.dot(sample_weight_sqrt)\n-\n- else:\n-\n- def matvec(b):\n- return X.dot(b) - b.dot(X_offset_scale)\n-\n- def rmatvec(b):\n- return X.T.dot(b) - X_offset_scale * b.sum()\n-\n- X_centered = sparse.linalg.LinearOperator(\n- shape=X.shape, matvec=matvec, rmatvec=rmatvec\n- )\n-\n- if y.ndim < 2:\n- self.coef_ = lsqr(X_centered, y)[0]\n- else:\n- # sparse_lstsq cannot handle y with shape (M, K)\n- outs = Parallel(n_jobs=n_jobs_)(\n- delayed(lsqr)(X_centered, y[:, j].ravel())\n- for j in range(y.shape[1])\n- )\n- self.coef_ = np.vstack([out[0] for out in outs])\n- else:\n- self.coef_, _, self.rank_, self.singular_ = linalg.lstsq(X, y)\n- self.coef_ = self.coef_.T\n-\n- if y.ndim == 1:\n- self.coef_ = np.ravel(self.coef_)\n- self._set_intercept(X_offset, y_offset, X_scale)\n- return self\n \n \n def _check_precomputed_gram_matrix(\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/linear_model/_base.py.\nHere is the description for the function:\n def fit(self, X, y, sample_weight=None):\n \"\"\"\n Fit linear model.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n Training data.\n\n y : array-like of shape (n_samples,) or (n_samples, n_targets)\n Target values. Will be cast to X's dtype if necessary.\n\n sample_weight : array-like of shape (n_samples,), default=None\n Individual weights for each sample.\n\n .. versionadded:: 0.17\n parameter *sample_weight* support to LinearRegression.\n\n Returns\n -------\n self : object\n Fitted Estimator.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-5-LinearRegression-brute-data7]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-5-LinearRegression-brute-data8]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-10-LinearRegression-brute-data7]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-10-LinearRegression-brute-data8]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-5-LinearRegression-brute-data7]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-5-LinearRegression-brute-data8]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-10-LinearRegression-brute-data7]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-10-LinearRegression-brute-data8]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_linear_regression[True-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_linear_regression[False-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_periodic_linear_regression[True-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_periodic_linear_regression[False-True]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-5-LinearRegression-brute-data7]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-5-LinearRegression-brute-data8]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[1-True-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[1-False-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[2-True-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[2-False-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[3-True-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[3-False-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[4-True-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[4-False-True]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[5-True-False]", "sklearn/preprocessing/tests/test_polynomial.py::test_spline_transformer_extrapolation[5-False-True]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-10-LinearRegression-brute-data7]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-10-LinearRegression-brute-data8]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-5-LinearRegression-brute-data7]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-5-LinearRegression-brute-data8]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-10-LinearRegression-brute-data7]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-10-LinearRegression-brute-data8]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-5-LinearRegression-brute-data7]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-5-LinearRegression-brute-data8]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-10-LinearRegression-brute-data7]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-10-LinearRegression-brute-data8]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-5-LinearRegression-brute-data7]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-5-LinearRegression-brute-data8]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-10-LinearRegression-brute-data7]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-10-LinearRegression-brute-data8]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est0-brute-0]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est0-brute-1]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est0-brute-2]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est0-brute-3]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_helpers[est0-brute-4]", "sklearn/linear_model/tests/test_ridge.py::test_ridge_vs_lstsq", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_easy_target[1-est0]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_easy_target[1-est1]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_easy_target[1-est2]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_easy_target[1-est3]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_easy_target[2-est0]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_easy_target[2-est1]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_easy_target[2-est2]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_easy_target[2-est3]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_error[estimator1-params1-The response_method parameter is ignored for regressors]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_error[estimator4-params4-The 'recursion' method only applies when 'kind' is set to 'average']", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_error[estimator5-params5-The 'recursion' method only applies when 'kind' is set to 'average']", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_error[estimator6-params6-Only the following estimators support the 'recursion' method:]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_unknown_feature_indices[-1-estimator0]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_unknown_feature_indices[10000-estimator0]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_unknown_feature_string[estimator0]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_X_list[estimator0]", "sklearn/inspection/tests/test_partial_dependence.py::test_kind_average_and_average_of_individual[LinearRegression-data0]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_kind_individual_ignores_sample_weight[LinearRegression-data0]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[0-estimator0]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[1-estimator0]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_matrix-LinearRegression-params7]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_dense_and_sparse[csr_array-LinearRegression-params7]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[-1-estimator0]", "sklearn/tests/test_pipeline.py::test_classes_property", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_equivalence_equal_sample_weight[LinearRegression-data0]", "sklearn/tests/test_metadata_routing.py::test_metaestimator_warnings", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_passing_numpy_axes[average-1]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_passing_numpy_axes[individual-50]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select[1-forward]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_passing_numpy_axes[both-51]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select[1-backward]", "sklearn/cross_decomposition/tests/test_pls.py::test_pls_regression_fit_1d_y", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select[5-forward]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select[5-backward]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select[9-forward]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select[9-backward]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select[auto-forward]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_multioutput[0]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_multioutput[1]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select[auto-backward]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_error[data0-params0-target must be specified for multi-output]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select_auto[forward]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_error[data1-params1-target must be in \\\\[0, n_tasks\\\\]]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_error[data2-params2-target must be in \\\\[0, n_tasks\\\\]]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select_auto[backward]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_error[data3-params3-Feature 'foobar' not in feature_names]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_error[data4-params4-Feature 'foobar' not in feature_names]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_error[data5-params5-Each entry in features must be either an int, ]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select_stopping_criterion[forward]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_error[data6-params6-Each entry in features must be either an int, ]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_error[data7-params7-Each entry in features must be either an int, ]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_error[data8-params8-All entries of features must be less than ]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select_stopping_criterion[backward]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_error[data9-params9-feature_names should not contain duplicates]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_error[data10-params10-When `kind` is provided as a list of strings, it should contain]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_error[data11-params11-When an integer, subsample=-1 should be positive.]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select_float[0.1-1-forward]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_error[data12-params12-When a floating-point, subsample=1.2 should be in the \\\\(0, 1\\\\) range]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_error[data13-params13-Expected `categorical_features` to be an array-like of boolean,]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_error[data14-params14-Two-way partial dependence plots are not supported for pairs]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select_float[0.1-1-backward]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_error[data15-params15-It is not possible to display individual effects]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select_float[1.0-10-forward]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[False-None-predict_params0-3]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_with_categorical[categorical_features0-dataframe]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[False-None-predict_params0-cv1]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select_float[0.5-5-forward]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_with_categorical[categorical_features1-array]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[False-final_estimator1-predict_params1-3]", "sklearn/feature_selection/tests/test_sequential.py::test_n_features_to_select_float[0.5-5-backward]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_with_categorical[categorical_features2-array]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[False-final_estimator1-predict_params1-cv1]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-forward-0]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_plot_partial_dependence_legend", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-forward-1]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[False-final_estimator2-predict_params2-3]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-forward-2]", "sklearn/linear_model/tests/test_base.py::test_linear_regression", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-forward-3]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[False-final_estimator2-predict_params2-cv1]", "sklearn/linear_model/tests/test_base.py::test_linear_regression_sample_weights[42-True-None]", "sklearn/linear_model/tests/test_base.py::test_linear_regression_sample_weights[42-True-csr_matrix]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-forward-4]", "sklearn/linear_model/tests/test_base.py::test_linear_regression_sample_weights[42-True-csr_array]", "sklearn/linear_model/tests/test_least_angle.py::test_lars_precompute[LassoLarsIC]", "sklearn/linear_model/tests/test_base.py::test_linear_regression_sample_weights[42-False-None]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[True-None-predict_params0-3]", "sklearn/linear_model/tests/test_base.py::test_linear_regression_sample_weights[42-False-csr_matrix]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_grid_resolution_with_categorical[categorical_features0-dataframe]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-forward-5]", "sklearn/linear_model/tests/test_base.py::test_linear_regression_sample_weights[42-False-csr_array]", "sklearn/linear_model/tests/test_base.py::test_raises_value_error_if_positive_and_sparse", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[True-None-predict_params0-cv1]", "sklearn/linear_model/tests/test_base.py::test_raises_value_error_if_sample_weights_greater_than_1d[2-3]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_grid_resolution_with_categorical[categorical_features1-array]", "sklearn/inspection/_plot/tests/test_plot_partial_dependence.py::test_grid_resolution_with_categorical[categorical_features2-array]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[True-final_estimator1-predict_params1-3]", "sklearn/linear_model/tests/test_base.py::test_raises_value_error_if_sample_weights_greater_than_1d[3-2]", "sklearn/linear_model/tests/test_base.py::test_fit_intercept", "sklearn/linear_model/tests/test_base.py::test_linear_regression_sparse[42]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-forward-6]", "sklearn/linear_model/tests/test_base.py::test_linear_regression_sparse_equal_dense[csr_matrix-True]", "sklearn/linear_model/tests/test_base.py::test_linear_regression_sparse_equal_dense[csr_matrix-False]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-forward-7]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[True-final_estimator1-predict_params1-cv1]", "sklearn/linear_model/tests/test_base.py::test_linear_regression_sparse_equal_dense[csr_array-True]", "sklearn/linear_model/tests/test_base.py::test_linear_regression_sparse_equal_dense[csr_array-False]", "sklearn/linear_model/tests/test_base.py::test_linear_regression_multiple_outcome", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[True-final_estimator2-predict_params2-3]", "sklearn/linear_model/tests/test_least_angle.py::test_lasso_lars_ic", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-forward-8]", "sklearn/linear_model/tests/test_least_angle.py::test_estimatorclasses_positive_constraint", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-forward-9]", "sklearn/linear_model/tests/test_least_angle.py::test_lasso_lars_copyX_behaviour[True]", "sklearn/linear_model/tests/test_base.py::test_linear_regression_sparse_multiple_outcome[42-coo_matrix]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_diabetes[True-final_estimator2-predict_params2-cv1]", "sklearn/linear_model/tests/test_base.py::test_linear_regression_sparse_multiple_outcome[42-coo_array]", "sklearn/linear_model/tests/test_base.py::test_linear_regression_positive", "sklearn/linear_model/tests/test_base.py::test_linear_regression_positive_multiple_outcome[42]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-backward-0]", "sklearn/linear_model/tests/test_base.py::test_linear_regression_positive_vs_nonpositive[42]", "sklearn/tests/test_multiclass.py::test_ovr_multiclass", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_sparse_passthrough[coo_matrix]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-backward-1]", "sklearn/linear_model/tests/test_base.py::test_linear_regression_positive_vs_nonpositive_when_positive[42]", "sklearn/linear_model/tests/test_base.py::test_inplace_data_preprocessing[42-True-None]", "sklearn/linear_model/tests/test_base.py::test_inplace_data_preprocessing[42-True-csr_matrix]", "sklearn/linear_model/tests/test_base.py::test_inplace_data_preprocessing[42-True-csr_array]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_sparse_passthrough[coo_array]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-backward-2]", "sklearn/linear_model/tests/test_least_angle.py::test_lasso_lars_copyX_behaviour[False]", "sklearn/linear_model/tests/test_base.py::test_inplace_data_preprocessing[42-False-None]", "sklearn/linear_model/tests/test_base.py::test_inplace_data_preprocessing[42-False-csr_matrix]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-backward-3]", "sklearn/linear_model/tests/test_least_angle.py::test_lasso_lars_fit_copyX_behaviour[True]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_sparse_passthrough[csc_matrix]", "sklearn/linear_model/tests/test_base.py::test_inplace_data_preprocessing[42-False-csr_array]", "sklearn/linear_model/tests/test_base.py::test_linear_regression_pd_sparse_dataframe_warning", "sklearn/linear_model/tests/test_least_angle.py::test_lasso_lars_fit_copyX_behaviour[False]", "sklearn/tests/test_multiclass.py::test_ovr_binary", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_sparse_passthrough[csc_array]", "sklearn/linear_model/tests/test_least_angle.py::test_lars_dtype_match[float32-LassoLarsIC-False-args2]", "sklearn/tests/test_multiclass.py::test_ovr_multilabel", "sklearn/linear_model/tests/test_base.py::test_linear_regression_sample_weight_consistency[42-False-None]", "sklearn/linear_model/tests/test_base.py::test_linear_regression_sample_weight_consistency[42-False-csr_matrix]", "sklearn/linear_model/tests/test_base.py::test_linear_regression_sample_weight_consistency[42-False-csr_array]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_sparse_passthrough[csr_matrix]", "sklearn/linear_model/tests/test_base.py::test_linear_regression_sample_weight_consistency[42-True-None]", "sklearn/linear_model/tests/test_base.py::test_linear_regression_sample_weight_consistency[42-True-csr_matrix]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-backward-4]", "sklearn/linear_model/tests/test_least_angle.py::test_lars_dtype_match[float64-LassoLarsIC-False-args2]", "sklearn/linear_model/tests/test_least_angle.py::test_lars_numeric_consistency[LassoLarsIC-False-args2]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-backward-5]", "sklearn/linear_model/tests/test_least_angle.py::test_lassolarsic_alpha_selection[aic]", "sklearn/linear_model/tests/test_least_angle.py::test_lassolarsic_alpha_selection[bic]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-backward-6]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_sparse_passthrough[csr_array]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-backward-7]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-backward-8]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[2-expected_selected_features0-backward-9]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-forward-0]", "sklearn/model_selection/tests/test_search.py::test_search_with_estimators_issue_29157", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-forward-1]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-forward-2]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-forward-3]", "sklearn/linear_model/tests/test_base.py::test_linear_regression_sample_weight_consistency[42-True-csr_array]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-forward-4]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-forward-5]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-forward-6]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-forward-7]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_error[y1-params1-TypeError-does not support sample weight]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-forward-8]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_regressor_error[y2-params2-TypeError-does not support sample weight]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-forward-9]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-backward-0]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_randomness[StackingRegressor]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-backward-1]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-backward-2]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-backward-3]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-backward-4]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-backward-5]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_with_sample_weight[StackingRegressor]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-backward-6]", "sklearn/utils/tests/test_estimator_checks.py::test_check_estimator", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-backward-7]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-backward-8]", "sklearn/feature_selection/tests/test_sequential.py::test_sanity[1-expected_selected_features1-backward-9]", "sklearn/feature_selection/tests/test_sequential.py::test_sparse_support[csr_matrix]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_cv_influence[StackingRegressor]", "sklearn/utils/tests/test_response.py::test_get_response_values_regressor[True]", "sklearn/feature_selection/tests/test_sequential.py::test_sparse_support[csr_array]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_prefit[StackingRegressor-DummyRegressor-predict-final_estimator1-X1-y1]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_without_n_features_in[make_regression-StackingRegressor-LinearRegression]", "sklearn/utils/tests/test_response.py::test_get_response_values_regressor[False]", "sklearn/feature_selection/tests/test_sequential.py::test_pipeline_support", "sklearn/feature_selection/tests/test_from_model.py::test_from_model_estimator_attribute_error", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-False-LassoLarsIC]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-False-LinearRegression]", "sklearn/feature_selection/tests/test_sequential.py::test_backward_neg_tol", "sklearn/ensemble/tests/test_weight_boosting.py::test_adaboostregressor_sample_weight", "sklearn/tests/test_multioutput.py::test_regressor_chain_verbose", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-True-LinearRegression]", "sklearn/linear_model/tests/test_ransac.py::test_ransac_inliers_outliers", "sklearn/utils/tests/test_estimator_checks.py::test_check_estimator_clones", "sklearn/linear_model/tests/test_ransac.py::test_ransac_is_model_valid", "sklearn/linear_model/tests/test_ransac.py::test_ransac_max_trials", "sklearn/linear_model/tests/test_ransac.py::test_ransac_stop_n_inliers", "sklearn/linear_model/tests/test_ransac.py::test_ransac_stop_score", "sklearn/linear_model/tests/test_ransac.py::test_ransac_score", "sklearn/ensemble/tests/test_voting.py::test_none_estimator_with_weights[X1-y1-voter1]", "sklearn/linear_model/tests/test_ransac.py::test_ransac_predict", "sklearn/linear_model/tests/test_omp.py::test_omp_reaches_least_squares", "sklearn/ensemble/tests/test_voting.py::test_n_features_in[VotingRegressor]", "sklearn/ensemble/tests/test_voting.py::test_voting_verbose[estimator0]", "sklearn/linear_model/tests/test_ransac.py::test_ransac_no_valid_model", "sklearn/ensemble/tests/test_voting.py::test_get_features_names_out_regressor", "sklearn/linear_model/tests/test_ransac.py::test_ransac_warn_exceed_max_skips", "sklearn/linear_model/tests/test_ransac.py::test_ransac_sparse[coo_matrix]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_linear_regresssion", "sklearn/linear_model/tests/test_ransac.py::test_ransac_sparse[coo_array]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_equivalence_sequential_parallel[500]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_equivalence_sequential_parallel[1.0]", "sklearn/linear_model/tests/test_ransac.py::test_ransac_sparse[csr_matrix]", "sklearn/linear_model/tests/test_ransac.py::test_ransac_sparse[csr_array]", "sklearn/linear_model/tests/test_ransac.py::test_ransac_sparse[csc_matrix]", "sklearn/linear_model/tests/test_ransac.py::test_ransac_sparse[csc_array]", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_invertible", "sklearn/ensemble/tests/test_common.py::test_ensemble_heterogeneous_estimators_behavior[stacking-regressor]", "sklearn/linear_model/tests/test_ransac.py::test_ransac_none_estimator", "sklearn/linear_model/tests/test_ransac.py::test_ransac_min_n_samples", "sklearn/linear_model/tests/test_ransac.py::test_ransac_multi_dimensional_targets", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_functions", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_functions_multioutput", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_1d_transformer[X0-y0]", "sklearn/linear_model/tests/test_theil_sen.py::test_theil_sen_1d", "sklearn/ensemble/tests/test_common.py::test_ensemble_heterogeneous_estimators_behavior[voting-regressor]", "sklearn/linear_model/tests/test_theil_sen.py::test_theil_sen_1d_no_intercept", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_1d_transformer[X1-y1]", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_2d_transformer[X0-y0]", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_2d_transformer[X1-y1]", "sklearn/linear_model/tests/test_ransac.py::test_ransac_residual_loss", "sklearn/linear_model/tests/test_ransac.py::test_ransac_default_residual_threshold", "sklearn/linear_model/tests/test_theil_sen.py::test_theil_sen_2d", "sklearn/ensemble/tests/test_common.py::test_heterogeneous_ensemble_support_missing_values[StackingRegressor-LinearRegression-X1-y1]", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_2d_transformer_multioutput", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_3d_target", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_multi_to_single", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_count_fit[False]", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_count_fit[True]", "sklearn/linear_model/tests/test_ransac.py::test_ransac_fit_sample_weight", "sklearn/linear_model/tests/test_ransac.py::test_ransac_final_model_fit_sample_weight", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_not_warns_with_global_output_set[pandas]", "sklearn/linear_model/tests/test_theil_sen.py::test_subsamples", "sklearn/linear_model/tests/test_theil_sen.py::test_theil_sen_parallel", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_sample_weight", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_no_weights_scoring_function", "sklearn/linear_model/tests/test_theil_sen.py::test_less_samples_than_features", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_multi_metric[list_single_scorer0-multi_scorer0]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_multi_metric[list_single_scorer1-multi_scorer1]", "sklearn/inspection/tests/test_permutation_importance.py::test_permutation_importance_multi_metric[list_single_scorer2-<lambda>]", "sklearn/compose/tests/test_target.py::test_transform_target_regressor_not_warns_with_global_output_set[polars]", "sklearn/linear_model/tests/test_ransac.py::test_perfect_horizontal_line", "sklearn/ensemble/tests/test_common.py::test_heterogeneous_ensemble_support_missing_values[VotingRegressor-LinearRegression-X3-y3]", "sklearn/linear_model/tests/test_huber.py::test_huber_equals_lr_for_high_epsilon", "sklearn/linear_model/_least_angle.py::sklearn.linear_model._least_angle.LassoLarsIC", "sklearn/feature_selection/tests/test_rfe.py::test_rfe_estimator_attribute_error", "sklearn/ensemble/_voting.py::sklearn.ensemble._voting.VotingRegressor", "sklearn/inspection/_plot/partial_dependence.py::sklearn.inspection._plot.partial_dependence.PartialDependenceDisplay.from_estimator", "sklearn/compose/_target.py::sklearn.compose._target.TransformedTargetRegressor", "sklearn/linear_model/_huber.py::sklearn.linear_model._huber.HuberRegressor", "sklearn/linear_model/_ransac.py::sklearn.linear_model._ransac.RANSACRegressor", "sklearn/ensemble/tests/test_gradient_boosting.py::test_gradient_boosting_with_init_pipeline", "sklearn/ensemble/tests/test_stacking.py::test_get_feature_names_out[True-StackingRegressor]", "sklearn/ensemble/tests/test_stacking.py::test_get_feature_names_out[False-StackingRegressor]", "sklearn/linear_model/_base.py::sklearn.linear_model._base.LinearRegression", "sklearn/tests/test_common.py::test_estimators[LinearRegression()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[LinearRegression()-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[LinearRegression()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[LinearRegression()-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[LinearRegression()-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[LinearRegression()-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[LinearRegression()-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[LinearRegression()-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[LinearRegression()-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[LinearRegression()-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[LinearRegression()-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[LinearRegression()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[LinearRegression()-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[LinearRegression()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[LinearRegression()-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[LinearRegression()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[LinearRegression()-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[LinearRegression()-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[LinearRegression()-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[LinearRegression()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[LinearRegression()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[LinearRegression()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[LinearRegression()-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[LinearRegression()-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[LinearRegression()-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[LinearRegression()-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[LinearRegression()-check_regressor_multioutput]", "sklearn/tests/test_common.py::test_estimators[LinearRegression()-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[LinearRegression()-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[LinearRegression()-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[LinearRegression()-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[LinearRegression()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[LinearRegression()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[LinearRegression()-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[LinearRegression()-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[LinearRegression()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[LinearRegression()-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[LinearRegression()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[LinearRegression()-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[LinearRegression()-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[LinearRegression()-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[LinearRegression()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[LinearRegression()-check_requires_y_none]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_regressor_multioutput]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[RANSACRegressor(estimator=LinearRegression(),max_trials=10)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_regressor_multioutput]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[TransformedTargetRegressor()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[LinearRegression()]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[RANSACRegressor(estimator=LinearRegression(),max_trials=10)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[TransformedTargetRegressor()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[LinearRegression()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RANSACRegressor(estimator=LinearRegression(),max_trials=10)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[TransformedTargetRegressor()]", "sklearn/tests/test_common.py::test_check_param_validation[LinearRegression()]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[LinearRegression()]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-104
1.0
{ "code": "diff --git b/sklearn/svm/_classes.py a/sklearn/svm/_classes.py\nindex cada560c8..064aa50ec 100644\n--- b/sklearn/svm/_classes.py\n+++ a/sklearn/svm/_classes.py\n@@ -277,6 +277,7 @@ class LinearSVC(LinearClassifierMixin, SparseCoefMixin, BaseEstimator):\n self.penalty = penalty\n self.loss = loss\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y, sample_weight=None):\n \"\"\"Fit the model according to the given training data.\n \n@@ -301,6 +302,52 @@ class LinearSVC(LinearClassifierMixin, SparseCoefMixin, BaseEstimator):\n self : object\n An instance of the estimator.\n \"\"\"\n+ X, y = validate_data(\n+ self,\n+ X,\n+ y,\n+ accept_sparse=\"csr\",\n+ dtype=np.float64,\n+ order=\"C\",\n+ accept_large_sparse=False,\n+ )\n+ check_classification_targets(y)\n+ self.classes_ = np.unique(y)\n+\n+ _dual = _validate_dual_parameter(\n+ self.dual, self.loss, self.penalty, self.multi_class, X\n+ )\n+\n+ self.coef_, self.intercept_, n_iter_ = _fit_liblinear(\n+ X,\n+ y,\n+ self.C,\n+ self.fit_intercept,\n+ self.intercept_scaling,\n+ self.class_weight,\n+ self.penalty,\n+ _dual,\n+ self.verbose,\n+ self.max_iter,\n+ self.tol,\n+ self.random_state,\n+ self.multi_class,\n+ self.loss,\n+ sample_weight=sample_weight,\n+ )\n+ # Backward compatibility: _fit_liblinear is used both by LinearSVC/R\n+ # and LogisticRegression but LogisticRegression sets a structured\n+ # `n_iter_` attribute with information about the underlying OvR fits\n+ # while LinearSVC/R only reports the maximum value.\n+ self.n_iter_ = n_iter_.max().item()\n+\n+ if self.multi_class == \"crammer_singer\" and len(self.classes_) == 2:\n+ self.coef_ = (self.coef_[1] - self.coef_[0]).reshape(1, -1)\n+ if self.fit_intercept:\n+ intercept = self.intercept_[1] - self.intercept_[0]\n+ self.intercept_ = np.array([intercept])\n+\n+ return self\n \n def __sklearn_tags__(self):\n tags = super().__sklearn_tags__()\n", "test": null }
null
{ "code": "diff --git a/sklearn/svm/_classes.py b/sklearn/svm/_classes.py\nindex 064aa50ec..cada560c8 100644\n--- a/sklearn/svm/_classes.py\n+++ b/sklearn/svm/_classes.py\n@@ -277,7 +277,6 @@ class LinearSVC(LinearClassifierMixin, SparseCoefMixin, BaseEstimator):\n self.penalty = penalty\n self.loss = loss\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y, sample_weight=None):\n \"\"\"Fit the model according to the given training data.\n \n@@ -302,52 +301,6 @@ class LinearSVC(LinearClassifierMixin, SparseCoefMixin, BaseEstimator):\n self : object\n An instance of the estimator.\n \"\"\"\n- X, y = validate_data(\n- self,\n- X,\n- y,\n- accept_sparse=\"csr\",\n- dtype=np.float64,\n- order=\"C\",\n- accept_large_sparse=False,\n- )\n- check_classification_targets(y)\n- self.classes_ = np.unique(y)\n-\n- _dual = _validate_dual_parameter(\n- self.dual, self.loss, self.penalty, self.multi_class, X\n- )\n-\n- self.coef_, self.intercept_, n_iter_ = _fit_liblinear(\n- X,\n- y,\n- self.C,\n- self.fit_intercept,\n- self.intercept_scaling,\n- self.class_weight,\n- self.penalty,\n- _dual,\n- self.verbose,\n- self.max_iter,\n- self.tol,\n- self.random_state,\n- self.multi_class,\n- self.loss,\n- sample_weight=sample_weight,\n- )\n- # Backward compatibility: _fit_liblinear is used both by LinearSVC/R\n- # and LogisticRegression but LogisticRegression sets a structured\n- # `n_iter_` attribute with information about the underlying OvR fits\n- # while LinearSVC/R only reports the maximum value.\n- self.n_iter_ = n_iter_.max().item()\n-\n- if self.multi_class == \"crammer_singer\" and len(self.classes_) == 2:\n- self.coef_ = (self.coef_[1] - self.coef_[0]).reshape(1, -1)\n- if self.fit_intercept:\n- intercept = self.intercept_[1] - self.intercept_[0]\n- self.intercept_ = np.array([intercept])\n-\n- return self\n \n def __sklearn_tags__(self):\n tags = super().__sklearn_tags__()\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/svm/_classes.py.\nHere is the description for the function:\n def fit(self, X, y, sample_weight=None):\n \"\"\"Fit the model according to the given training data.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n Training vector, where `n_samples` is the number of samples and\n `n_features` is the number of features.\n\n y : array-like of shape (n_samples,)\n Target vector relative to X.\n\n sample_weight : array-like of shape (n_samples,), default=None\n Array of weights that are assigned to individual\n samples. If not provided,\n then each sample is given unit weight.\n\n .. versionadded:: 0.18\n\n Returns\n -------\n self : object\n An instance of the estimator.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring[single_tuple]", "sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring[single_list]", "sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring[dict_str]", "sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring[multi_tuple]", "sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring[multi_list]", "sklearn/metrics/tests/test_score_objects.py::test_check_scoring_and_check_multimetric_scoring[dict_callable]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[f1-f1_score]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[f1_weighted-metric1]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[f1_macro-metric2]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[f1_micro-metric3]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[precision-precision_score]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[precision_weighted-metric5]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[precision_macro-metric6]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[precision_micro-metric7]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[recall-recall_score]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[recall_weighted-metric9]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[recall_macro-metric10]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[recall_micro-metric11]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[jaccard-jaccard_score]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[jaccard_weighted-metric13]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[jaccard_macro-metric14]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[jaccard_micro-metric15]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[top_k_accuracy-top_k_accuracy_score]", "sklearn/metrics/tests/test_score_objects.py::test_classification_binary_scores[matthews_corrcoef-matthews_corrcoef]", "sklearn/metrics/tests/test_score_objects.py::test_custom_scorer_pickling", "sklearn/metrics/tests/test_score_objects.py::test_thresholded_scorers_multilabel_indicator_data", "sklearn/ensemble/tests/test_forest.py::test_random_hasher", "sklearn/feature_extraction/tests/test_text.py::test_count_vectorizer_pipeline_grid_selection", "sklearn/feature_extraction/tests/test_text.py::test_vectorizer_pipeline_grid_selection", "sklearn/feature_extraction/tests/test_text.py::test_vectorizer_pipeline_cross_validation", "sklearn/svm/tests/test_sparse.py::test_linearsvc[lil_matrix-dok_matrix]", "sklearn/svm/tests/test_sparse.py::test_linearsvc[lil_array-dok_array]", "sklearn/svm/tests/test_sparse.py::test_linearsvc_iris[csr_matrix]", "sklearn/svm/tests/test_sparse.py::test_linearsvc_iris[csr_array]", "sklearn/svm/tests/test_sparse.py::test_weight[csr_matrix]", "sklearn/svm/tests/test_sparse.py::test_weight[csr_array]", "sklearn/svm/tests/test_svm.py::test_weight", "sklearn/svm/tests/test_sparse.py::test_sparse_liblinear_intercept_handling", "sklearn/svm/tests/test_svm.py::test_auto_weight", "sklearn/svm/tests/test_svm.py::test_bad_input[lil_matrix]", "sklearn/svm/tests/test_svm.py::test_bad_input[lil_array]", "sklearn/svm/tests/test_svm.py::test_linearsvc_parameters[True-l1-hinge]", "sklearn/svm/tests/test_svm.py::test_linearsvc_parameters[True-l1-squared_hinge]", "sklearn/svm/tests/test_svm.py::test_linearsvc_parameters[True-l2-hinge]", "sklearn/svm/tests/test_svm.py::test_linearsvc_parameters[True-l2-squared_hinge]", "sklearn/svm/tests/test_svm.py::test_linearsvc_parameters[False-l1-hinge]", "sklearn/svm/tests/test_svm.py::test_linearsvc_parameters[False-l1-squared_hinge]", "sklearn/svm/tests/test_svm.py::test_linearsvc_parameters[False-l2-hinge]", "sklearn/model_selection/tests/test_search.py::test_grid_search_no_score", "sklearn/model_selection/tests/test_search.py::test_grid_search_score_method", "sklearn/svm/tests/test_svm.py::test_linearsvc_parameters[False-l2-squared_hinge]", "sklearn/svm/tests/test_svm.py::test_linearsvc", "sklearn/svm/tests/test_svm.py::test_linearsvc_crammer_singer", "sklearn/model_selection/tests/test_search.py::test_grid_search_groups", "sklearn/svm/tests/test_svm.py::test_linearsvc_fit_sampleweight", "sklearn/svm/tests/test_svm.py::test_crammer_singer_binary", "sklearn/svm/tests/test_svm.py::test_linearsvc_iris", "sklearn/svm/tests/test_svm.py::test_dense_liblinear_intercept_handling", "sklearn/svm/tests/test_svm.py::test_liblinear_set_coef", "sklearn/model_selection/tests/test_search.py::test_classes__property", "sklearn/svm/tests/test_svm.py::test_linearsvc_verbose", "sklearn/model_selection/tests/test_search.py::test_grid_search_sparse[csr_matrix]", "sklearn/svm/tests/test_svm.py::test_linear_svm_convergence_warnings", "sklearn/svm/tests/test_svm.py::test_lsvc_intercept_scaling_zero", "sklearn/svm/tests/test_svm.py::test_linearsvm_liblinear_sample_weight[LinearSVC-params0]", "sklearn/model_selection/tests/test_search.py::test_grid_search_sparse[csr_array]", "sklearn/svm/tests/test_svm.py::test_linearsvm_liblinear_sample_weight[LinearSVC-params1]", "sklearn/model_selection/tests/test_search.py::test_grid_search_sparse_scoring[csr_matrix]", "sklearn/svm/tests/test_svm.py::test_linearsvm_liblinear_sample_weight[LinearSVC-params2]", "sklearn/svm/tests/test_svm.py::test_linearsvm_liblinear_sample_weight[LinearSVC-params3]", "sklearn/model_selection/tests/test_search.py::test_grid_search_sparse_scoring[csr_array]", "sklearn/model_selection/tests/test_search.py::test_refit_callable", "sklearn/model_selection/tests/test_search.py::test_refit_callable_invalid_type", "sklearn/model_selection/tests/test_search.py::test_refit_callable_out_bound[RandomizedSearchCV--1]", "sklearn/model_selection/tests/test_search.py::test_refit_callable_out_bound[RandomizedSearchCV-2]", "sklearn/model_selection/tests/test_search.py::test_refit_callable_out_bound[GridSearchCV--1]", "sklearn/model_selection/tests/test_search.py::test_refit_callable_out_bound[GridSearchCV-2]", "sklearn/model_selection/tests/test_search.py::test_refit_callable_multi_metric", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[False-None-3]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[False-None-cv1]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[False-final_estimator1-3]", "sklearn/model_selection/tests/test_search.py::test_search_cv_timing", "sklearn/model_selection/tests/test_search.py::test_grid_search_correct_score_results", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[False-final_estimator1-cv1]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[True-None-3]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[True-None-cv1]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[True-final_estimator1-3]", "sklearn/model_selection/tests/test_search.py::test_search_train_scores_set_to_false", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[True-final_estimator1-cv1]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_drop_column_binary_classification", "sklearn/model_selection/tests/test_search.py::test_grid_search_cv_splits_consistency", "sklearn/tests/test_calibration.py::test_calibration_default_estimator", "sklearn/tests/test_calibration.py::test_calibration_cv_splitter[True]", "sklearn/tests/test_calibration.py::test_calibration_cv_splitter[False]", "sklearn/tests/test_calibration.py::test_sample_weight[True-sigmoid]", "sklearn/tests/test_calibration.py::test_sample_weight[True-isotonic]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_drop_estimator", "sklearn/tests/test_calibration.py::test_sample_weight[False-sigmoid]", "sklearn/tests/test_calibration.py::test_sample_weight[False-isotonic]", "sklearn/tests/test_calibration.py::test_parallel_execution[True-sigmoid]", "sklearn/model_selection/tests/test_search.py::test_callable_multimetric_confusion_matrix", "sklearn/tests/test_multiclass.py::test_ovr_fit_predict", "sklearn/model_selection/tests/test_search.py::test_callable_multimetric_same_as_list_of_strings", "sklearn/model_selection/tests/test_search.py::test_callable_single_metric_same_as_single_string", "sklearn/model_selection/tests/test_search.py::test_callable_multimetric_error_on_invalid_key", "sklearn/tests/test_calibration.py::test_parallel_execution[True-isotonic]", "sklearn/model_selection/tests/test_search.py::test_search_cv_verbose_3[True]", "sklearn/model_selection/tests/test_search.py::test_search_cv_verbose_3[False]", "sklearn/tests/test_multiclass.py::test_ovr_multiclass", "sklearn/tests/test_multiclass.py::test_ovr_binary", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_sparse_passthrough[coo_matrix]", "sklearn/model_selection/tests/test_search.py::test_search_estimator_param[GridSearchCV-param_grid]", "sklearn/tests/test_multiclass.py::test_ovr_multilabel", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_sparse_passthrough[coo_array]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_sparse_passthrough[csc_matrix]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_sparse_passthrough[csc_array]", "sklearn/model_selection/tests/test_search.py::test_search_estimator_param[RandomizedSearchCV-param_distributions]", "sklearn/tests/test_multiclass.py::test_ovr_gridsearch", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_sparse_passthrough[csr_matrix]", "sklearn/model_selection/tests/test_search.py::test_search_estimator_param[HalvingGridSearchCV-param_grid]", "sklearn/tests/test_multiclass.py::test_ovo_fit_on_list", "sklearn/tests/test_calibration.py::test_parallel_execution[False-sigmoid]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_sparse_passthrough[csr_array]", "sklearn/tests/test_multiclass.py::test_ovo_fit_predict", "sklearn/tests/test_multioutput.py::test_multiclass_multioutput_estimator", "sklearn/tests/test_multiclass.py::test_ovo_decision_function", "sklearn/tests/test_multioutput.py::test_multi_output_exceptions", "sklearn/tests/test_multiclass.py::test_ovo_gridsearch", "sklearn/tests/test_multiclass.py::test_ovo_string_y", "sklearn/tests/test_multioutput.py::test_multi_output_delegate_predict_proba", "sklearn/tests/test_multiclass.py::test_ecoc_fit_predict", "sklearn/tests/test_multioutput.py::test_classifier_chain_fit_and_predict_with_linear_svc[predict]", "sklearn/tests/test_multiclass.py::test_ecoc_gridsearch", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_error[y3-params3-TypeError-does not support sample weight]", "sklearn/tests/test_multioutput.py::test_classifier_chain_fit_and_predict_with_linear_svc[decision_function]", "sklearn/tests/test_multiclass.py::test_ecoc_delegate_sparse_base_estimator[csc_matrix]", "sklearn/tests/test_multiclass.py::test_ecoc_delegate_sparse_base_estimator[csc_array]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_randomness[StackingClassifier]", "sklearn/model_selection/tests/test_validation.py::test_callable_multimetric_confusion_matrix_cross_validate", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_stratify_default", "sklearn/tests/test_calibration.py::test_parallel_execution[False-isotonic]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_with_sample_weight[StackingClassifier]", "sklearn/model_selection/tests/test_search.py::test_multi_metric_search_forwards_metadata[GridSearchCV-param_grid]", "sklearn/feature_selection/tests/test_from_model.py::test_calling_fit_reinitializes", "sklearn/model_selection/tests/test_search.py::test_multi_metric_search_forwards_metadata[RandomizedSearchCV-param_distributions]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_cv_influence[StackingClassifier]", "sklearn/model_selection/tests/test_search.py::test_score_rejects_params_with_no_routing_enabled[GridSearchCV-param_grid]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[no-intercept-two-classes-squared_hinge-csr_matrix]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[no-intercept-two-classes-squared_hinge-csr_array]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[no-intercept-two-classes-squared_hinge-array]", "sklearn/model_selection/tests/test_search.py::test_score_rejects_params_with_no_routing_enabled[RandomizedSearchCV-param_distributions]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[no-intercept-multi-class-squared_hinge-csr_matrix]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[no-intercept-multi-class-squared_hinge-csr_array]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[no-intercept-multi-class-squared_hinge-array]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[fit-intercept-two-classes-squared_hinge-csr_matrix]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[fit-intercept-two-classes-squared_hinge-csr_array]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[fit-intercept-two-classes-squared_hinge-array]", "sklearn/model_selection/tests/test_search.py::test_score_rejects_params_with_no_routing_enabled[HalvingGridSearchCV-param_grid]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[fit-intercept-multi-class-squared_hinge-csr_matrix]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[fit-intercept-multi-class-squared_hinge-csr_array]", "sklearn/svm/tests/test_bounds.py::test_l1_min_c[fit-intercept-multi-class-squared_hinge-array]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[0-True-sigmoid]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[0-True-isotonic]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[0-False-sigmoid]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[0-False-isotonic]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[1-True-sigmoid]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[1-True-isotonic]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[1-False-sigmoid]", "sklearn/tests/test_calibration.py::test_calibration_multiclass[1-False-isotonic]", "sklearn/tests/test_calibration.py::test_calibration_ensemble_false[sigmoid]", "sklearn/tests/test_calibration.py::test_calibration_ensemble_false[isotonic]", "sklearn/tests/test_calibration.py::test_calibration_prob_sum[True]", "sklearn/tests/test_calibration.py::test_calibration_prob_sum[False]", "sklearn/ensemble/tests/test_common.py::test_ensemble_heterogeneous_estimators_behavior[stacking-classifier]", "sklearn/ensemble/tests/test_common.py::test_ensemble_heterogeneous_estimators_behavior[voting-classifier]", "sklearn/metrics/_classification.py::sklearn.metrics._classification.hinge_loss", "sklearn/tests/test_calibration.py::test_calibration_attributes[clf0-2]", "sklearn/tests/test_calibration.py::test_calibration_attributes[clf1-prefit]", "sklearn/tests/test_calibration.py::test_calibration_inconsistent_prefit_n_features_in", "sklearn/model_selection/tests/test_successive_halving.py::test_groups_support[HalvingGridSearchCV]", "sklearn/svm/_classes.py::sklearn.svm._classes.LinearSVC", "sklearn/model_selection/tests/test_successive_halving.py::test_groups_support[HalvingRandomSearchCV]", "sklearn/kernel_approximation.py::sklearn.kernel_approximation.Nystroem", "sklearn/tests/test_calibration.py::test_error_less_class_samples_than_folds", "sklearn/multiclass.py::sklearn.multiclass.OneVsOneClassifier", "sklearn/ensemble/_stacking.py::sklearn.ensemble._stacking.StackingClassifier", "sklearn/ensemble/tests/test_stacking.py::test_get_feature_names_out[True-StackingClassifier_multiclass]", "sklearn/ensemble/tests/test_stacking.py::test_get_feature_names_out[True-StackingClassifier_binary]", "sklearn/ensemble/tests/test_stacking.py::test_get_feature_names_out[False-StackingClassifier_multiclass]", "sklearn/ensemble/tests/test_stacking.py::test_get_feature_names_out[False-StackingClassifier_binary]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_sparsify_coefficients]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_classifiers_one_label_sample_weights]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_classifiers_regression_target]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_class_weight_classifiers]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_class_weight_balanced_linear_classifier0]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_class_weight_balanced_linear_classifier1]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[LinearSVC(max_iter=20)-check_requires_y_none]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[LinearSVC(max_iter=20)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[LinearSVC(max_iter=20)]", "sklearn/tests/test_common.py::test_check_param_validation[LinearSVC(max_iter=20)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-105
1.0
{ "code": "diff --git b/sklearn/neighbors/_lof.py a/sklearn/neighbors/_lof.py\nindex 9c0a56aa1..c05a4f607 100644\n--- b/sklearn/neighbors/_lof.py\n+++ a/sklearn/neighbors/_lof.py\n@@ -254,6 +254,10 @@ class LocalOutlierFactor(KNeighborsMixin, OutlierMixin, NeighborsBase):\n \n return self.fit(X)._predict()\n \n+ @_fit_context(\n+ # LocalOutlierFactor.metric is not validated yet\n+ prefer_skip_nested_validation=False\n+ )\n def fit(self, X, y=None):\n \"\"\"Fit the local outlier factor detector from the training dataset.\n \n@@ -271,6 +275,56 @@ class LocalOutlierFactor(KNeighborsMixin, OutlierMixin, NeighborsBase):\n self : LocalOutlierFactor\n The fitted local outlier factor detector.\n \"\"\"\n+ self._fit(X)\n+\n+ n_samples = self.n_samples_fit_\n+ if self.n_neighbors > n_samples:\n+ warnings.warn(\n+ \"n_neighbors (%s) is greater than the \"\n+ \"total number of samples (%s). n_neighbors \"\n+ \"will be set to (n_samples - 1) for estimation.\"\n+ % (self.n_neighbors, n_samples)\n+ )\n+ self.n_neighbors_ = max(1, min(self.n_neighbors, n_samples - 1))\n+\n+ self._distances_fit_X_, _neighbors_indices_fit_X_ = self.kneighbors(\n+ n_neighbors=self.n_neighbors_\n+ )\n+\n+ if self._fit_X.dtype == np.float32:\n+ self._distances_fit_X_ = self._distances_fit_X_.astype(\n+ self._fit_X.dtype,\n+ copy=False,\n+ )\n+\n+ self._lrd = self._local_reachability_density(\n+ self._distances_fit_X_, _neighbors_indices_fit_X_\n+ )\n+\n+ # Compute lof score over training samples to define offset_:\n+ lrd_ratios_array = (\n+ self._lrd[_neighbors_indices_fit_X_] / self._lrd[:, np.newaxis]\n+ )\n+\n+ self.negative_outlier_factor_ = -np.mean(lrd_ratios_array, axis=1)\n+\n+ if self.contamination == \"auto\":\n+ # inliers score around -1 (the higher, the less abnormal).\n+ self.offset_ = -1.5\n+ else:\n+ self.offset_ = np.percentile(\n+ self.negative_outlier_factor_, 100.0 * self.contamination\n+ )\n+\n+ # Verify if negative_outlier_factor_ values are within acceptable range.\n+ # Novelty must also be false to detect outliers\n+ if np.min(self.negative_outlier_factor_) < -1e7 and not self.novelty:\n+ warnings.warn(\n+ \"Duplicate values are leading to incorrect results. \"\n+ \"Increase the number of neighbors for more accurate results.\"\n+ )\n+\n+ return self\n \n def _check_novelty_predict(self):\n if not self.novelty:\n", "test": null }
null
{ "code": "diff --git a/sklearn/neighbors/_lof.py b/sklearn/neighbors/_lof.py\nindex c05a4f607..9c0a56aa1 100644\n--- a/sklearn/neighbors/_lof.py\n+++ b/sklearn/neighbors/_lof.py\n@@ -254,10 +254,6 @@ class LocalOutlierFactor(KNeighborsMixin, OutlierMixin, NeighborsBase):\n \n return self.fit(X)._predict()\n \n- @_fit_context(\n- # LocalOutlierFactor.metric is not validated yet\n- prefer_skip_nested_validation=False\n- )\n def fit(self, X, y=None):\n \"\"\"Fit the local outlier factor detector from the training dataset.\n \n@@ -275,56 +271,6 @@ class LocalOutlierFactor(KNeighborsMixin, OutlierMixin, NeighborsBase):\n self : LocalOutlierFactor\n The fitted local outlier factor detector.\n \"\"\"\n- self._fit(X)\n-\n- n_samples = self.n_samples_fit_\n- if self.n_neighbors > n_samples:\n- warnings.warn(\n- \"n_neighbors (%s) is greater than the \"\n- \"total number of samples (%s). n_neighbors \"\n- \"will be set to (n_samples - 1) for estimation.\"\n- % (self.n_neighbors, n_samples)\n- )\n- self.n_neighbors_ = max(1, min(self.n_neighbors, n_samples - 1))\n-\n- self._distances_fit_X_, _neighbors_indices_fit_X_ = self.kneighbors(\n- n_neighbors=self.n_neighbors_\n- )\n-\n- if self._fit_X.dtype == np.float32:\n- self._distances_fit_X_ = self._distances_fit_X_.astype(\n- self._fit_X.dtype,\n- copy=False,\n- )\n-\n- self._lrd = self._local_reachability_density(\n- self._distances_fit_X_, _neighbors_indices_fit_X_\n- )\n-\n- # Compute lof score over training samples to define offset_:\n- lrd_ratios_array = (\n- self._lrd[_neighbors_indices_fit_X_] / self._lrd[:, np.newaxis]\n- )\n-\n- self.negative_outlier_factor_ = -np.mean(lrd_ratios_array, axis=1)\n-\n- if self.contamination == \"auto\":\n- # inliers score around -1 (the higher, the less abnormal).\n- self.offset_ = -1.5\n- else:\n- self.offset_ = np.percentile(\n- self.negative_outlier_factor_, 100.0 * self.contamination\n- )\n-\n- # Verify if negative_outlier_factor_ values are within acceptable range.\n- # Novelty must also be false to detect outliers\n- if np.min(self.negative_outlier_factor_) < -1e7 and not self.novelty:\n- warnings.warn(\n- \"Duplicate values are leading to incorrect results. \"\n- \"Increase the number of neighbors for more accurate results.\"\n- )\n-\n- return self\n \n def _check_novelty_predict(self):\n if not self.novelty:\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/neighbors/_lof.py.\nHere is the description for the function:\n def fit(self, X, y=None):\n \"\"\"Fit the local outlier factor detector from the training dataset.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features) or \\\n (n_samples, n_samples) if metric='precomputed'\n Training data.\n\n y : Ignored\n Not used, present for API consistency by convention.\n\n Returns\n -------\n self : LocalOutlierFactor\n The fitted local outlier factor detector.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_pipeline.py::test_pipeline_score_samples_pca_lof", "sklearn/model_selection/tests/test_search.py::test_search_cv_score_samples_method[search_cv0]", "sklearn/model_selection/tests/test_search.py::test_search_cv_score_samples_method[search_cv1]", "sklearn/neighbors/tests/test_lof.py::test_lof[float64]", "sklearn/neighbors/tests/test_lof.py::test_lof_performance[float64]", "sklearn/neighbors/tests/test_lof.py::test_lof_values[float64]", "sklearn/neighbors/tests/test_lof.py::test_lof_precomputed[float64]", "sklearn/neighbors/tests/test_lof.py::test_n_neighbors_attribute", "sklearn/neighbors/tests/test_lof.py::test_score_samples[float64]", "sklearn/neighbors/tests/test_lof.py::test_novelty_errors", "sklearn/neighbors/tests/test_lof.py::test_novelty_training_scores[float64]", "sklearn/neighbors/tests/test_lof.py::test_hasattr_prediction", "sklearn/neighbors/tests/test_lof.py::test_novelty_true_common_tests[LocalOutlierFactor(novelty=True)-check_fit_score_takes_y]", "sklearn/neighbors/tests/test_lof.py::test_novelty_true_common_tests[LocalOutlierFactor(novelty=True)-check_estimators_overwrite_params]", "sklearn/neighbors/tests/test_lof.py::test_novelty_true_common_tests[LocalOutlierFactor(novelty=True)-check_estimators_dtypes]", "sklearn/neighbors/tests/test_lof.py::test_novelty_true_common_tests[LocalOutlierFactor(novelty=True)-check_estimators_fit_returns_self]", "sklearn/neighbors/tests/test_lof.py::test_novelty_true_common_tests[LocalOutlierFactor(novelty=True)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/neighbors/tests/test_lof.py::test_novelty_true_common_tests[LocalOutlierFactor(novelty=True)-check_complex_data]", "sklearn/neighbors/tests/test_lof.py::test_novelty_true_common_tests[LocalOutlierFactor(novelty=True)-check_dtype_object]", "sklearn/neighbors/tests/test_lof.py::test_novelty_true_common_tests[LocalOutlierFactor(novelty=True)-check_estimators_empty_data_messages]", "sklearn/neighbors/tests/test_lof.py::test_novelty_true_common_tests[LocalOutlierFactor(novelty=True)-check_pipeline_consistency]", "sklearn/neighbors/tests/test_lof.py::test_novelty_true_common_tests[LocalOutlierFactor(novelty=True)-check_estimators_nan_inf]", "sklearn/neighbors/tests/test_lof.py::test_novelty_true_common_tests[LocalOutlierFactor(novelty=True)-check_estimator_sparse_array]", "sklearn/neighbors/tests/test_lof.py::test_novelty_true_common_tests[LocalOutlierFactor(novelty=True)-check_estimator_sparse_matrix]", "sklearn/neighbors/tests/test_lof.py::test_novelty_true_common_tests[LocalOutlierFactor(novelty=True)-check_estimators_pickle]", "sklearn/neighbors/tests/test_lof.py::test_novelty_true_common_tests[LocalOutlierFactor(novelty=True)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/neighbors/tests/test_lof.py::test_novelty_true_common_tests[LocalOutlierFactor(novelty=True)-check_f_contiguous_array_estimator]", "sklearn/neighbors/tests/test_lof.py::test_novelty_true_common_tests[LocalOutlierFactor(novelty=True)-check_outliers_train]", "sklearn/neighbors/tests/test_lof.py::test_novelty_true_common_tests[LocalOutlierFactor(novelty=True)-check_outliers_train(readonly_memmap=True)]", "sklearn/neighbors/tests/test_lof.py::test_novelty_true_common_tests[LocalOutlierFactor(novelty=True)-check_classifier_data_not_an_array]", "sklearn/neighbors/tests/test_lof.py::test_novelty_true_common_tests[LocalOutlierFactor(novelty=True)-check_methods_sample_order_invariance]", "sklearn/neighbors/tests/test_lof.py::test_novelty_true_common_tests[LocalOutlierFactor(novelty=True)-check_methods_subset_invariance]", "sklearn/neighbors/tests/test_lof.py::test_novelty_true_common_tests[LocalOutlierFactor(novelty=True)-check_fit2d_1sample]", "sklearn/neighbors/tests/test_lof.py::test_novelty_true_common_tests[LocalOutlierFactor(novelty=True)-check_fit2d_1feature]", "sklearn/neighbors/tests/test_lof.py::test_novelty_true_common_tests[LocalOutlierFactor(novelty=True)-check_dict_unchanged]", "sklearn/neighbors/tests/test_lof.py::test_novelty_true_common_tests[LocalOutlierFactor(novelty=True)-check_dont_overwrite_parameters]", "sklearn/neighbors/tests/test_lof.py::test_novelty_true_common_tests[LocalOutlierFactor(novelty=True)-check_fit_idempotent]", "sklearn/neighbors/tests/test_lof.py::test_novelty_true_common_tests[LocalOutlierFactor(novelty=True)-check_fit_check_is_fitted]", "sklearn/neighbors/tests/test_lof.py::test_novelty_true_common_tests[LocalOutlierFactor(novelty=True)-check_n_features_in]", "sklearn/neighbors/tests/test_lof.py::test_novelty_true_common_tests[LocalOutlierFactor(novelty=True)-check_fit1d]", "sklearn/neighbors/tests/test_lof.py::test_novelty_true_common_tests[LocalOutlierFactor(novelty=True)-check_fit2d_predict1d]", "sklearn/neighbors/tests/test_lof.py::test_predicted_outlier_number[30]", "sklearn/neighbors/tests/test_lof.py::test_predicted_outlier_number[53]", "sklearn/neighbors/tests/test_lof.py::test_sparse[csr_matrix]", "sklearn/neighbors/tests/test_lof.py::test_sparse[csr_array]", "sklearn/neighbors/tests/test_lof.py::test_lof_error_n_neighbors_too_large", "sklearn/neighbors/tests/test_lof.py::test_lof_input_dtype_preservation[float64-0.5-True-auto]", "sklearn/neighbors/tests/test_lof.py::test_lof_input_dtype_preservation[float64-0.5-True-ball_tree]", "sklearn/neighbors/tests/test_lof.py::test_lof_input_dtype_preservation[float64-0.5-True-kd_tree]", "sklearn/neighbors/tests/test_lof.py::test_lof_input_dtype_preservation[float64-0.5-True-brute]", "sklearn/neighbors/tests/test_lof.py::test_lof_input_dtype_preservation[float64-0.5-False-auto]", "sklearn/neighbors/tests/test_lof.py::test_lof_input_dtype_preservation[float64-0.5-False-ball_tree]", "sklearn/neighbors/tests/test_lof.py::test_lof_input_dtype_preservation[float64-0.5-False-kd_tree]", "sklearn/neighbors/tests/test_lof.py::test_lof_input_dtype_preservation[float64-0.5-False-brute]", "sklearn/neighbors/tests/test_lof.py::test_lof_input_dtype_preservation[float64-auto-True-auto]", "sklearn/neighbors/tests/test_lof.py::test_lof_input_dtype_preservation[float64-auto-True-ball_tree]", "sklearn/neighbors/tests/test_lof.py::test_lof_input_dtype_preservation[float64-auto-True-kd_tree]", "sklearn/neighbors/tests/test_lof.py::test_lof_input_dtype_preservation[float64-auto-True-brute]", "sklearn/neighbors/tests/test_lof.py::test_lof_input_dtype_preservation[float64-auto-False-auto]", "sklearn/neighbors/tests/test_lof.py::test_lof_input_dtype_preservation[float64-auto-False-ball_tree]", "sklearn/neighbors/tests/test_lof.py::test_lof_input_dtype_preservation[float64-auto-False-kd_tree]", "sklearn/neighbors/tests/test_lof.py::test_lof_input_dtype_preservation[float64-auto-False-brute]", "sklearn/neighbors/tests/test_lof.py::test_lof_dtype_equivalence[0.5-True-auto]", "sklearn/neighbors/tests/test_lof.py::test_lof_dtype_equivalence[0.5-True-ball_tree]", "sklearn/neighbors/tests/test_lof.py::test_lof_dtype_equivalence[0.5-True-kd_tree]", "sklearn/neighbors/tests/test_lof.py::test_lof_dtype_equivalence[0.5-True-brute]", "sklearn/neighbors/tests/test_lof.py::test_lof_dtype_equivalence[0.5-False-auto]", "sklearn/neighbors/tests/test_lof.py::test_lof_dtype_equivalence[0.5-False-ball_tree]", "sklearn/neighbors/tests/test_lof.py::test_lof_dtype_equivalence[0.5-False-kd_tree]", "sklearn/neighbors/tests/test_lof.py::test_lof_dtype_equivalence[0.5-False-brute]", "sklearn/neighbors/tests/test_lof.py::test_lof_dtype_equivalence[auto-True-auto]", "sklearn/neighbors/tests/test_lof.py::test_lof_dtype_equivalence[auto-True-ball_tree]", "sklearn/neighbors/tests/test_lof.py::test_lof_dtype_equivalence[auto-True-kd_tree]", "sklearn/neighbors/tests/test_lof.py::test_lof_dtype_equivalence[auto-True-brute]", "sklearn/neighbors/tests/test_lof.py::test_lof_dtype_equivalence[auto-False-auto]", "sklearn/neighbors/tests/test_lof.py::test_lof_dtype_equivalence[auto-False-ball_tree]", "sklearn/neighbors/tests/test_lof.py::test_lof_dtype_equivalence[auto-False-kd_tree]", "sklearn/neighbors/tests/test_lof.py::test_lof_dtype_equivalence[auto-False-brute]", "sklearn/neighbors/tests/test_lof.py::test_lof_duplicate_samples", "sklearn/neighbors/tests/test_neighbors_pipeline.py::test_lof_novelty_false", "sklearn/neighbors/tests/test_neighbors_pipeline.py::test_lof_novelty_true", "sklearn/neighbors/_lof.py::sklearn.neighbors._lof.LocalOutlierFactor", "sklearn/tests/test_common.py::test_estimators[LocalOutlierFactor()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[LocalOutlierFactor()-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[LocalOutlierFactor()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[LocalOutlierFactor()-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[LocalOutlierFactor()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[LocalOutlierFactor()-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[LocalOutlierFactor()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[LocalOutlierFactor()-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[LocalOutlierFactor()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[LocalOutlierFactor()-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[LocalOutlierFactor()-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[LocalOutlierFactor()-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[LocalOutlierFactor()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[LocalOutlierFactor()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[LocalOutlierFactor()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[LocalOutlierFactor()-check_outliers_fit_predict]", "sklearn/tests/test_common.py::test_estimators[LocalOutlierFactor()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[LocalOutlierFactor()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[LocalOutlierFactor()-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[LocalOutlierFactor()-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[LocalOutlierFactor()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[LocalOutlierFactor()-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[LocalOutlierFactor()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[LocalOutlierFactor()-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[LocalOutlierFactor()-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[LocalOutlierFactor()-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[LocalOutlierFactor()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[LocalOutlierFactor()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[LocalOutlierFactor()]", "sklearn/tests/test_common.py::test_check_param_validation[LocalOutlierFactor()]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-106
1.0
{ "code": "diff --git b/sklearn/neighbors/_lof.py a/sklearn/neighbors/_lof.py\nindex f6ec73292..c05a4f607 100644\n--- b/sklearn/neighbors/_lof.py\n+++ a/sklearn/neighbors/_lof.py\n@@ -442,6 +442,7 @@ class LocalOutlierFactor(KNeighborsMixin, OutlierMixin, NeighborsBase):\n raise AttributeError(msg)\n return True\n \n+ @available_if(_check_novelty_score_samples)\n def score_samples(self, X):\n \"\"\"Opposite of the Local Outlier Factor of X.\n \n@@ -469,6 +470,25 @@ class LocalOutlierFactor(KNeighborsMixin, OutlierMixin, NeighborsBase):\n The opposite of the Local Outlier Factor of each input samples.\n The lower, the more abnormal.\n \"\"\"\n+ check_is_fitted(self)\n+ X = check_array(X, accept_sparse=\"csr\")\n+\n+ distances_X, neighbors_indices_X = self.kneighbors(\n+ X, n_neighbors=self.n_neighbors_\n+ )\n+\n+ if X.dtype == np.float32:\n+ distances_X = distances_X.astype(X.dtype, copy=False)\n+\n+ X_lrd = self._local_reachability_density(\n+ distances_X,\n+ neighbors_indices_X,\n+ )\n+\n+ lrd_ratios_array = self._lrd[neighbors_indices_X] / X_lrd[:, np.newaxis]\n+\n+ # as bigger is better:\n+ return -np.mean(lrd_ratios_array, axis=1)\n \n def _local_reachability_density(self, distances_X, neighbors_indices):\n \"\"\"The local reachability density (LRD)\n", "test": null }
null
{ "code": "diff --git a/sklearn/neighbors/_lof.py b/sklearn/neighbors/_lof.py\nindex c05a4f607..f6ec73292 100644\n--- a/sklearn/neighbors/_lof.py\n+++ b/sklearn/neighbors/_lof.py\n@@ -442,7 +442,6 @@ class LocalOutlierFactor(KNeighborsMixin, OutlierMixin, NeighborsBase):\n raise AttributeError(msg)\n return True\n \n- @available_if(_check_novelty_score_samples)\n def score_samples(self, X):\n \"\"\"Opposite of the Local Outlier Factor of X.\n \n@@ -470,25 +469,6 @@ class LocalOutlierFactor(KNeighborsMixin, OutlierMixin, NeighborsBase):\n The opposite of the Local Outlier Factor of each input samples.\n The lower, the more abnormal.\n \"\"\"\n- check_is_fitted(self)\n- X = check_array(X, accept_sparse=\"csr\")\n-\n- distances_X, neighbors_indices_X = self.kneighbors(\n- X, n_neighbors=self.n_neighbors_\n- )\n-\n- if X.dtype == np.float32:\n- distances_X = distances_X.astype(X.dtype, copy=False)\n-\n- X_lrd = self._local_reachability_density(\n- distances_X,\n- neighbors_indices_X,\n- )\n-\n- lrd_ratios_array = self._lrd[neighbors_indices_X] / X_lrd[:, np.newaxis]\n-\n- # as bigger is better:\n- return -np.mean(lrd_ratios_array, axis=1)\n \n def _local_reachability_density(self, distances_X, neighbors_indices):\n \"\"\"The local reachability density (LRD)\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/neighbors/_lof.py.\nHere is the description for the function:\n def score_samples(self, X):\n \"\"\"Opposite of the Local Outlier Factor of X.\n\n It is the opposite as bigger is better, i.e. large values correspond\n to inliers.\n\n **Only available for novelty detection (when novelty is set to True).**\n The argument X is supposed to contain *new data*: if X contains a\n point from training, it considers the later in its own neighborhood.\n Also, the samples in X are not considered in the neighborhood of any\n point. Because of this, the scores obtained via ``score_samples`` may\n differ from the standard LOF scores.\n The standard LOF scores for the training data is available via the\n ``negative_outlier_factor_`` attribute.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n The query sample or samples to compute the Local Outlier Factor\n w.r.t. the training samples.\n\n Returns\n -------\n opposite_lof_scores : ndarray of shape (n_samples,)\n The opposite of the Local Outlier Factor of each input samples.\n The lower, the more abnormal.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_pipeline.py::test_pipeline_score_samples_pca_lof", "sklearn/neighbors/tests/test_lof.py::test_lof_performance[float64]", "sklearn/neighbors/tests/test_lof.py::test_lof_values[float64]", "sklearn/neighbors/tests/test_lof.py::test_lof_precomputed[float64]", "sklearn/neighbors/tests/test_lof.py::test_score_samples[float64]", "sklearn/neighbors/tests/test_lof.py::test_novelty_errors", "sklearn/neighbors/tests/test_lof.py::test_hasattr_prediction", "sklearn/neighbors/tests/test_lof.py::test_novelty_true_common_tests[LocalOutlierFactor(novelty=True)-check_estimators_dtypes]", "sklearn/neighbors/tests/test_lof.py::test_novelty_true_common_tests[LocalOutlierFactor(novelty=True)-check_dtype_object]", "sklearn/neighbors/tests/test_lof.py::test_novelty_true_common_tests[LocalOutlierFactor(novelty=True)-check_estimators_nan_inf]", "sklearn/model_selection/tests/test_search.py::test_search_cv_score_samples_method[search_cv0]", "sklearn/neighbors/tests/test_lof.py::test_novelty_true_common_tests[LocalOutlierFactor(novelty=True)-check_estimator_sparse_array]", "sklearn/model_selection/tests/test_search.py::test_search_cv_score_samples_method[search_cv1]", "sklearn/neighbors/tests/test_lof.py::test_novelty_true_common_tests[LocalOutlierFactor(novelty=True)-check_estimator_sparse_matrix]", "sklearn/neighbors/tests/test_lof.py::test_novelty_true_common_tests[LocalOutlierFactor(novelty=True)-check_estimators_pickle]", "sklearn/neighbors/tests/test_lof.py::test_novelty_true_common_tests[LocalOutlierFactor(novelty=True)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/neighbors/tests/test_lof.py::test_novelty_true_common_tests[LocalOutlierFactor(novelty=True)-check_f_contiguous_array_estimator]", "sklearn/neighbors/tests/test_lof.py::test_novelty_true_common_tests[LocalOutlierFactor(novelty=True)-check_outliers_train]", "sklearn/neighbors/tests/test_lof.py::test_novelty_true_common_tests[LocalOutlierFactor(novelty=True)-check_outliers_train(readonly_memmap=True)]", "sklearn/neighbors/tests/test_lof.py::test_novelty_true_common_tests[LocalOutlierFactor(novelty=True)-check_classifier_data_not_an_array]", "sklearn/neighbors/tests/test_lof.py::test_novelty_true_common_tests[LocalOutlierFactor(novelty=True)-check_estimators_unfitted]", "sklearn/neighbors/tests/test_lof.py::test_novelty_true_common_tests[LocalOutlierFactor(novelty=True)-check_methods_sample_order_invariance]", "sklearn/neighbors/tests/test_lof.py::test_novelty_true_common_tests[LocalOutlierFactor(novelty=True)-check_methods_subset_invariance]", "sklearn/neighbors/tests/test_lof.py::test_novelty_true_common_tests[LocalOutlierFactor(novelty=True)-check_dict_unchanged]", "sklearn/neighbors/tests/test_lof.py::test_novelty_true_common_tests[LocalOutlierFactor(novelty=True)-check_fit_idempotent]", "sklearn/neighbors/tests/test_lof.py::test_novelty_true_common_tests[LocalOutlierFactor(novelty=True)-check_fit2d_predict1d]", "sklearn/neighbors/tests/test_lof.py::test_sparse[csr_matrix]", "sklearn/neighbors/tests/test_lof.py::test_sparse[csr_array]", "sklearn/neighbors/tests/test_lof.py::test_lof_input_dtype_preservation[float64-0.5-True-auto]", "sklearn/neighbors/tests/test_lof.py::test_lof_input_dtype_preservation[float64-0.5-True-ball_tree]", "sklearn/neighbors/tests/test_lof.py::test_lof_input_dtype_preservation[float64-0.5-True-kd_tree]", "sklearn/neighbors/tests/test_lof.py::test_lof_input_dtype_preservation[float64-0.5-True-brute]", "sklearn/neighbors/tests/test_lof.py::test_lof_input_dtype_preservation[float64-0.5-False-auto]", "sklearn/neighbors/tests/test_lof.py::test_lof_input_dtype_preservation[float64-0.5-False-ball_tree]", "sklearn/neighbors/tests/test_lof.py::test_lof_input_dtype_preservation[float64-0.5-False-kd_tree]", "sklearn/neighbors/tests/test_lof.py::test_lof_input_dtype_preservation[float64-0.5-False-brute]", "sklearn/neighbors/tests/test_lof.py::test_lof_input_dtype_preservation[float64-auto-True-auto]", "sklearn/neighbors/tests/test_lof.py::test_lof_input_dtype_preservation[float64-auto-True-ball_tree]", "sklearn/neighbors/tests/test_lof.py::test_lof_input_dtype_preservation[float64-auto-True-kd_tree]", "sklearn/neighbors/tests/test_lof.py::test_lof_input_dtype_preservation[float64-auto-True-brute]", "sklearn/neighbors/tests/test_lof.py::test_lof_input_dtype_preservation[float64-auto-False-auto]", "sklearn/neighbors/tests/test_lof.py::test_lof_input_dtype_preservation[float64-auto-False-ball_tree]", "sklearn/neighbors/tests/test_lof.py::test_lof_input_dtype_preservation[float64-auto-False-kd_tree]", "sklearn/neighbors/tests/test_lof.py::test_lof_input_dtype_preservation[float64-auto-False-brute]", "sklearn/neighbors/tests/test_lof.py::test_lof_dtype_equivalence[0.5-True-auto]", "sklearn/neighbors/tests/test_lof.py::test_lof_dtype_equivalence[0.5-True-ball_tree]", "sklearn/neighbors/tests/test_lof.py::test_lof_dtype_equivalence[0.5-True-kd_tree]", "sklearn/neighbors/tests/test_lof.py::test_lof_dtype_equivalence[0.5-True-brute]", "sklearn/neighbors/tests/test_lof.py::test_lof_dtype_equivalence[0.5-False-auto]", "sklearn/neighbors/tests/test_lof.py::test_lof_dtype_equivalence[0.5-False-ball_tree]", "sklearn/neighbors/tests/test_lof.py::test_lof_dtype_equivalence[0.5-False-kd_tree]", "sklearn/neighbors/tests/test_lof.py::test_lof_dtype_equivalence[0.5-False-brute]", "sklearn/neighbors/tests/test_lof.py::test_lof_dtype_equivalence[auto-True-auto]", "sklearn/neighbors/tests/test_lof.py::test_lof_dtype_equivalence[auto-True-ball_tree]", "sklearn/neighbors/tests/test_lof.py::test_lof_dtype_equivalence[auto-True-kd_tree]", "sklearn/neighbors/tests/test_lof.py::test_lof_dtype_equivalence[auto-True-brute]", "sklearn/neighbors/tests/test_lof.py::test_lof_dtype_equivalence[auto-False-auto]", "sklearn/neighbors/tests/test_lof.py::test_lof_dtype_equivalence[auto-False-ball_tree]", "sklearn/neighbors/tests/test_lof.py::test_lof_dtype_equivalence[auto-False-kd_tree]", "sklearn/neighbors/tests/test_lof.py::test_lof_dtype_equivalence[auto-False-brute]", "sklearn/neighbors/tests/test_neighbors_pipeline.py::test_lof_novelty_true", "sklearn/tests/test_common.py::test_estimators[LocalOutlierFactor()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[LocalOutlierFactor()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[LocalOutlierFactor()]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-107
1.0
{ "code": "diff --git b/sklearn/linear_model/_logistic.py a/sklearn/linear_model/_logistic.py\nindex ab01b8bd0..b3ef71539 100644\n--- b/sklearn/linear_model/_logistic.py\n+++ a/sklearn/linear_model/_logistic.py\n@@ -1416,6 +1416,26 @@ class LogisticRegression(LinearClassifierMixin, SparseCoefMixin, BaseEstimator):\n Returns the probability of the sample for each class in the model,\n where classes are ordered as they are in ``self.classes_``.\n \"\"\"\n+ check_is_fitted(self)\n+\n+ ovr = self.multi_class in [\"ovr\", \"warn\"] or (\n+ self.multi_class in [\"auto\", \"deprecated\"]\n+ and (\n+ self.classes_.size <= 2\n+ or self.solver in (\"liblinear\", \"newton-cholesky\")\n+ )\n+ )\n+ if ovr:\n+ return super()._predict_proba_lr(X)\n+ else:\n+ decision = self.decision_function(X)\n+ if decision.ndim == 1:\n+ # Workaround for multi_class=\"multinomial\" and binary outcomes\n+ # which requires softmax prediction with only a 1D decision.\n+ decision_2d = np.c_[-decision, decision]\n+ else:\n+ decision_2d = decision\n+ return softmax(decision_2d, copy=False)\n \n def predict_log_proba(self, X):\n \"\"\"\n", "test": null }
null
{ "code": "diff --git a/sklearn/linear_model/_logistic.py b/sklearn/linear_model/_logistic.py\nindex b3ef71539..ab01b8bd0 100644\n--- a/sklearn/linear_model/_logistic.py\n+++ b/sklearn/linear_model/_logistic.py\n@@ -1416,26 +1416,6 @@ class LogisticRegression(LinearClassifierMixin, SparseCoefMixin, BaseEstimator):\n Returns the probability of the sample for each class in the model,\n where classes are ordered as they are in ``self.classes_``.\n \"\"\"\n- check_is_fitted(self)\n-\n- ovr = self.multi_class in [\"ovr\", \"warn\"] or (\n- self.multi_class in [\"auto\", \"deprecated\"]\n- and (\n- self.classes_.size <= 2\n- or self.solver in (\"liblinear\", \"newton-cholesky\")\n- )\n- )\n- if ovr:\n- return super()._predict_proba_lr(X)\n- else:\n- decision = self.decision_function(X)\n- if decision.ndim == 1:\n- # Workaround for multi_class=\"multinomial\" and binary outcomes\n- # which requires softmax prediction with only a 1D decision.\n- decision_2d = np.c_[-decision, decision]\n- else:\n- decision_2d = decision\n- return softmax(decision_2d, copy=False)\n \n def predict_log_proba(self, X):\n \"\"\"\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/linear_model/_logistic.py.\nHere is the description for the function:\n def predict_proba(self, X):\n \"\"\"\n Probability estimates.\n\n The returned estimates for all classes are ordered by the\n label of classes.\n\n For a multi_class problem, if multi_class is set to be \"multinomial\"\n the softmax function is used to find the predicted probability of\n each class.\n Else use a one-vs-rest approach, i.e. calculate the probability\n of each class assuming it to be positive using the logistic function\n and normalize these values across all the classes.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n Vector to be scored, where `n_samples` is the number of samples and\n `n_features` is the number of features.\n\n Returns\n -------\n T : array-like of shape (n_samples, n_classes)\n Returns the probability of the sample for each class in the model,\n where classes are ordered as they are in ``self.classes_``.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/linear_model/tests/test_logistic.py::test_predict_2_classes[csr_matrix]", "sklearn/linear_model/tests/test_logistic.py::test_predict_2_classes[csr_array]", "sklearn/linear_model/tests/test_logistic.py::test_predict_3_classes[csr_matrix]", "sklearn/linear_model/tests/test_logistic.py::test_predict_3_classes[csr_array]", "sklearn/linear_model/tests/test_logistic.py::test_predict_iris[clf0]", "sklearn/linear_model/tests/test_logistic.py::test_predict_iris[clf1]", "sklearn/linear_model/tests/test_logistic.py::test_predict_iris[clf2]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-5-LogisticRegression-brute-data9]", "sklearn/linear_model/tests/test_logistic.py::test_predict_iris[clf3]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-5-LogisticRegression-brute-data10]", "sklearn/linear_model/tests/test_logistic.py::test_predict_iris[clf4]", "sklearn/linear_model/tests/test_logistic.py::test_predict_iris[clf5]", "sklearn/linear_model/tests/test_logistic.py::test_multinomial_binary[lbfgs]", "sklearn/linear_model/tests/test_logistic.py::test_multinomial_binary[newton-cg]", "sklearn/linear_model/tests/test_logistic.py::test_multinomial_binary[sag]", "sklearn/linear_model/tests/test_logistic.py::test_multinomial_binary[saga]", "sklearn/linear_model/tests/test_logistic.py::test_multinomial_binary_probabilities[42]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-10-LogisticRegression-brute-data9]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-10-LogisticRegression-brute-data10]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-5-LogisticRegression-brute-data9]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_cv_multinomial_score[neg_log_loss-multiclass_agg_list3]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-5-LogisticRegression-brute-data10]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-10-LogisticRegression-brute-data9]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-10-LogisticRegression-brute-data10]", "sklearn/metrics/tests/test_score_objects.py::test_thresholded_scorers", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-5-LogisticRegression-brute-data9]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-5-LogisticRegression-brute-data10]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-10-LogisticRegression-brute-data9]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-10-LogisticRegression-brute-data10]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-5-LogisticRegression-brute-data9]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-5-LogisticRegression-brute-data10]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-10-LogisticRegression-brute-data9]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-10-LogisticRegression-brute-data10]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-5-LogisticRegression-brute-data9]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-5-LogisticRegression-brute-data10]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-10-LogisticRegression-brute-data9]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-10-LogisticRegression-brute-data10]", "sklearn/metrics/tests/test_score_objects.py::test_multiclass_roc_proba_scorer[roc_auc_ovr-metric0]", "sklearn/metrics/tests/test_score_objects.py::test_multiclass_roc_proba_scorer[roc_auc_ovo-metric1]", "sklearn/metrics/tests/test_score_objects.py::test_multiclass_roc_proba_scorer[roc_auc_ovr_weighted-metric2]", "sklearn/metrics/tests/test_score_objects.py::test_multiclass_roc_proba_scorer[roc_auc_ovo_weighted-metric3]", "sklearn/metrics/tests/test_score_objects.py::test_multiclass_roc_proba_scorer_label", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-5-LogisticRegression-brute-data9]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-5-LogisticRegression-brute-data10]", "sklearn/metrics/tests/test_score_objects.py::test_average_precision_pos_label", "sklearn/metrics/tests/test_score_objects.py::test_brier_score_loss_pos_label", "sklearn/metrics/tests/test_score_objects.py::test_non_symmetric_metric_pos_label[f1_score]", "sklearn/metrics/tests/test_score_objects.py::test_non_symmetric_metric_pos_label[precision_score]", "sklearn/metrics/tests/test_score_objects.py::test_non_symmetric_metric_pos_label[recall_score]", "sklearn/metrics/tests/test_score_objects.py::test_non_symmetric_metric_pos_label[jaccard_score]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-10-LogisticRegression-brute-data9]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-10-LogisticRegression-brute-data10]", "sklearn/metrics/tests/test_score_objects.py::test_scorer_no_op_multiclass_select_proba", "sklearn/linear_model/tests/test_logistic.py::test_logreg_predict_proba_multinomial", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-integer-None-estimator-brute]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-integer-column-transformer-estimator-brute]", "sklearn/metrics/tests/test_score_objects.py::test_metadata_kwarg_conflict", "sklearn/linear_model/tests/test_logistic.py::test_warm_start_converge_LR", "sklearn/metrics/tests/test_score_objects.py::test_make_scorer_deprecation[deprecated_params0-new_params0-The `needs_threshold` and `needs_proba` parameter are deprecated]", "sklearn/metrics/tests/test_score_objects.py::test_make_scorer_deprecation[deprecated_params1-new_params1-The `needs_threshold` and `needs_proba` parameter are deprecated]", "sklearn/metrics/tests/test_score_objects.py::test_get_scorer_multimetric[True]", "sklearn/metrics/tests/test_score_objects.py::test_get_scorer_multimetric[False]", "sklearn/metrics/tests/test_score_objects.py::test_curve_scorer", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-integer-column-transformer-passthrough-estimator-brute]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.1-0.001]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.1-0.046415888336127795]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.1-2.1544346900318843]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.1-100.0]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.5-0.001]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.5-0.046415888336127795]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.5-2.1544346900318843]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-string-None-estimator-brute]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.5-100.0]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.9-0.001]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.9-0.046415888336127795]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.9-2.1544346900318843]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-string-column-transformer-estimator-brute]", "sklearn/linear_model/tests/test_logistic.py::test_LogisticRegression_elastic_net_objective[0.9-100.0]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_dataframe[features-string-column-transformer-passthrough-estimator-brute]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_feature_type[scalar-int]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_feature_type[scalar-str]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_feature_type[list-int]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_feature_type[list-str]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_feature_type[mask]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_multi_class_auto[lbfgs-LogisticRegression]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_multi_class_auto[lbfgs-LogisticRegressionCV]", "sklearn/inspection/tests/test_partial_dependence.py::test_kind_average_and_average_of_individual[LogisticRegression-data1]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_multi_class_auto[liblinear-LogisticRegression]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_multi_class_auto[liblinear-LogisticRegressionCV]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_multi_class_auto[newton-cg-LogisticRegression]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_multi_class_auto[newton-cg-LogisticRegressionCV]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_multi_class_auto[newton-cholesky-LogisticRegression]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_multi_class_auto[newton-cholesky-LogisticRegressionCV]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_multi_class_auto[sag-LogisticRegression]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_multi_class_auto[sag-LogisticRegressionCV]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_multi_class_auto[saga-LogisticRegression]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_kind_individual_ignores_sample_weight[LogisticRegression-data1]", "sklearn/linear_model/tests/test_logistic.py::test_logistic_regression_multi_class_auto[saga-LogisticRegressionCV]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[0-estimator1]", "sklearn/linear_model/tests/test_logistic.py::test_logisticregression_liblinear_sample_weight[params0]", "sklearn/linear_model/tests/test_logistic.py::test_logisticregression_liblinear_sample_weight[params1]", "sklearn/linear_model/tests/test_logistic.py::test_logisticregression_liblinear_sample_weight[params2]", "sklearn/linear_model/tests/test_logistic.py::test_zero_max_iter[liblinear]", "sklearn/linear_model/tests/test_logistic.py::test_zero_max_iter[newton-cg]", "sklearn/linear_model/tests/test_logistic.py::test_zero_max_iter[newton-cholesky]", "sklearn/linear_model/tests/test_logistic.py::test_zero_max_iter[sag]", "sklearn/linear_model/tests/test_logistic.py::test_zero_max_iter[saga]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[1-estimator1]", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_non_null_weight_idx[-1-estimator1]", "sklearn/metrics/tests/test_score_objects.py::test_curve_scorer_pos_label[42]", "sklearn/metrics/tests/test_ranking.py::test_top_k_accuracy_score_increasing", "sklearn/inspection/tests/test_partial_dependence.py::test_partial_dependence_equivalence_equal_sample_weight[LogisticRegression-data1]", "sklearn/tests/test_pipeline.py::test_pipeline_methods_anova", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[False-None-3]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[False-None-cv1]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[False-final_estimator1-3]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[False-final_estimator1-cv1]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[True-None-3]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[True-None-cv1]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[True-final_estimator1-3]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict[coo_matrix]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_iris[True-final_estimator1-cv1]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_drop_column_binary_classification", "sklearn/model_selection/tests/test_classification_threshold.py::test_fit_and_score_over_thresholds_curve_scorers", "sklearn/model_selection/tests/test_classification_threshold.py::test_fit_and_score_over_thresholds_sample_weight", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict[coo_array]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[FixedThresholdClassifier-predict_proba-estimator0]", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[FixedThresholdClassifier-predict_log_proba-estimator0]", "sklearn/tests/test_multiclass.py::test_ovr_always_present", "sklearn/tests/test_multiclass.py::test_ovr_binary", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[TunedThresholdClassifierCV-predict_proba-estimator0]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_classifier[contourf-predict_proba]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_decision_boundary_display_classifier[contour-predict_proba]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_predict_proba_shape", "sklearn/ensemble/tests/test_bagging.py::test_probability", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_predict_log_proba_shape", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[TunedThresholdClassifierCV-predict_log_proba-estimator0]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_estimator_name_multiple_calls[from_estimator-DetCurveDisplay]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_unbalanced", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_fit_score_takes_y]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_estimator_name_multiple_calls[from_estimator-PrecisionRecallDisplay]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_plotting[from_estimator-LogisticRegression-True-True-True-predict_proba]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_estimator_name_multiple_calls[from_estimator-RocCurveDisplay]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_plotting[from_estimator-LogisticRegression-True-True-True-decision_function]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_estimator_name_multiple_calls[from_predictions-DetCurveDisplay]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_plotting[from_estimator-LogisticRegression-True-True-False-predict_proba]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_estimator_name_multiple_calls[from_predictions-PrecisionRecallDisplay]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_plotting[from_estimator-LogisticRegression-True-True-False-decision_function]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_estimator_name_multiple_calls[from_predictions-RocCurveDisplay]", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_estimators_dtypes]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_class_of_interest_binary[predict_proba]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_not_fitted_errors[DetCurveDisplay-clf0]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_plotting[from_estimator-LogisticRegression-True-False-True-predict_proba]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_not_fitted_errors[DetCurveDisplay-clf1]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_plotting[from_estimator-LogisticRegression-True-False-True-decision_function]", "sklearn/inspection/_plot/tests/test_boundary_decision_display.py::test_class_of_interest_multiclass[predict_proba]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_plotting[from_estimator-LogisticRegression-True-False-False-predict_proba]", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_dtype_object]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_not_fitted_errors[DetCurveDisplay-clf2]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_plotting[from_estimator-LogisticRegression-True-False-False-decision_function]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_not_fitted_errors[PrecisionRecallDisplay-clf0]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_not_fitted_errors[PrecisionRecallDisplay-clf1]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_plotting[from_estimator-LogisticRegression-False-True-True-predict_proba]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_plotting[from_estimator-LogisticRegression-False-True-True-decision_function]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_not_fitted_errors[PrecisionRecallDisplay-clf2]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_plotting[from_estimator-LogisticRegression-False-True-False-predict_proba]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_plotting[from_estimator-LogisticRegression-False-True-False-decision_function]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_plotting[from_estimator-LogisticRegression-False-False-True-predict_proba]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_plotting[from_estimator-LogisticRegression-False-False-True-decision_function]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_with_method", "sklearn/model_selection/tests/test_classification_threshold.py::test_threshold_classifier_estimator_response_methods[TunedThresholdClassifierCV-decision_function-estimator0]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_sparse_passthrough[coo_matrix]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_plotting[from_estimator-LogisticRegression-False-False-False-predict_proba]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_plotting[from_estimator-LogisticRegression-False-False-False-decision_function]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_plotting[from_predictions-Classifier-True-True-True-predict_proba]", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_not_fitted_errors[RocCurveDisplay-clf0]", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_estimators_nan_inf]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_plotting[from_predictions-Classifier-True-True-False-predict_proba]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_sparse_passthrough[coo_array]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_not_fitted_errors[RocCurveDisplay-clf1]", "sklearn/model_selection/tests/test_validation.py::test_gridsearchcv_cross_val_predict_with_method", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_plotting[from_predictions-Classifier-True-False-True-predict_proba]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_display_curve_not_fitted_errors[RocCurveDisplay-clf2]", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_estimator_sparse_array]", "sklearn/utils/tests/test_estimator_checks.py::test_check_estimator", "sklearn/tests/test_multioutput.py::test_multiclass_multioutput_estimator_predict_proba", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_sparse_passthrough[csc_matrix]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_plotting[from_predictions-Classifier-True-False-False-predict_proba]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_with_method_multilabel_ovr", "sklearn/ensemble/tests/test_voting.py::test_weights_iris[42]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_classifier_display_curve_named_constructor_return_type[from_estimator-CalibrationDisplay]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_plotting[from_predictions-Classifier-False-True-True-predict_proba]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_plotting[from_predictions-Classifier-False-True-False-predict_proba]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_sparse_passthrough[csc_array]", "sklearn/ensemble/tests/test_voting.py::test_predict_on_toy_problem[42]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_classifier_display_curve_named_constructor_return_type[from_estimator-DetCurveDisplay]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_plotting[from_predictions-Classifier-False-False-True-predict_proba]", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_classifier_display_curve_named_constructor_return_type[from_estimator-PrecisionRecallDisplay]", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_estimator_sparse_matrix]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_plotting[from_predictions-Classifier-False-False-False-predict_proba]", "sklearn/ensemble/tests/test_voting.py::test_predict_proba_on_toy_problem", "sklearn/metrics/_plot/tests/test_common_curve_display.py::test_classifier_display_curve_named_constructor_return_type[from_estimator-RocCurveDisplay]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_chance_level_line[from_estimator-None-True]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_sparse_passthrough[csr_matrix]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_chance_level_line[from_estimator-None-False]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_chance_level_line[from_estimator-chance_level_kw1-True]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_chance_level_line[from_estimator-chance_level_kw1-False]", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_estimators_pickle]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_chance_level_line[from_predictions-None-True]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_chance_level_line[from_predictions-None-False]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_without_constraint_value[auto]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_sparse_passthrough[csr_array]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_chance_level_line[from_predictions-chance_level_kw1-True]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_chance_level_line[from_predictions-chance_level_kw1-False]", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_estimators_pickle(readonly_memmap=True)]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_complex_pipeline[from_estimator-clf0]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_complex_pipeline[from_estimator-clf1]", "sklearn/tests/test_multioutput.py::test_classifier_chain_fit_and_predict[predict_proba-predict]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_with_method_rare_class", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_f_contiguous_array_estimator]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_roc_curve_display_complex_pipeline[from_estimator-clf2]", "sklearn/tests/test_multioutput.py::test_classifier_chain_fit_and_predict[predict_proba-predict_proba]", "sklearn/ensemble/tests/test_voting.py::test_parallel_fit[42]", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_classifier_data_not_an_array]", "sklearn/tests/test_multioutput.py::test_classifier_chain_fit_and_predict[predict_proba-predict_log_proba]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_drop_binary_prob", "sklearn/tests/test_multioutput.py::test_classifier_chain_fit_and_predict[predict_proba-decision_function]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_plot_roc_curve_pos_label[from_estimator-predict_proba]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-False-LogisticRegressionCV]", "sklearn/tests/test_multioutput.py::test_classifier_chain_fit_and_predict[predict_log_proba-predict]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_without_constraint_value[predict_proba]", "sklearn/metrics/_plot/tests/test_roc_curve_display.py::test_plot_roc_curve_pos_label[from_predictions-predict_proba]", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_classifiers_classes]", "sklearn/tests/test_multioutput.py::test_classifier_chain_fit_and_predict[predict_log_proba-predict_proba]", "sklearn/utils/tests/test_response.py::test_get_response_values_binary_classifier_predict_proba[predict_proba-True]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_error[y3-params3-TypeError-does not support sample weight]", "sklearn/tests/test_multioutput.py::test_classifier_chain_fit_and_predict[predict_log_proba-predict_log_proba]", "sklearn/model_selection/tests/test_validation.py::test_cross_val_predict_class_subset", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_supervised_y_2d]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_metric_with_parameter", "sklearn/ensemble/tests/test_stacking.py::test_stacking_randomness[StackingClassifier]", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_decision_proba_consistency]", "sklearn/utils/tests/test_response.py::test_get_response_values_binary_classifier_predict_proba[predict_proba-False]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_with_string_targets[metric0-auto]", "sklearn/utils/tests/test_response.py::test_get_response_values_binary_classifier_predict_proba[predict_log_proba-True]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-True-LogisticRegressionCV]", "sklearn/utils/tests/test_response.py::test_get_response_values_binary_classifier_predict_proba[predict_log_proba-False]", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_methods_sample_order_invariance]", "sklearn/tests/test_multioutput.py::test_classifier_chain_fit_and_predict[predict_log_proba-decision_function]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_stratify_default", "sklearn/utils/tests/test_response.py::test_get_response_values_with_response_list", "sklearn/utils/tests/test_response.py::test_get_response_values_multilabel_indicator[predict_proba]", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_methods_subset_invariance]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_with_sample_weight[StackingClassifier]", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_dict_unchanged]", "sklearn/ensemble/tests/test_voting.py::test_sample_weight[42]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_cv_influence[StackingClassifier]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_precision_recall_display_plotting[True-predict_proba-from_estimator]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_with_string_targets[metric0-predict_proba]", "sklearn/ensemble/tests/test_voting.py::test_voting_classifier_set_params[42]", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_fit_idempotent]", "sklearn/ensemble/tests/test_voting.py::test_set_estimator_drop", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_with_string_targets[metric1-auto]", "sklearn/tests/test_common.py::test_estimators[FixedThresholdClassifier(estimator=LogisticRegression(C=1))-check_fit2d_predict1d]", "sklearn/ensemble/tests/test_voting.py::test_estimator_weights_format[42]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_without_n_features_in[make_classification-StackingClassifier-LogisticRegression]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_precision_recall_display_plotting[True-predict_proba-from_predictions]", "sklearn/ensemble/tests/test_voting.py::test_transform[42]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_precision_recall_display_plotting[False-predict_proba-from_estimator]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_precision_recall_display_plotting[False-predict_proba-from_predictions]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_precision_recall_chance_level_line[from_estimator-None]", "sklearn/tests/test_multioutput.py::test_base_chain_crossval_fit_and_predict[classifier-predict_proba]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_precision_recall_chance_level_line[from_estimator-chance_level_kw1]", "sklearn/ensemble/tests/test_voting.py::test_get_features_names_out_classifier[kwargs0-expected_names0]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_precision_recall_chance_level_line[from_predictions-None]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_precision_recall_chance_level_line[from_predictions-chance_level_kw1]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_precision_recall_display_name[from_estimator-LogisticRegression (AP = {:.2f})]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_precision_recall_display_name[from_predictions-Classifier (AP = {:.2f})]", "sklearn/ensemble/tests/test_common.py::test_ensemble_heterogeneous_estimators_behavior[stacking-classifier]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_precision_recall_display_pipeline[clf0]", "sklearn/tests/test_multioutput.py::test_base_chain_crossval_fit_and_predict[classifier-predict_log_proba]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_precision_recall_display_pipeline[clf1]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_precision_recall_display_string_labels", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_plot_precision_recall_pos_label[predict_proba-from_estimator]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_with_string_targets[metric1-predict_proba]", "sklearn/metrics/_plot/tests/test_det_curve_display.py::test_det_curve_display[True-True-predict_proba-from_estimator]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_plot_precision_recall_pos_label[predict_proba-from_predictions]", "sklearn/metrics/_plot/tests/test_det_curve_display.py::test_det_curve_display[True-True-predict_proba-from_predictions]", "sklearn/metrics/_plot/tests/test_det_curve_display.py::test_det_curve_display[True-True-decision_function-from_estimator]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_precision_recall_prevalence_pos_label_reusable[from_estimator]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_refit[42-True]", "sklearn/metrics/_plot/tests/test_precision_recall_display.py::test_precision_recall_prevalence_pos_label_reusable[from_predictions]", "sklearn/metrics/_plot/tests/test_det_curve_display.py::test_det_curve_display[True-False-predict_proba-from_estimator]", "sklearn/ensemble/tests/test_common.py::test_heterogeneous_ensemble_support_missing_values[StackingClassifier-LogisticRegression-X0-y0]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_refit[42-False]", "sklearn/metrics/_plot/tests/test_det_curve_display.py::test_det_curve_display[True-False-predict_proba-from_predictions]", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[StackingClassifier]", "sklearn/metrics/_plot/tests/test_det_curve_display.py::test_det_curve_display[True-False-decision_function-from_estimator]", "sklearn/metrics/_plot/tests/test_det_curve_display.py::test_det_curve_display[False-True-predict_proba-from_estimator]", "sklearn/metrics/_plot/tests/test_det_curve_display.py::test_det_curve_display[False-True-predict_proba-from_predictions]", "sklearn/metrics/_plot/tests/test_det_curve_display.py::test_det_curve_display[False-True-decision_function-from_estimator]", "sklearn/metrics/_plot/tests/test_det_curve_display.py::test_det_curve_display[False-False-predict_proba-from_estimator]", "sklearn/metrics/_plot/tests/test_det_curve_display.py::test_det_curve_display[False-False-predict_proba-from_predictions]", "sklearn/tests/test_metaestimators.py::test_meta_estimators_delegate_data_validation[TunedThresholdClassifierCV]", "sklearn/metrics/_plot/tests/test_det_curve_display.py::test_det_curve_display[False-False-decision_function-from_estimator]", "sklearn/metrics/_plot/tests/test_det_curve_display.py::test_det_curve_display_default_name[from_estimator-LogisticRegression]", "sklearn/metrics/_plot/tests/test_det_curve_display.py::test_det_curve_display_default_name[from_predictions-Classifier]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_cv_zeros_sample_weights_equivalence", "sklearn/metrics/_ranking.py::sklearn.metrics._ranking.roc_auc_score", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_thresholds_array", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_store_cv_results[True]", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_store_cv_results[False]", "sklearn/calibration.py::sklearn.calibration.CalibrationDisplay", "sklearn/calibration.py::sklearn.calibration.CalibrationDisplay.from_estimator", "sklearn/model_selection/tests/test_classification_threshold.py::test_tuned_threshold_classifier_cv_float", "sklearn/calibration.py::sklearn.calibration.CalibrationDisplay.from_predictions", "sklearn/model_selection/tests/test_classification_threshold.py::test_fixed_threshold_classifier_equivalence_default[auto]", "sklearn/model_selection/tests/test_classification_threshold.py::test_fixed_threshold_classifier_equivalence_default[predict_proba]", "sklearn/model_selection/tests/test_classification_threshold.py::test_fixed_threshold_classifier[0-predict_proba-0.7]", "sklearn/model_selection/tests/test_classification_threshold.py::test_fixed_threshold_classifier[0-decision_function-2.0]", "sklearn/model_selection/tests/test_classification_threshold.py::test_fixed_threshold_classifier[1-predict_proba-0.7]", "sklearn/model_selection/tests/test_classification_threshold.py::test_fixed_threshold_classifier[1-decision_function-2.0]", "sklearn/multioutput.py::sklearn.multioutput.ClassifierChain", "sklearn/ensemble/_voting.py::sklearn.ensemble._voting.VotingClassifier", "sklearn/metrics/_plot/precision_recall_curve.py::sklearn.metrics._plot.precision_recall_curve.PrecisionRecallDisplay.from_estimator", "sklearn/metrics/_plot/precision_recall_curve.py::sklearn.metrics._plot.precision_recall_curve.PrecisionRecallDisplay.from_predictions", "sklearn/model_selection/_classification_threshold.py::sklearn.model_selection._classification_threshold.FixedThresholdClassifier", "sklearn/linear_model/_logistic.py::sklearn.linear_model._logistic.LogisticRegression", "sklearn/linear_model/_logistic.py::sklearn.linear_model._logistic.LogisticRegressionCV", "sklearn/tests/test_calibration.py::test_calibration_votingclassifier", "sklearn/tests/test_calibration.py::test_calibration_display_compute[uniform-5]", "sklearn/tests/test_calibration.py::test_calibration_display_compute[uniform-10]", "sklearn/tests/test_calibration.py::test_calibration_display_compute[quantile-5]", "sklearn/tests/test_calibration.py::test_calibration_display_compute[quantile-10]", "sklearn/tests/test_calibration.py::test_plot_calibration_curve_pipeline", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_estimators_dtypes]", "sklearn/tests/test_calibration.py::test_calibration_display_name_multiple_calls[from_estimator]", "sklearn/tests/test_calibration.py::test_calibration_display_name_multiple_calls[from_predictions]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_estimator_sparse_array]", "sklearn/tests/test_calibration.py::test_calibration_display_ref_line", "sklearn/tests/test_calibration.py::test_calibration_display_pos_label[None-1]", "sklearn/tests/test_calibration.py::test_calibration_display_pos_label[0-0]", "sklearn/tests/test_calibration.py::test_calibration_display_pos_label[1-1]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_classifiers_train(readonly_memmap=True)]", "sklearn/ensemble/tests/test_stacking.py::test_get_feature_names_out[True-StackingClassifier_multiclass]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/ensemble/tests/test_stacking.py::test_get_feature_names_out[True-StackingClassifier_binary]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_decision_proba_consistency]", "sklearn/ensemble/tests/test_stacking.py::test_get_feature_names_out[False-StackingClassifier_multiclass]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_methods_subset_invariance]", "sklearn/ensemble/tests/test_stacking.py::test_get_feature_names_out[False-StackingClassifier_binary]", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_base_regressor", "sklearn/ensemble/tests/test_stacking.py::test_stacking_final_estimator_attribute_error", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/utils/tests/test_estimator_checks.py::test_check_dataframe_column_names_consistency", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[LogisticRegression(max_iter=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[LogisticRegression(max_iter=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[LogisticRegression(max_iter=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[LogisticRegression(max_iter=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[LogisticRegression(max_iter=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[LogisticRegression(max_iter=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[LogisticRegression(max_iter=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[LogisticRegression(max_iter=5)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[LogisticRegression(max_iter=5)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[LogisticRegression(max_iter=5)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[LogisticRegression(max_iter=5)-check_estimators_unfitted]", "sklearn/tests/test_common.py::test_estimators[LogisticRegression(max_iter=5)-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[LogisticRegression(max_iter=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[LogisticRegression(max_iter=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[LogisticRegression(max_iter=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[LogisticRegression(max_iter=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[LogisticRegression(max_iter=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_sample_weights_invariance(kind=ones)]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_sample_weights_invariance(kind=zeros)]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_estimators_unfitted]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[LogisticRegressionCV(cv=3,max_iter=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_classifier_multioutput]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[RFE(estimator=LogisticRegression(C=1))-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[RFE(estimator=LogisticRegression(C=1))-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[RFE(estimator=LogisticRegression(C=1))-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[RFE(estimator=LogisticRegression(C=1))-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[RFE(estimator=LogisticRegression(C=1))-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RFE(estimator=LogisticRegression(C=1))-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[RFE(estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RFE(estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[RFE(estimator=LogisticRegression(C=1))-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[RFE(estimator=LogisticRegression(C=1))-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[RFE(estimator=LogisticRegression(C=1))-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[RFE(estimator=LogisticRegression(C=1))-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[RFE(estimator=LogisticRegression(C=1))-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[RFECV(cv=3,estimator=LogisticRegression(C=1))-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_decision_proba_consistency]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[FixedThresholdClassifier(estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[LogisticRegression(max_iter=5)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[LogisticRegressionCV(cv=3,max_iter=5)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[MultiOutputClassifier(estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[OneVsRestClassifier(estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[ClassifierChain(base_estimator=LogisticRegression(C=1),cv=3)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[FixedThresholdClassifier(estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_grid={'C':[0.1,1.0]})]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[GridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_grid={'logisticregression__C':[0.1,1.0]})]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HalvingGridSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),min_resources='smallest',param_grid={'C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HalvingGridSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),min_resources='smallest',param_grid={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[HalvingRandomSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[LogisticRegression(max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[LogisticRegressionCV(cv=3,max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[MultiOutputClassifier(estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[OneVsRestClassifier(estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[Pipeline(steps=[('scaler',StandardScaler()),('final_estimator',LogisticRegression())])]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RFE(estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RFECV(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RandomizedSearchCV(cv=2,error_score='raise',estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[RandomizedSearchCV(cv=2,error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]},random_state=0)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[SelfTrainingClassifier(estimator=LogisticRegression(C=1),max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[StackingClassifier(cv=3,estimators=[('est1',DecisionTreeClassifier(max_depth=3,random_state=0)),('est2',DecisionTreeClassifier(max_depth=3,random_state=1))])]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[TunedThresholdClassifierCV(cv=3,estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[Pipeline(steps=[('logisticregression',LogisticRegression(C=1))])]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-108
1.0
{ "code": "diff --git b/sklearn/neural_network/_multilayer_perceptron.py a/sklearn/neural_network/_multilayer_perceptron.py\nindex 322f89d35..1aa890847 100644\n--- b/sklearn/neural_network/_multilayer_perceptron.py\n+++ a/sklearn/neural_network/_multilayer_perceptron.py\n@@ -1175,6 +1175,8 @@ class MLPClassifier(ClassifierMixin, BaseMultilayerPerceptron):\n # Input validation would remove feature names, so we disable it\n return accuracy_score(y, self._predict(X, check_input=False))\n \n+ @available_if(lambda est: est._check_solver())\n+ @_fit_context(prefer_skip_nested_validation=True)\n def partial_fit(self, X, y, classes=None):\n \"\"\"Update the model with a single iteration over the given data.\n \n@@ -1199,6 +1201,14 @@ class MLPClassifier(ClassifierMixin, BaseMultilayerPerceptron):\n self : object\n Trained MLP model.\n \"\"\"\n+ if _check_partial_fit_first_call(self, classes):\n+ self._label_binarizer = LabelBinarizer()\n+ if type_of_target(y).startswith(\"multilabel\"):\n+ self._label_binarizer.fit(y)\n+ else:\n+ self._label_binarizer.fit(classes)\n+\n+ return self._fit(X, y, incremental=True)\n \n def predict_log_proba(self, X):\n \"\"\"Return the log of probability estimates.\n", "test": null }
null
{ "code": "diff --git a/sklearn/neural_network/_multilayer_perceptron.py b/sklearn/neural_network/_multilayer_perceptron.py\nindex 1aa890847..322f89d35 100644\n--- a/sklearn/neural_network/_multilayer_perceptron.py\n+++ b/sklearn/neural_network/_multilayer_perceptron.py\n@@ -1175,8 +1175,6 @@ class MLPClassifier(ClassifierMixin, BaseMultilayerPerceptron):\n # Input validation would remove feature names, so we disable it\n return accuracy_score(y, self._predict(X, check_input=False))\n \n- @available_if(lambda est: est._check_solver())\n- @_fit_context(prefer_skip_nested_validation=True)\n def partial_fit(self, X, y, classes=None):\n \"\"\"Update the model with a single iteration over the given data.\n \n@@ -1201,14 +1199,6 @@ class MLPClassifier(ClassifierMixin, BaseMultilayerPerceptron):\n self : object\n Trained MLP model.\n \"\"\"\n- if _check_partial_fit_first_call(self, classes):\n- self._label_binarizer = LabelBinarizer()\n- if type_of_target(y).startswith(\"multilabel\"):\n- self._label_binarizer.fit(y)\n- else:\n- self._label_binarizer.fit(classes)\n-\n- return self._fit(X, y, incremental=True)\n \n def predict_log_proba(self, X):\n \"\"\"Return the log of probability estimates.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/neural_network/_multilayer_perceptron.py.\nHere is the description for the function:\n def partial_fit(self, X, y, classes=None):\n \"\"\"Update the model with a single iteration over the given data.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n The input data.\n\n y : array-like of shape (n_samples,)\n The target values.\n\n classes : array of shape (n_classes,), default=None\n Classes across all calls to partial_fit.\n Can be obtained via `np.unique(y_all)`, where y_all is the\n target vector of the entire dataset.\n This argument is required for the first call to partial_fit\n and can be omitted in the subsequent calls.\n Note that y doesn't need to contain all labels in `classes`.\n\n Returns\n -------\n self : object\n Trained MLP model.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/neural_network/tests/test_mlp.py::test_fit", "sklearn/neural_network/tests/test_mlp.py::test_multilabel_classification", "sklearn/neural_network/tests/test_mlp.py::test_partial_fit_classes_error", "sklearn/neural_network/tests/test_mlp.py::test_partial_fit_classification", "sklearn/neural_network/tests/test_mlp.py::test_partial_fit_unseen_classes", "sklearn/neural_network/tests/test_mlp.py::test_partial_fit_errors", "sklearn/neural_network/tests/test_mlp.py::test_verbose_sgd", "sklearn/neural_network/tests/test_mlp.py::test_mlp_partial_fit_after_fit[MLPClassifier]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_estimators_partial_fit_n_features]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[MLPClassifier(max_iter=100)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[MLPClassifier(max_iter=100)]", "sklearn/tests/test_common.py::test_check_param_validation[MLPClassifier(max_iter=100)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-109
1.0
{ "code": "diff --git b/sklearn/neural_network/_multilayer_perceptron.py a/sklearn/neural_network/_multilayer_perceptron.py\nindex 3f9336e32..1aa890847 100644\n--- b/sklearn/neural_network/_multilayer_perceptron.py\n+++ a/sklearn/neural_network/_multilayer_perceptron.py\n@@ -1242,6 +1242,16 @@ class MLPClassifier(ClassifierMixin, BaseMultilayerPerceptron):\n The predicted probability of the sample for each class in the\n model, where classes are ordered as they are in `self.classes_`.\n \"\"\"\n+ check_is_fitted(self)\n+ y_pred = self._forward_pass_fast(X)\n+\n+ if self.n_outputs_ == 1:\n+ y_pred = y_pred.ravel()\n+\n+ if y_pred.ndim == 1:\n+ return np.vstack([1 - y_pred, y_pred]).T\n+ else:\n+ return y_pred\n \n def __sklearn_tags__(self):\n tags = super().__sklearn_tags__()\n", "test": null }
null
{ "code": "diff --git a/sklearn/neural_network/_multilayer_perceptron.py b/sklearn/neural_network/_multilayer_perceptron.py\nindex 1aa890847..3f9336e32 100644\n--- a/sklearn/neural_network/_multilayer_perceptron.py\n+++ b/sklearn/neural_network/_multilayer_perceptron.py\n@@ -1242,16 +1242,6 @@ class MLPClassifier(ClassifierMixin, BaseMultilayerPerceptron):\n The predicted probability of the sample for each class in the\n model, where classes are ordered as they are in `self.classes_`.\n \"\"\"\n- check_is_fitted(self)\n- y_pred = self._forward_pass_fast(X)\n-\n- if self.n_outputs_ == 1:\n- y_pred = y_pred.ravel()\n-\n- if y_pred.ndim == 1:\n- return np.vstack([1 - y_pred, y_pred]).T\n- else:\n- return y_pred\n \n def __sklearn_tags__(self):\n tags = super().__sklearn_tags__()\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/neural_network/_multilayer_perceptron.py.\nHere is the description for the function:\n def predict_proba(self, X):\n \"\"\"Probability estimates.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n The input data.\n\n Returns\n -------\n y_prob : ndarray of shape (n_samples, n_classes)\n The predicted probability of the sample for each class in the\n model, where classes are ordered as they are in `self.classes_`.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/neural_network/tests/test_mlp.py::test_fit", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_predict_proba[MLPClassifier]", "sklearn/neural_network/tests/test_mlp.py::test_predict_proba_binary", "sklearn/neural_network/tests/test_mlp.py::test_predict_proba_multiclass", "sklearn/neural_network/tests/test_mlp.py::test_predict_proba_multilabel", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_auto_predict[False-auto]", "sklearn/neural_network/tests/test_mlp.py::test_mlp_classifier_dtypes_casting", "sklearn/ensemble/tests/test_stacking.py::test_stacking_classifier_multilabel_auto_predict[True-auto]", "sklearn/neural_network/_multilayer_perceptron.py::sklearn.neural_network._multilayer_perceptron.MLPClassifier", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_classifiers_multilabel_output_format_predict_proba]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_estimators_unfitted]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[MLPClassifier(max_iter=100)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[MLPClassifier(max_iter=100)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[MLPClassifier(max_iter=100)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-110
1.0
{ "code": "diff --git b/sklearn/cluster/_mean_shift.py a/sklearn/cluster/_mean_shift.py\nindex d8a2c8cd4..5190936e6 100644\n--- b/sklearn/cluster/_mean_shift.py\n+++ a/sklearn/cluster/_mean_shift.py\n@@ -463,6 +463,7 @@ class MeanShift(ClusterMixin, BaseEstimator):\n self.n_jobs = n_jobs\n self.max_iter = max_iter\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None):\n \"\"\"Perform clustering.\n \n@@ -479,6 +480,82 @@ class MeanShift(ClusterMixin, BaseEstimator):\n self : object\n Fitted instance.\n \"\"\"\n+ X = validate_data(self, X)\n+ bandwidth = self.bandwidth\n+ if bandwidth is None:\n+ bandwidth = estimate_bandwidth(X, n_jobs=self.n_jobs)\n+\n+ seeds = self.seeds\n+ if seeds is None:\n+ if self.bin_seeding:\n+ seeds = get_bin_seeds(X, bandwidth, self.min_bin_freq)\n+ else:\n+ seeds = X\n+ n_samples, n_features = X.shape\n+ center_intensity_dict = {}\n+\n+ # We use n_jobs=1 because this will be used in nested calls under\n+ # parallel calls to _mean_shift_single_seed so there is no need for\n+ # for further parallelism.\n+ nbrs = NearestNeighbors(radius=bandwidth, n_jobs=1).fit(X)\n+\n+ # execute iterations on all seeds in parallel\n+ all_res = Parallel(n_jobs=self.n_jobs)(\n+ delayed(_mean_shift_single_seed)(seed, X, nbrs, self.max_iter)\n+ for seed in seeds\n+ )\n+ # copy results in a dictionary\n+ for i in range(len(seeds)):\n+ if all_res[i][1]: # i.e. len(points_within) > 0\n+ center_intensity_dict[all_res[i][0]] = all_res[i][1]\n+\n+ self.n_iter_ = max([x[2] for x in all_res])\n+\n+ if not center_intensity_dict:\n+ # nothing near seeds\n+ raise ValueError(\n+ \"No point was within bandwidth=%f of any seed. Try a different seeding\"\n+ \" strategy or increase the bandwidth.\"\n+ % bandwidth\n+ )\n+\n+ # POST PROCESSING: remove near duplicate points\n+ # If the distance between two kernels is less than the bandwidth,\n+ # then we have to remove one because it is a duplicate. Remove the\n+ # one with fewer points.\n+\n+ sorted_by_intensity = sorted(\n+ center_intensity_dict.items(),\n+ key=lambda tup: (tup[1], tup[0]),\n+ reverse=True,\n+ )\n+ sorted_centers = np.array([tup[0] for tup in sorted_by_intensity])\n+ unique = np.ones(len(sorted_centers), dtype=bool)\n+ nbrs = NearestNeighbors(radius=bandwidth, n_jobs=self.n_jobs).fit(\n+ sorted_centers\n+ )\n+ for i, center in enumerate(sorted_centers):\n+ if unique[i]:\n+ neighbor_idxs = nbrs.radius_neighbors([center], return_distance=False)[\n+ 0\n+ ]\n+ unique[neighbor_idxs] = 0\n+ unique[i] = 1 # leave the current point as unique\n+ cluster_centers = sorted_centers[unique]\n+\n+ # ASSIGN LABELS: a point belongs to the cluster that it is closest to\n+ nbrs = NearestNeighbors(n_neighbors=1, n_jobs=self.n_jobs).fit(cluster_centers)\n+ labels = np.zeros(n_samples, dtype=int)\n+ distances, idxs = nbrs.kneighbors(X)\n+ if self.cluster_all:\n+ labels = idxs.flatten()\n+ else:\n+ labels.fill(-1)\n+ bool_selector = distances.flatten() <= bandwidth\n+ labels[bool_selector] = idxs.flatten()[bool_selector]\n+\n+ self.cluster_centers_, self.labels_ = cluster_centers, labels\n+ return self\n \n def predict(self, X):\n \"\"\"Predict the closest cluster each sample in X belongs to.\n", "test": null }
null
{ "code": "diff --git a/sklearn/cluster/_mean_shift.py b/sklearn/cluster/_mean_shift.py\nindex 5190936e6..d8a2c8cd4 100644\n--- a/sklearn/cluster/_mean_shift.py\n+++ b/sklearn/cluster/_mean_shift.py\n@@ -463,7 +463,6 @@ class MeanShift(ClusterMixin, BaseEstimator):\n self.n_jobs = n_jobs\n self.max_iter = max_iter\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None):\n \"\"\"Perform clustering.\n \n@@ -480,82 +479,6 @@ class MeanShift(ClusterMixin, BaseEstimator):\n self : object\n Fitted instance.\n \"\"\"\n- X = validate_data(self, X)\n- bandwidth = self.bandwidth\n- if bandwidth is None:\n- bandwidth = estimate_bandwidth(X, n_jobs=self.n_jobs)\n-\n- seeds = self.seeds\n- if seeds is None:\n- if self.bin_seeding:\n- seeds = get_bin_seeds(X, bandwidth, self.min_bin_freq)\n- else:\n- seeds = X\n- n_samples, n_features = X.shape\n- center_intensity_dict = {}\n-\n- # We use n_jobs=1 because this will be used in nested calls under\n- # parallel calls to _mean_shift_single_seed so there is no need for\n- # for further parallelism.\n- nbrs = NearestNeighbors(radius=bandwidth, n_jobs=1).fit(X)\n-\n- # execute iterations on all seeds in parallel\n- all_res = Parallel(n_jobs=self.n_jobs)(\n- delayed(_mean_shift_single_seed)(seed, X, nbrs, self.max_iter)\n- for seed in seeds\n- )\n- # copy results in a dictionary\n- for i in range(len(seeds)):\n- if all_res[i][1]: # i.e. len(points_within) > 0\n- center_intensity_dict[all_res[i][0]] = all_res[i][1]\n-\n- self.n_iter_ = max([x[2] for x in all_res])\n-\n- if not center_intensity_dict:\n- # nothing near seeds\n- raise ValueError(\n- \"No point was within bandwidth=%f of any seed. Try a different seeding\"\n- \" strategy or increase the bandwidth.\"\n- % bandwidth\n- )\n-\n- # POST PROCESSING: remove near duplicate points\n- # If the distance between two kernels is less than the bandwidth,\n- # then we have to remove one because it is a duplicate. Remove the\n- # one with fewer points.\n-\n- sorted_by_intensity = sorted(\n- center_intensity_dict.items(),\n- key=lambda tup: (tup[1], tup[0]),\n- reverse=True,\n- )\n- sorted_centers = np.array([tup[0] for tup in sorted_by_intensity])\n- unique = np.ones(len(sorted_centers), dtype=bool)\n- nbrs = NearestNeighbors(radius=bandwidth, n_jobs=self.n_jobs).fit(\n- sorted_centers\n- )\n- for i, center in enumerate(sorted_centers):\n- if unique[i]:\n- neighbor_idxs = nbrs.radius_neighbors([center], return_distance=False)[\n- 0\n- ]\n- unique[neighbor_idxs] = 0\n- unique[i] = 1 # leave the current point as unique\n- cluster_centers = sorted_centers[unique]\n-\n- # ASSIGN LABELS: a point belongs to the cluster that it is closest to\n- nbrs = NearestNeighbors(n_neighbors=1, n_jobs=self.n_jobs).fit(cluster_centers)\n- labels = np.zeros(n_samples, dtype=int)\n- distances, idxs = nbrs.kneighbors(X)\n- if self.cluster_all:\n- labels = idxs.flatten()\n- else:\n- labels.fill(-1)\n- bool_selector = distances.flatten() <= bandwidth\n- labels[bool_selector] = idxs.flatten()[bool_selector]\n-\n- self.cluster_centers_, self.labels_ = cluster_centers, labels\n- return self\n \n def predict(self, X):\n \"\"\"Predict the closest cluster each sample in X belongs to.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/cluster/_mean_shift.py.\nHere is the description for the function:\n def fit(self, X, y=None):\n \"\"\"Perform clustering.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n Samples to cluster.\n\n y : Ignored\n Not used, present for API consistency by convention.\n\n Returns\n -------\n self : object\n Fitted instance.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_public_functions.py::test_class_wrapper_param_validation[sklearn.cluster.mean_shift-sklearn.cluster.MeanShift]", "sklearn/cluster/tests/test_mean_shift.py::test_convergence_of_1d_constant_data", "sklearn/cluster/tests/test_mean_shift.py::test_mean_shift[float64-1.2-True-3-0]", "sklearn/cluster/tests/test_mean_shift.py::test_mean_shift[float64-1.2-False-4--1]", "sklearn/cluster/tests/test_mean_shift.py::test_parallel[float64]", "sklearn/cluster/tests/test_mean_shift.py::test_meanshift_predict[float64]", "sklearn/cluster/tests/test_mean_shift.py::test_meanshift_all_orphans", "sklearn/cluster/tests/test_mean_shift.py::test_cluster_intensity_tie[float64]", "sklearn/cluster/tests/test_mean_shift.py::test_max_iter[1]", "sklearn/cluster/tests/test_mean_shift.py::test_max_iter[100]", "sklearn/cluster/tests/test_mean_shift.py::test_mean_shift_zero_bandwidth[float64]", "sklearn/cluster/_mean_shift.py::sklearn.cluster._mean_shift.MeanShift", "sklearn/cluster/_mean_shift.py::sklearn.cluster._mean_shift.mean_shift", "sklearn/tests/test_common.py::test_estimators[MeanShift(bandwidth=1.0,max_iter=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[MeanShift(bandwidth=1.0,max_iter=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[MeanShift(bandwidth=1.0,max_iter=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[MeanShift(bandwidth=1.0,max_iter=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[MeanShift(bandwidth=1.0,max_iter=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[MeanShift(bandwidth=1.0,max_iter=5)-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[MeanShift(bandwidth=1.0,max_iter=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[MeanShift(bandwidth=1.0,max_iter=5)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[MeanShift(bandwidth=1.0,max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[MeanShift(bandwidth=1.0,max_iter=5)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[MeanShift(bandwidth=1.0,max_iter=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[MeanShift(bandwidth=1.0,max_iter=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[MeanShift(bandwidth=1.0,max_iter=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[MeanShift(bandwidth=1.0,max_iter=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[MeanShift(bandwidth=1.0,max_iter=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[MeanShift(bandwidth=1.0,max_iter=5)-check_clustering]", "sklearn/tests/test_common.py::test_estimators[MeanShift(bandwidth=1.0,max_iter=5)-check_clustering(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[MeanShift(bandwidth=1.0,max_iter=5)-check_non_transformer_estimators_n_iter]", "sklearn/tests/test_common.py::test_estimators[MeanShift(bandwidth=1.0,max_iter=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[MeanShift(bandwidth=1.0,max_iter=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[MeanShift(bandwidth=1.0,max_iter=5)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[MeanShift(bandwidth=1.0,max_iter=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[MeanShift(bandwidth=1.0,max_iter=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[MeanShift(bandwidth=1.0,max_iter=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[MeanShift(bandwidth=1.0,max_iter=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[MeanShift(bandwidth=1.0,max_iter=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[MeanShift(bandwidth=1.0,max_iter=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[MeanShift(bandwidth=1.0,max_iter=5)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[MeanShift(bandwidth=1.0,max_iter=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[MeanShift(bandwidth=1.0,max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[MeanShift(bandwidth=1.0,max_iter=5)]", "sklearn/tests/test_common.py::test_check_param_validation[MeanShift(bandwidth=1.0,max_iter=5)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-111
1.0
{ "code": "diff --git b/sklearn/covariance/_robust_covariance.py a/sklearn/covariance/_robust_covariance.py\nindex 650a94aaa..786c4e17b 100644\n--- b/sklearn/covariance/_robust_covariance.py\n+++ a/sklearn/covariance/_robust_covariance.py\n@@ -723,6 +723,7 @@ class MinCovDet(EmpiricalCovariance):\n self.support_fraction = support_fraction\n self.random_state = random_state\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None):\n \"\"\"Fit a Minimum Covariance Determinant with the FastMCD algorithm.\n \n@@ -740,6 +741,41 @@ class MinCovDet(EmpiricalCovariance):\n self : object\n Returns the instance itself.\n \"\"\"\n+ X = validate_data(self, X, ensure_min_samples=2, estimator=\"MinCovDet\")\n+ random_state = check_random_state(self.random_state)\n+ n_samples, n_features = X.shape\n+ # check that the empirical covariance is full rank\n+ if (linalg.svdvals(np.dot(X.T, X)) > 1e-8).sum() != n_features:\n+ warnings.warn(\n+ \"The covariance matrix associated to your dataset is not full rank\"\n+ )\n+ # compute and store raw estimates\n+ raw_location, raw_covariance, raw_support, raw_dist = fast_mcd(\n+ X,\n+ support_fraction=self.support_fraction,\n+ cov_computation_method=self._nonrobust_covariance,\n+ random_state=random_state,\n+ )\n+ if self.assume_centered:\n+ raw_location = np.zeros(n_features)\n+ raw_covariance = self._nonrobust_covariance(\n+ X[raw_support], assume_centered=True\n+ )\n+ # get precision matrix in an optimized way\n+ precision = linalg.pinvh(raw_covariance)\n+ raw_dist = np.sum(np.dot(X, precision) * X, 1)\n+ self.raw_location_ = raw_location\n+ self.raw_covariance_ = raw_covariance\n+ self.raw_support_ = raw_support\n+ self.location_ = raw_location\n+ self.support_ = raw_support\n+ self.dist_ = raw_dist\n+ # obtain consistency at normal models\n+ self.correct_covariance(X)\n+ # re-weight estimator\n+ self.reweight_covariance(X)\n+\n+ return self\n \n def correct_covariance(self, data):\n \"\"\"Apply a correction to raw Minimum Covariance Determinant estimates.\n", "test": null }
null
{ "code": "diff --git a/sklearn/covariance/_robust_covariance.py b/sklearn/covariance/_robust_covariance.py\nindex 786c4e17b..650a94aaa 100644\n--- a/sklearn/covariance/_robust_covariance.py\n+++ b/sklearn/covariance/_robust_covariance.py\n@@ -723,7 +723,6 @@ class MinCovDet(EmpiricalCovariance):\n self.support_fraction = support_fraction\n self.random_state = random_state\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None):\n \"\"\"Fit a Minimum Covariance Determinant with the FastMCD algorithm.\n \n@@ -741,41 +740,6 @@ class MinCovDet(EmpiricalCovariance):\n self : object\n Returns the instance itself.\n \"\"\"\n- X = validate_data(self, X, ensure_min_samples=2, estimator=\"MinCovDet\")\n- random_state = check_random_state(self.random_state)\n- n_samples, n_features = X.shape\n- # check that the empirical covariance is full rank\n- if (linalg.svdvals(np.dot(X.T, X)) > 1e-8).sum() != n_features:\n- warnings.warn(\n- \"The covariance matrix associated to your dataset is not full rank\"\n- )\n- # compute and store raw estimates\n- raw_location, raw_covariance, raw_support, raw_dist = fast_mcd(\n- X,\n- support_fraction=self.support_fraction,\n- cov_computation_method=self._nonrobust_covariance,\n- random_state=random_state,\n- )\n- if self.assume_centered:\n- raw_location = np.zeros(n_features)\n- raw_covariance = self._nonrobust_covariance(\n- X[raw_support], assume_centered=True\n- )\n- # get precision matrix in an optimized way\n- precision = linalg.pinvh(raw_covariance)\n- raw_dist = np.sum(np.dot(X, precision) * X, 1)\n- self.raw_location_ = raw_location\n- self.raw_covariance_ = raw_covariance\n- self.raw_support_ = raw_support\n- self.location_ = raw_location\n- self.support_ = raw_support\n- self.dist_ = raw_dist\n- # obtain consistency at normal models\n- self.correct_covariance(X)\n- # re-weight estimator\n- self.reweight_covariance(X)\n-\n- return self\n \n def correct_covariance(self, data):\n \"\"\"Apply a correction to raw Minimum Covariance Determinant estimates.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/covariance/_robust_covariance.py.\nHere is the description for the function:\n def fit(self, X, y=None):\n \"\"\"Fit a Minimum Covariance Determinant with the FastMCD algorithm.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n Training data, where `n_samples` is the number of samples\n and `n_features` is the number of features.\n\n y : Ignored\n Not used, present for API consistency by convention.\n\n Returns\n -------\n self : object\n Returns the instance itself.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_common.py::test_estimators[EllipticEnvelope()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[EllipticEnvelope()-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[EllipticEnvelope()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[EllipticEnvelope()-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[EllipticEnvelope()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[EllipticEnvelope()-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[EllipticEnvelope()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[EllipticEnvelope()-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[EllipticEnvelope()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[EllipticEnvelope()-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[EllipticEnvelope()-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[EllipticEnvelope()-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[EllipticEnvelope()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[EllipticEnvelope()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[EllipticEnvelope()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[EllipticEnvelope()-check_outliers_fit_predict]", "sklearn/tests/test_common.py::test_estimators[EllipticEnvelope()-check_outliers_train]", "sklearn/tests/test_common.py::test_estimators[EllipticEnvelope()-check_outliers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[EllipticEnvelope()-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[EllipticEnvelope()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[EllipticEnvelope()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[EllipticEnvelope()-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[EllipticEnvelope()-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[EllipticEnvelope()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[EllipticEnvelope()-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[EllipticEnvelope()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[EllipticEnvelope()-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[EllipticEnvelope()-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[EllipticEnvelope()-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[EllipticEnvelope()-check_fit2d_predict1d]", "sklearn/covariance/tests/test_robust_covariance.py::test_mcd[42]", "sklearn/covariance/tests/test_robust_covariance.py::test_mcd_class_on_invalid_input", "sklearn/covariance/tests/test_robust_covariance.py::test_mcd_issue1127", "sklearn/covariance/tests/test_robust_covariance.py::test_mcd_issue3367[42]", "sklearn/covariance/tests/test_robust_covariance.py::test_mcd_support_covariance_is_zero", "sklearn/covariance/tests/test_robust_covariance.py::test_mcd_increasing_det_warning[42]", "sklearn/covariance/tests/test_elliptic_envelope.py::test_elliptic_envelope[42]", "sklearn/covariance/tests/test_elliptic_envelope.py::test_score_samples", "sklearn/covariance/_elliptic_envelope.py::sklearn.covariance._elliptic_envelope.EllipticEnvelope", "sklearn/covariance/_robust_covariance.py::sklearn.covariance._robust_covariance.MinCovDet", "sklearn/tests/test_common.py::test_estimators[MinCovDet()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[MinCovDet()-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[MinCovDet()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[MinCovDet()-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[MinCovDet()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[MinCovDet()-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[MinCovDet()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[MinCovDet()-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[MinCovDet()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[MinCovDet()-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[MinCovDet()-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[MinCovDet()-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[MinCovDet()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[MinCovDet()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[MinCovDet()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[MinCovDet()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[MinCovDet()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[MinCovDet()-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[MinCovDet()-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[MinCovDet()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[MinCovDet()-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[MinCovDet()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[MinCovDet()-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[MinCovDet()-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[MinCovDet()-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[MinCovDet()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[EllipticEnvelope()]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[MinCovDet()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[EllipticEnvelope()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[MinCovDet()]", "sklearn/tests/test_common.py::test_check_param_validation[MinCovDet()]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-112
1.0
{ "code": "diff --git b/sklearn/decomposition/_dict_learning.py a/sklearn/decomposition/_dict_learning.py\nindex cb4b82cce..2d916dac1 100644\n--- b/sklearn/decomposition/_dict_learning.py\n+++ a/sklearn/decomposition/_dict_learning.py\n@@ -2157,6 +2157,7 @@ class MiniBatchDictionaryLearning(_BaseSparseCoding, BaseEstimator):\n \n return False\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None):\n \"\"\"Fit the model from data in X.\n \n@@ -2174,6 +2175,82 @@ class MiniBatchDictionaryLearning(_BaseSparseCoding, BaseEstimator):\n self : object\n Returns the instance itself.\n \"\"\"\n+ X = validate_data(\n+ self, X, dtype=[np.float64, np.float32], order=\"C\", copy=False\n+ )\n+\n+ self._check_params(X)\n+ self._random_state = check_random_state(self.random_state)\n+\n+ dictionary = self._initialize_dict(X, self._random_state)\n+ old_dict = dictionary.copy()\n+\n+ if self.shuffle:\n+ X_train = X.copy()\n+ self._random_state.shuffle(X_train)\n+ else:\n+ X_train = X\n+\n+ n_samples, n_features = X_train.shape\n+\n+ if self.verbose:\n+ print(\"[dict_learning]\")\n+\n+ # Inner stats\n+ self._A = np.zeros(\n+ (self._n_components, self._n_components), dtype=X_train.dtype\n+ )\n+ self._B = np.zeros((n_features, self._n_components), dtype=X_train.dtype)\n+\n+ # TODO(1.6): remove in 1.6\n+ if self.max_iter is None:\n+ warn(\n+ (\n+ \"`max_iter=None` is deprecated in version 1.4 and will be removed\"\n+ \" in version 1.6. Use the default value (i.e. `1_000`) instead.\"\n+ ),\n+ FutureWarning,\n+ )\n+ max_iter = 1_000\n+ else:\n+ max_iter = self.max_iter\n+\n+ # Attributes to monitor the convergence\n+ self._ewa_cost = None\n+ self._ewa_cost_min = None\n+ self._no_improvement = 0\n+\n+ batches = gen_batches(n_samples, self._batch_size)\n+ batches = itertools.cycle(batches)\n+ n_steps_per_iter = int(np.ceil(n_samples / self._batch_size))\n+ n_steps = max_iter * n_steps_per_iter\n+\n+ i = -1 # to allow max_iter = 0\n+\n+ for i, batch in zip(range(n_steps), batches):\n+ X_batch = X_train[batch]\n+\n+ batch_cost = self._minibatch_step(\n+ X_batch, dictionary, self._random_state, i\n+ )\n+\n+ if self._check_convergence(\n+ X_batch, batch_cost, dictionary, old_dict, n_samples, i, n_steps\n+ ):\n+ break\n+\n+ # XXX callback param added for backward compat in #18975 but a common\n+ # unified callback API should be preferred\n+ if self.callback is not None:\n+ self.callback(locals())\n+\n+ old_dict[:] = dictionary\n+\n+ self.n_steps_ = i + 1\n+ self.n_iter_ = np.ceil(self.n_steps_ / n_steps_per_iter)\n+ self.components_ = dictionary\n+\n+ return self\n \n @_fit_context(prefer_skip_nested_validation=True)\n def partial_fit(self, X, y=None):\n", "test": null }
null
{ "code": "diff --git a/sklearn/decomposition/_dict_learning.py b/sklearn/decomposition/_dict_learning.py\nindex 2d916dac1..cb4b82cce 100644\n--- a/sklearn/decomposition/_dict_learning.py\n+++ b/sklearn/decomposition/_dict_learning.py\n@@ -2157,7 +2157,6 @@ class MiniBatchDictionaryLearning(_BaseSparseCoding, BaseEstimator):\n \n return False\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None):\n \"\"\"Fit the model from data in X.\n \n@@ -2175,82 +2174,6 @@ class MiniBatchDictionaryLearning(_BaseSparseCoding, BaseEstimator):\n self : object\n Returns the instance itself.\n \"\"\"\n- X = validate_data(\n- self, X, dtype=[np.float64, np.float32], order=\"C\", copy=False\n- )\n-\n- self._check_params(X)\n- self._random_state = check_random_state(self.random_state)\n-\n- dictionary = self._initialize_dict(X, self._random_state)\n- old_dict = dictionary.copy()\n-\n- if self.shuffle:\n- X_train = X.copy()\n- self._random_state.shuffle(X_train)\n- else:\n- X_train = X\n-\n- n_samples, n_features = X_train.shape\n-\n- if self.verbose:\n- print(\"[dict_learning]\")\n-\n- # Inner stats\n- self._A = np.zeros(\n- (self._n_components, self._n_components), dtype=X_train.dtype\n- )\n- self._B = np.zeros((n_features, self._n_components), dtype=X_train.dtype)\n-\n- # TODO(1.6): remove in 1.6\n- if self.max_iter is None:\n- warn(\n- (\n- \"`max_iter=None` is deprecated in version 1.4 and will be removed\"\n- \" in version 1.6. Use the default value (i.e. `1_000`) instead.\"\n- ),\n- FutureWarning,\n- )\n- max_iter = 1_000\n- else:\n- max_iter = self.max_iter\n-\n- # Attributes to monitor the convergence\n- self._ewa_cost = None\n- self._ewa_cost_min = None\n- self._no_improvement = 0\n-\n- batches = gen_batches(n_samples, self._batch_size)\n- batches = itertools.cycle(batches)\n- n_steps_per_iter = int(np.ceil(n_samples / self._batch_size))\n- n_steps = max_iter * n_steps_per_iter\n-\n- i = -1 # to allow max_iter = 0\n-\n- for i, batch in zip(range(n_steps), batches):\n- X_batch = X_train[batch]\n-\n- batch_cost = self._minibatch_step(\n- X_batch, dictionary, self._random_state, i\n- )\n-\n- if self._check_convergence(\n- X_batch, batch_cost, dictionary, old_dict, n_samples, i, n_steps\n- ):\n- break\n-\n- # XXX callback param added for backward compat in #18975 but a common\n- # unified callback API should be preferred\n- if self.callback is not None:\n- self.callback(locals())\n-\n- old_dict[:] = dictionary\n-\n- self.n_steps_ = i + 1\n- self.n_iter_ = np.ceil(self.n_steps_ / n_steps_per_iter)\n- self.components_ = dictionary\n-\n- return self\n \n @_fit_context(prefer_skip_nested_validation=True)\n def partial_fit(self, X, y=None):\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/decomposition/_dict_learning.py.\nHere is the description for the function:\n def fit(self, X, y=None):\n \"\"\"Fit the model from data in X.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n Training vector, where `n_samples` is the number of samples\n and `n_features` is the number of features.\n\n y : Ignored\n Not used, present for API consistency by convention.\n\n Returns\n -------\n self : object\n Returns the instance itself.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_online_shapes", "sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_online_lars_positive_parameter", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_positivity[False-False-lasso_lars]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_positivity[False-False-lasso_cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_positivity[False-False-threshold]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_positivity[False-True-lasso_lars]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_positivity[False-True-lasso_cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_positivity[False-True-threshold]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_positivity[True-False-lasso_lars]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_positivity[True-False-lasso_cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_positivity[True-False-threshold]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_positivity[True-True-lasso_lars]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_positivity[True-True-lasso_cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_positivity[True-True-threshold]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_lars[False]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_lars[True]", "sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_online_positivity[False-False]", "sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_online_positivity[False-True]", "sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_online_positivity[True-False]", "sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_online_positivity[True-True]", "sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_online_verbosity", "sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_online_estimator_shapes", "sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_online_overcomplete", "sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_online_initialization", "sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_online_readonly_initialization", "sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_online_partial_fit", "sklearn/tests/test_public_functions.py::test_class_wrapper_param_validation[sklearn.decomposition.dict_learning_online-sklearn.decomposition.MiniBatchDictionaryLearning]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[float32-float32-lasso_lars-lars]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[float32-float32-lasso_lars-cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[float32-float32-lasso_cd-lars]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[float32-float32-lasso_cd-cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[float32-float32-lars-lars]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[float32-float32-lars-cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[float32-float32-threshold-lars]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[float32-float32-threshold-cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[float32-float32-omp-lars]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[float32-float32-omp-cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[float64-float64-lasso_lars-lars]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[float64-float64-lasso_lars-cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[float64-float64-lasso_cd-lars]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[float64-float64-lasso_cd-cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[float64-float64-lars-lars]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[float64-float64-lars-cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[float64-float64-threshold-lars]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[float64-float64-threshold-cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[float64-float64-omp-lars]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[float64-float64-omp-cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[int32-float64-lasso_lars-lars]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[int32-float64-lasso_lars-cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[int32-float64-lasso_cd-lars]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[int32-float64-lasso_cd-cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[int32-float64-lars-lars]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[int32-float64-lars-cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[int32-float64-threshold-lars]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[int32-float64-threshold-cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[int32-float64-omp-lars]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[int32-float64-omp-cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[int64-float64-lasso_lars-lars]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[int64-float64-lasso_lars-cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[int64-float64-lasso_cd-lars]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[int64-float64-lasso_cd-cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[int64-float64-lars-lars]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[int64-float64-lars-cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[int64-float64-threshold-lars]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[int64-float64-threshold-cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[int64-float64-omp-lars]", "sklearn/decomposition/tests/test_dict_learning.py::test_minibatch_dictionary_learning_dtype_match[int64-float64-omp-cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_online_dtype_match[float32-float32-lars]", "sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_online_dtype_match[float32-float32-cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_online_dtype_match[float64-float64-lars]", "sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_online_dtype_match[float64-float64-cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_online_dtype_match[int32-float64-lars]", "sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_online_dtype_match[int32-float64-cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_online_dtype_match[int64-float64-lars]", "sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_online_dtype_match[int64-float64-cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_online_numerical_consistency[lars]", "sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_online_numerical_consistency[cd]", "sklearn/decomposition/tests/test_dict_learning.py::test_get_feature_names_out[MiniBatchDictionaryLearning]", "sklearn/decomposition/tests/test_dict_learning.py::test_xxx", "sklearn/decomposition/tests/test_sparse_pca.py::test_mini_batch_correct_shapes", "sklearn/decomposition/tests/test_sparse_pca.py::test_spca_n_components_[None-MiniBatchSparsePCA]", "sklearn/decomposition/tests/test_sparse_pca.py::test_spca_n_components_[3-MiniBatchSparsePCA]", "sklearn/decomposition/tests/test_sparse_pca.py::test_sparse_pca_dtype_match[float32-float32-lars-MiniBatchSparsePCA]", "sklearn/decomposition/tests/test_sparse_pca.py::test_sparse_pca_dtype_match[float32-float32-cd-MiniBatchSparsePCA]", "sklearn/decomposition/tests/test_sparse_pca.py::test_sparse_pca_dtype_match[float64-float64-lars-MiniBatchSparsePCA]", "sklearn/decomposition/tests/test_sparse_pca.py::test_sparse_pca_dtype_match[float64-float64-cd-MiniBatchSparsePCA]", "sklearn/decomposition/tests/test_sparse_pca.py::test_sparse_pca_dtype_match[int32-float64-lars-MiniBatchSparsePCA]", "sklearn/decomposition/tests/test_sparse_pca.py::test_sparse_pca_dtype_match[int32-float64-cd-MiniBatchSparsePCA]", "sklearn/decomposition/tests/test_sparse_pca.py::test_sparse_pca_dtype_match[int64-float64-lars-MiniBatchSparsePCA]", "sklearn/decomposition/tests/test_sparse_pca.py::test_sparse_pca_dtype_match[int64-float64-cd-MiniBatchSparsePCA]", "sklearn/decomposition/tests/test_sparse_pca.py::test_sparse_pca_numerical_consistency[lars-MiniBatchSparsePCA]", "sklearn/decomposition/tests/test_sparse_pca.py::test_sparse_pca_numerical_consistency[cd-MiniBatchSparsePCA]", "sklearn/decomposition/tests/test_sparse_pca.py::test_spca_feature_names_out[MiniBatchSparsePCA]", "sklearn/decomposition/tests/test_sparse_pca.py::test_spca_max_iter_None_deprecation", "sklearn/decomposition/tests/test_sparse_pca.py::test_spca_early_stopping[42]", "sklearn/decomposition/tests/test_sparse_pca.py::test_transform_inverse_transform_round_trip[MiniBatchSparsePCA]", "sklearn/decomposition/_dict_learning.py::sklearn.decomposition._dict_learning.MiniBatchDictionaryLearning", "sklearn/decomposition/_sparse_pca.py::sklearn.decomposition._sparse_pca.MiniBatchSparsePCA", "sklearn/decomposition/_dict_learning.py::sklearn.decomposition._dict_learning.dict_learning_online", "sklearn/tests/test_common.py::test_estimators[MiniBatchDictionaryLearning(batch_size=10,max_iter=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[MiniBatchDictionaryLearning(batch_size=10,max_iter=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[MiniBatchDictionaryLearning(batch_size=10,max_iter=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[MiniBatchDictionaryLearning(batch_size=10,max_iter=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[MiniBatchDictionaryLearning(batch_size=10,max_iter=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[MiniBatchDictionaryLearning(batch_size=10,max_iter=5)-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[MiniBatchDictionaryLearning(batch_size=10,max_iter=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[MiniBatchDictionaryLearning(batch_size=10,max_iter=5)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[MiniBatchDictionaryLearning(batch_size=10,max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[MiniBatchDictionaryLearning(batch_size=10,max_iter=5)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[MiniBatchDictionaryLearning(batch_size=10,max_iter=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[MiniBatchDictionaryLearning(batch_size=10,max_iter=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[MiniBatchDictionaryLearning(batch_size=10,max_iter=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[MiniBatchDictionaryLearning(batch_size=10,max_iter=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[MiniBatchDictionaryLearning(batch_size=10,max_iter=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[MiniBatchDictionaryLearning(batch_size=10,max_iter=5)-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[MiniBatchDictionaryLearning(batch_size=10,max_iter=5)-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[MiniBatchDictionaryLearning(batch_size=10,max_iter=5)-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[MiniBatchDictionaryLearning(batch_size=10,max_iter=5)-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[MiniBatchDictionaryLearning(batch_size=10,max_iter=5)-check_transformer_n_iter]", "sklearn/tests/test_common.py::test_estimators[MiniBatchDictionaryLearning(batch_size=10,max_iter=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[MiniBatchDictionaryLearning(batch_size=10,max_iter=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[MiniBatchDictionaryLearning(batch_size=10,max_iter=5)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[MiniBatchDictionaryLearning(batch_size=10,max_iter=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[MiniBatchDictionaryLearning(batch_size=10,max_iter=5,n_components=1)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[MiniBatchDictionaryLearning(batch_size=10,max_iter=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[MiniBatchDictionaryLearning(batch_size=10,max_iter=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[MiniBatchDictionaryLearning(batch_size=10,max_iter=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[MiniBatchDictionaryLearning(batch_size=10,max_iter=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[MiniBatchDictionaryLearning(batch_size=10,max_iter=5)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[MiniBatchDictionaryLearning(batch_size=10,max_iter=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[MiniBatchSparsePCA(batch_size=10,max_iter=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[MiniBatchSparsePCA(batch_size=10,max_iter=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[MiniBatchSparsePCA(batch_size=10,max_iter=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[MiniBatchSparsePCA(batch_size=10,max_iter=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[MiniBatchSparsePCA(batch_size=10,max_iter=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[MiniBatchSparsePCA(batch_size=10,max_iter=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[MiniBatchSparsePCA(batch_size=10,max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[MiniBatchSparsePCA(batch_size=10,max_iter=5)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[MiniBatchSparsePCA(batch_size=10,max_iter=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[MiniBatchSparsePCA(batch_size=10,max_iter=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[MiniBatchSparsePCA(batch_size=10,max_iter=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[MiniBatchSparsePCA(batch_size=10,max_iter=5)-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[MiniBatchSparsePCA(batch_size=10,max_iter=5)-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[MiniBatchSparsePCA(batch_size=10,max_iter=5)-check_transformer_preserve_dtypes]", "sklearn/tests/test_common.py::test_estimators[MiniBatchSparsePCA(batch_size=10,max_iter=5)-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[MiniBatchSparsePCA(batch_size=10,max_iter=5)-check_transformer_n_iter]", "sklearn/tests/test_common.py::test_estimators[MiniBatchSparsePCA(batch_size=10,max_iter=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[MiniBatchSparsePCA(batch_size=10,max_iter=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[MiniBatchSparsePCA(batch_size=10,max_iter=5)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[MiniBatchSparsePCA(batch_size=10,max_iter=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[MiniBatchSparsePCA(batch_size=10,max_iter=5,n_components=1)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[MiniBatchSparsePCA(batch_size=10,max_iter=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[MiniBatchSparsePCA(batch_size=10,max_iter=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[MiniBatchSparsePCA(batch_size=10,max_iter=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[MiniBatchSparsePCA(batch_size=10,max_iter=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[MiniBatchSparsePCA(batch_size=10,max_iter=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[MiniBatchDictionaryLearning(batch_size=10,max_iter=5)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[MiniBatchSparsePCA(batch_size=10,max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[MiniBatchDictionaryLearning(batch_size=10,max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[MiniBatchSparsePCA(batch_size=10,max_iter=5)]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[MiniBatchDictionaryLearning(batch_size=10,max_iter=5)]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[MiniBatchSparsePCA(batch_size=10,max_iter=5)]", "sklearn/tests/test_common.py::test_check_param_validation[MiniBatchDictionaryLearning(batch_size=10,max_iter=5)]", "sklearn/tests/test_common.py::test_set_output_transform[MiniBatchDictionaryLearning(batch_size=10,max_iter=5)]", "sklearn/tests/test_common.py::test_set_output_transform[MiniBatchSparsePCA(batch_size=10,max_iter=5)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-MiniBatchDictionaryLearning(batch_size=10,max_iter=5)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-MiniBatchSparsePCA(batch_size=10,max_iter=5)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-MiniBatchDictionaryLearning(batch_size=10,max_iter=5)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-MiniBatchSparsePCA(batch_size=10,max_iter=5)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-113
1.0
{ "code": "diff --git b/sklearn/decomposition/_dict_learning.py a/sklearn/decomposition/_dict_learning.py\nindex 3c558cdb4..2d916dac1 100644\n--- b/sklearn/decomposition/_dict_learning.py\n+++ a/sklearn/decomposition/_dict_learning.py\n@@ -2252,6 +2252,7 @@ class MiniBatchDictionaryLearning(_BaseSparseCoding, BaseEstimator):\n \n return self\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def partial_fit(self, X, y=None):\n \"\"\"Update the model using the data in X as a mini-batch.\n \n@@ -2269,6 +2270,32 @@ class MiniBatchDictionaryLearning(_BaseSparseCoding, BaseEstimator):\n self : object\n Return the instance itself.\n \"\"\"\n+ has_components = hasattr(self, \"components_\")\n+\n+ X = validate_data(\n+ self, X, dtype=[np.float64, np.float32], order=\"C\", reset=not has_components\n+ )\n+\n+ if not has_components:\n+ # This instance has not been fitted yet (fit or partial_fit)\n+ self._check_params(X)\n+ self._random_state = check_random_state(self.random_state)\n+\n+ dictionary = self._initialize_dict(X, self._random_state)\n+\n+ self.n_steps_ = 0\n+\n+ self._A = np.zeros((self._n_components, self._n_components), dtype=X.dtype)\n+ self._B = np.zeros((X.shape[1], self._n_components), dtype=X.dtype)\n+ else:\n+ dictionary = self.components_\n+\n+ self._minibatch_step(X, dictionary, self._random_state, self.n_steps_)\n+\n+ self.components_ = dictionary\n+ self.n_steps_ += 1\n+\n+ return self\n \n @property\n def _n_features_out(self):\n", "test": null }
null
{ "code": "diff --git a/sklearn/decomposition/_dict_learning.py b/sklearn/decomposition/_dict_learning.py\nindex 2d916dac1..3c558cdb4 100644\n--- a/sklearn/decomposition/_dict_learning.py\n+++ b/sklearn/decomposition/_dict_learning.py\n@@ -2252,7 +2252,6 @@ class MiniBatchDictionaryLearning(_BaseSparseCoding, BaseEstimator):\n \n return self\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def partial_fit(self, X, y=None):\n \"\"\"Update the model using the data in X as a mini-batch.\n \n@@ -2270,32 +2269,6 @@ class MiniBatchDictionaryLearning(_BaseSparseCoding, BaseEstimator):\n self : object\n Return the instance itself.\n \"\"\"\n- has_components = hasattr(self, \"components_\")\n-\n- X = validate_data(\n- self, X, dtype=[np.float64, np.float32], order=\"C\", reset=not has_components\n- )\n-\n- if not has_components:\n- # This instance has not been fitted yet (fit or partial_fit)\n- self._check_params(X)\n- self._random_state = check_random_state(self.random_state)\n-\n- dictionary = self._initialize_dict(X, self._random_state)\n-\n- self.n_steps_ = 0\n-\n- self._A = np.zeros((self._n_components, self._n_components), dtype=X.dtype)\n- self._B = np.zeros((X.shape[1], self._n_components), dtype=X.dtype)\n- else:\n- dictionary = self.components_\n-\n- self._minibatch_step(X, dictionary, self._random_state, self.n_steps_)\n-\n- self.components_ = dictionary\n- self.n_steps_ += 1\n-\n- return self\n \n @property\n def _n_features_out(self):\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/decomposition/_dict_learning.py.\nHere is the description for the function:\n def partial_fit(self, X, y=None):\n \"\"\"Update the model using the data in X as a mini-batch.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n Training vector, where `n_samples` is the number of samples\n and `n_features` is the number of features.\n\n y : Ignored\n Not used, present for API consistency by convention.\n\n Returns\n -------\n self : object\n Return the instance itself.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/decomposition/tests/test_dict_learning.py::test_dict_learning_online_partial_fit", "sklearn/tests/test_common.py::test_estimators[MiniBatchDictionaryLearning(batch_size=10,max_iter=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[MiniBatchDictionaryLearning(batch_size=10,max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[MiniBatchDictionaryLearning(batch_size=10,max_iter=5)]", "sklearn/tests/test_common.py::test_check_param_validation[MiniBatchDictionaryLearning(batch_size=10,max_iter=5)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-114
1.0
{ "code": "diff --git b/sklearn/cluster/_kmeans.py a/sklearn/cluster/_kmeans.py\nindex 82be1e02e..ef7b910e1 100644\n--- b/sklearn/cluster/_kmeans.py\n+++ a/sklearn/cluster/_kmeans.py\n@@ -2037,6 +2037,7 @@ class MiniBatchKMeans(_BaseKMeans):\n return True\n return False\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None, sample_weight=None):\n \"\"\"Compute the centroids on X by chunking it into mini-batches.\n \n@@ -2064,6 +2065,134 @@ class MiniBatchKMeans(_BaseKMeans):\n self : object\n Fitted estimator.\n \"\"\"\n+ X = validate_data(\n+ self,\n+ X,\n+ accept_sparse=\"csr\",\n+ dtype=[np.float64, np.float32],\n+ order=\"C\",\n+ accept_large_sparse=False,\n+ )\n+\n+ self._check_params_vs_input(X)\n+ random_state = check_random_state(self.random_state)\n+ sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)\n+ self._n_threads = _openmp_effective_n_threads()\n+ n_samples, n_features = X.shape\n+\n+ # Validate init array\n+ init = self.init\n+ if _is_arraylike_not_scalar(init):\n+ init = check_array(init, dtype=X.dtype, copy=True, order=\"C\")\n+ self._validate_center_shape(X, init)\n+\n+ self._check_mkl_vcomp(X, self._batch_size)\n+\n+ # precompute squared norms of data points\n+ x_squared_norms = row_norms(X, squared=True)\n+\n+ # Validation set for the init\n+ validation_indices = random_state.randint(0, n_samples, self._init_size)\n+ X_valid = X[validation_indices]\n+ sample_weight_valid = sample_weight[validation_indices]\n+\n+ # perform several inits with random subsets\n+ best_inertia = None\n+ for init_idx in range(self._n_init):\n+ if self.verbose:\n+ print(f\"Init {init_idx + 1}/{self._n_init} with method {init}\")\n+\n+ # Initialize the centers using only a fraction of the data as we\n+ # expect n_samples to be very large when using MiniBatchKMeans.\n+ cluster_centers = self._init_centroids(\n+ X,\n+ x_squared_norms=x_squared_norms,\n+ init=init,\n+ random_state=random_state,\n+ init_size=self._init_size,\n+ sample_weight=sample_weight,\n+ )\n+\n+ # Compute inertia on a validation set.\n+ _, inertia = _labels_inertia_threadpool_limit(\n+ X_valid,\n+ sample_weight_valid,\n+ cluster_centers,\n+ n_threads=self._n_threads,\n+ )\n+\n+ if self.verbose:\n+ print(f\"Inertia for init {init_idx + 1}/{self._n_init}: {inertia}\")\n+ if best_inertia is None or inertia < best_inertia:\n+ init_centers = cluster_centers\n+ best_inertia = inertia\n+\n+ centers = init_centers\n+ centers_new = np.empty_like(centers)\n+\n+ # Initialize counts\n+ self._counts = np.zeros(self.n_clusters, dtype=X.dtype)\n+\n+ # Attributes to monitor the convergence\n+ self._ewa_inertia = None\n+ self._ewa_inertia_min = None\n+ self._no_improvement = 0\n+\n+ # Initialize number of samples seen since last reassignment\n+ self._n_since_last_reassign = 0\n+\n+ n_steps = (self.max_iter * n_samples) // self._batch_size\n+\n+ with _get_threadpool_controller().limit(limits=1, user_api=\"blas\"):\n+ # Perform the iterative optimization until convergence\n+ for i in range(n_steps):\n+ # Sample a minibatch from the full dataset\n+ minibatch_indices = random_state.randint(0, n_samples, self._batch_size)\n+\n+ # Perform the actual update step on the minibatch data\n+ batch_inertia = _mini_batch_step(\n+ X=X[minibatch_indices],\n+ sample_weight=sample_weight[minibatch_indices],\n+ centers=centers,\n+ centers_new=centers_new,\n+ weight_sums=self._counts,\n+ random_state=random_state,\n+ random_reassign=self._random_reassign(),\n+ reassignment_ratio=self.reassignment_ratio,\n+ verbose=self.verbose,\n+ n_threads=self._n_threads,\n+ )\n+\n+ if self._tol > 0.0:\n+ centers_squared_diff = np.sum((centers_new - centers) ** 2)\n+ else:\n+ centers_squared_diff = 0\n+\n+ centers, centers_new = centers_new, centers\n+\n+ # Monitor convergence and do early stopping if necessary\n+ if self._mini_batch_convergence(\n+ i, n_steps, n_samples, centers_squared_diff, batch_inertia\n+ ):\n+ break\n+\n+ self.cluster_centers_ = centers\n+ self._n_features_out = self.cluster_centers_.shape[0]\n+\n+ self.n_steps_ = i + 1\n+ self.n_iter_ = int(np.ceil(((i + 1) * self._batch_size) / n_samples))\n+\n+ if self.compute_labels:\n+ self.labels_, self.inertia_ = _labels_inertia_threadpool_limit(\n+ X,\n+ sample_weight,\n+ self.cluster_centers_,\n+ n_threads=self._n_threads,\n+ )\n+ else:\n+ self.inertia_ = self._ewa_inertia * n_samples\n+\n+ return self\n \n @_fit_context(prefer_skip_nested_validation=True)\n def partial_fit(self, X, y=None, sample_weight=None):\n", "test": null }
null
{ "code": "diff --git a/sklearn/cluster/_kmeans.py b/sklearn/cluster/_kmeans.py\nindex ef7b910e1..82be1e02e 100644\n--- a/sklearn/cluster/_kmeans.py\n+++ b/sklearn/cluster/_kmeans.py\n@@ -2037,7 +2037,6 @@ class MiniBatchKMeans(_BaseKMeans):\n return True\n return False\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y=None, sample_weight=None):\n \"\"\"Compute the centroids on X by chunking it into mini-batches.\n \n@@ -2065,134 +2064,6 @@ class MiniBatchKMeans(_BaseKMeans):\n self : object\n Fitted estimator.\n \"\"\"\n- X = validate_data(\n- self,\n- X,\n- accept_sparse=\"csr\",\n- dtype=[np.float64, np.float32],\n- order=\"C\",\n- accept_large_sparse=False,\n- )\n-\n- self._check_params_vs_input(X)\n- random_state = check_random_state(self.random_state)\n- sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)\n- self._n_threads = _openmp_effective_n_threads()\n- n_samples, n_features = X.shape\n-\n- # Validate init array\n- init = self.init\n- if _is_arraylike_not_scalar(init):\n- init = check_array(init, dtype=X.dtype, copy=True, order=\"C\")\n- self._validate_center_shape(X, init)\n-\n- self._check_mkl_vcomp(X, self._batch_size)\n-\n- # precompute squared norms of data points\n- x_squared_norms = row_norms(X, squared=True)\n-\n- # Validation set for the init\n- validation_indices = random_state.randint(0, n_samples, self._init_size)\n- X_valid = X[validation_indices]\n- sample_weight_valid = sample_weight[validation_indices]\n-\n- # perform several inits with random subsets\n- best_inertia = None\n- for init_idx in range(self._n_init):\n- if self.verbose:\n- print(f\"Init {init_idx + 1}/{self._n_init} with method {init}\")\n-\n- # Initialize the centers using only a fraction of the data as we\n- # expect n_samples to be very large when using MiniBatchKMeans.\n- cluster_centers = self._init_centroids(\n- X,\n- x_squared_norms=x_squared_norms,\n- init=init,\n- random_state=random_state,\n- init_size=self._init_size,\n- sample_weight=sample_weight,\n- )\n-\n- # Compute inertia on a validation set.\n- _, inertia = _labels_inertia_threadpool_limit(\n- X_valid,\n- sample_weight_valid,\n- cluster_centers,\n- n_threads=self._n_threads,\n- )\n-\n- if self.verbose:\n- print(f\"Inertia for init {init_idx + 1}/{self._n_init}: {inertia}\")\n- if best_inertia is None or inertia < best_inertia:\n- init_centers = cluster_centers\n- best_inertia = inertia\n-\n- centers = init_centers\n- centers_new = np.empty_like(centers)\n-\n- # Initialize counts\n- self._counts = np.zeros(self.n_clusters, dtype=X.dtype)\n-\n- # Attributes to monitor the convergence\n- self._ewa_inertia = None\n- self._ewa_inertia_min = None\n- self._no_improvement = 0\n-\n- # Initialize number of samples seen since last reassignment\n- self._n_since_last_reassign = 0\n-\n- n_steps = (self.max_iter * n_samples) // self._batch_size\n-\n- with _get_threadpool_controller().limit(limits=1, user_api=\"blas\"):\n- # Perform the iterative optimization until convergence\n- for i in range(n_steps):\n- # Sample a minibatch from the full dataset\n- minibatch_indices = random_state.randint(0, n_samples, self._batch_size)\n-\n- # Perform the actual update step on the minibatch data\n- batch_inertia = _mini_batch_step(\n- X=X[minibatch_indices],\n- sample_weight=sample_weight[minibatch_indices],\n- centers=centers,\n- centers_new=centers_new,\n- weight_sums=self._counts,\n- random_state=random_state,\n- random_reassign=self._random_reassign(),\n- reassignment_ratio=self.reassignment_ratio,\n- verbose=self.verbose,\n- n_threads=self._n_threads,\n- )\n-\n- if self._tol > 0.0:\n- centers_squared_diff = np.sum((centers_new - centers) ** 2)\n- else:\n- centers_squared_diff = 0\n-\n- centers, centers_new = centers_new, centers\n-\n- # Monitor convergence and do early stopping if necessary\n- if self._mini_batch_convergence(\n- i, n_steps, n_samples, centers_squared_diff, batch_inertia\n- ):\n- break\n-\n- self.cluster_centers_ = centers\n- self._n_features_out = self.cluster_centers_.shape[0]\n-\n- self.n_steps_ = i + 1\n- self.n_iter_ = int(np.ceil(((i + 1) * self._batch_size) / n_samples))\n-\n- if self.compute_labels:\n- self.labels_, self.inertia_ = _labels_inertia_threadpool_limit(\n- X,\n- sample_weight,\n- self.cluster_centers_,\n- n_threads=self._n_threads,\n- )\n- else:\n- self.inertia_ = self._ewa_inertia * n_samples\n-\n- return self\n \n @_fit_context(prefer_skip_nested_validation=True)\n def partial_fit(self, X, y=None, sample_weight=None):\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/cluster/_kmeans.py.\nHere is the description for the function:\n def fit(self, X, y=None, sample_weight=None):\n \"\"\"Compute the centroids on X by chunking it into mini-batches.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n Training instances to cluster. It must be noted that the data\n will be converted to C ordering, which will cause a memory copy\n if the given data is not C-contiguous.\n If a sparse matrix is passed, a copy will be made if it's not in\n CSR format.\n\n y : Ignored\n Not used, present here for API consistency by convention.\n\n sample_weight : array-like of shape (n_samples,), default=None\n The weights for each observation in X. If None, all observations\n are assigned equal weight. `sample_weight` is not used during\n initialization if `init` is a callable or a user provided array.\n\n .. versionadded:: 0.20\n\n Returns\n -------\n self : object\n Fitted estimator.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/cluster/tests/test_k_means.py::test_all_init[MiniBatchKMeans-random-dense]", "sklearn/cluster/tests/test_k_means.py::test_all_init[MiniBatchKMeans-random-sparse_matrix]", "sklearn/cluster/tests/test_k_means.py::test_all_init[MiniBatchKMeans-random-sparse_array]", "sklearn/cluster/tests/test_k_means.py::test_all_init[MiniBatchKMeans-k-means++-dense]", "sklearn/cluster/tests/test_k_means.py::test_all_init[MiniBatchKMeans-k-means++-sparse_matrix]", "sklearn/cluster/tests/test_k_means.py::test_all_init[MiniBatchKMeans-k-means++-sparse_array]", "sklearn/cluster/tests/test_k_means.py::test_all_init[MiniBatchKMeans-ndarray-dense]", "sklearn/cluster/tests/test_k_means.py::test_all_init[MiniBatchKMeans-ndarray-sparse_matrix]", "sklearn/cluster/tests/test_k_means.py::test_all_init[MiniBatchKMeans-ndarray-sparse_array]", "sklearn/cluster/tests/test_k_means.py::test_all_init[MiniBatchKMeans-callable-dense]", "sklearn/cluster/tests/test_k_means.py::test_all_init[MiniBatchKMeans-callable-sparse_matrix]", "sklearn/cluster/tests/test_k_means.py::test_all_init[MiniBatchKMeans-callable-sparse_array]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_init_auto_with_initial_centroids[MiniBatchKMeans-k-means++-1]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_init_auto_with_initial_centroids[MiniBatchKMeans-random-default]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_init_auto_with_initial_centroids[MiniBatchKMeans-<lambda>-default]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_init_auto_with_initial_centroids[MiniBatchKMeans-array-like-1]", "sklearn/cluster/tests/test_k_means.py::test_fortran_aligned_data[42-MiniBatchKMeans]", "sklearn/cluster/tests/test_k_means.py::test_minibatch_kmeans_verbose", "sklearn/cluster/tests/test_k_means.py::test_minibatch_kmeans_warning_init_size", "sklearn/cluster/tests/test_k_means.py::test_warning_n_init_precomputed_centers[MiniBatchKMeans]", "sklearn/cluster/tests/test_k_means.py::test_minibatch_sensible_reassign[42]", "sklearn/cluster/tests/test_k_means.py::test_minibatch_with_many_reassignments", "sklearn/cluster/tests/test_k_means.py::test_minibatch_kmeans_init_size", "sklearn/cluster/tests/test_k_means.py::test_minibatch_declared_convergence[0.0001-None]", "sklearn/cluster/tests/test_k_means.py::test_minibatch_declared_convergence[0-10]", "sklearn/cluster/tests/test_k_means.py::test_minibatch_iter_steps", "sklearn/cluster/tests/test_k_means.py::test_score_max_iter[42-MiniBatchKMeans]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_predict[float64-42-2-MiniBatchKMeans-None-dense]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_predict[float64-42-2-MiniBatchKMeans-None-sparse_matrix]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_predict[float64-42-2-MiniBatchKMeans-None-sparse_array]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_predict[float64-42-100-MiniBatchKMeans-None-dense]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_predict[float64-42-100-MiniBatchKMeans-None-sparse_matrix]", "sklearn/cluster/tests/test_k_means.py::test_kmeans_predict[float64-42-100-MiniBatchKMeans-None-sparse_array]", "sklearn/cluster/tests/test_k_means.py::test_dense_sparse[42-MiniBatchKMeans-X_csr0]", "sklearn/cluster/tests/test_k_means.py::test_dense_sparse[42-MiniBatchKMeans-X_csr1]", "sklearn/cluster/tests/test_k_means.py::test_predict_dense_sparse[MiniBatchKMeans-random-X_csr0]", "sklearn/cluster/tests/test_k_means.py::test_predict_dense_sparse[MiniBatchKMeans-random-X_csr1]", "sklearn/cluster/tests/test_k_means.py::test_predict_dense_sparse[MiniBatchKMeans-k-means++-X_csr0]", "sklearn/cluster/tests/test_k_means.py::test_predict_dense_sparse[MiniBatchKMeans-k-means++-X_csr1]", "sklearn/cluster/tests/test_k_means.py::test_predict_dense_sparse[MiniBatchKMeans-ndarray-X_csr0]", "sklearn/cluster/tests/test_k_means.py::test_predict_dense_sparse[MiniBatchKMeans-ndarray-X_csr1]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-MiniBatchKMeans-k-means++-int32-dense]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-MiniBatchKMeans-k-means++-int32-sparse_matrix]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-MiniBatchKMeans-k-means++-int32-sparse_array]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-MiniBatchKMeans-k-means++-int64-dense]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-MiniBatchKMeans-k-means++-int64-sparse_matrix]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-MiniBatchKMeans-k-means++-int64-sparse_array]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-MiniBatchKMeans-ndarray-int32-dense]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-MiniBatchKMeans-ndarray-int32-sparse_matrix]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-MiniBatchKMeans-ndarray-int32-sparse_array]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-MiniBatchKMeans-ndarray-int64-dense]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-MiniBatchKMeans-ndarray-int64-sparse_matrix]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-MiniBatchKMeans-ndarray-int64-sparse_array]", "sklearn/cluster/tests/test_k_means.py::test_transform[42-MiniBatchKMeans]", "sklearn/cluster/tests/test_k_means.py::test_fit_transform[42-MiniBatchKMeans]", "sklearn/cluster/tests/test_k_means.py::test_float_precision[42-MiniBatchKMeans-dense]", "sklearn/cluster/tests/test_k_means.py::test_float_precision[42-MiniBatchKMeans-sparse_matrix]", "sklearn/cluster/tests/test_k_means.py::test_float_precision[42-MiniBatchKMeans-sparse_array]", "sklearn/cluster/tests/test_k_means.py::test_centers_not_mutated[MiniBatchKMeans-int32]", "sklearn/cluster/tests/test_k_means.py::test_centers_not_mutated[MiniBatchKMeans-int64]", "sklearn/cluster/tests/test_k_means.py::test_centers_not_mutated[MiniBatchKMeans-float32]", "sklearn/cluster/tests/test_k_means.py::test_centers_not_mutated[MiniBatchKMeans-float64]", "sklearn/cluster/tests/test_k_means.py::test_unit_weights_vs_no_weights[42-MiniBatchKMeans-dense]", "sklearn/cluster/tests/test_k_means.py::test_unit_weights_vs_no_weights[42-MiniBatchKMeans-sparse_matrix]", "sklearn/cluster/tests/test_k_means.py::test_unit_weights_vs_no_weights[42-MiniBatchKMeans-sparse_array]", "sklearn/cluster/tests/test_k_means.py::test_scaled_weights[42-MiniBatchKMeans-dense]", "sklearn/cluster/tests/test_k_means.py::test_scaled_weights[42-MiniBatchKMeans-sparse_matrix]", "sklearn/cluster/tests/test_k_means.py::test_scaled_weights[42-MiniBatchKMeans-sparse_array]", "sklearn/cluster/tests/test_k_means.py::test_result_equal_in_diff_n_threads[42-MiniBatchKMeans]", "sklearn/cluster/tests/test_k_means.py::test_n_init_auto[MiniBatchKMeans-3]", "sklearn/cluster/tests/test_k_means.py::test_sample_weight_unchanged[MiniBatchKMeans]", "sklearn/cluster/tests/test_k_means.py::test_wrong_params[param0-n_samples.* should be >= n_clusters-MiniBatchKMeans]", "sklearn/cluster/tests/test_k_means.py::test_wrong_params[param1-The shape of the initial centers .* does not match the number of clusters-MiniBatchKMeans]", "sklearn/cluster/tests/test_k_means.py::test_wrong_params[param2-The shape of the initial centers .* does not match the number of clusters-MiniBatchKMeans]", "sklearn/cluster/tests/test_k_means.py::test_wrong_params[param3-The shape of the initial centers .* does not match the number of features of the data-MiniBatchKMeans]", "sklearn/cluster/tests/test_k_means.py::test_wrong_params[param4-The shape of the initial centers .* does not match the number of features of the data-MiniBatchKMeans]", "sklearn/cluster/tests/test_k_means.py::test_feature_names_out[MiniBatchKMeans-fit]", "sklearn/cluster/tests/test_bicluster.py::test_spectral_coclustering[42-csr_matrix]", "sklearn/cluster/tests/test_bicluster.py::test_spectral_coclustering[42-csr_array]", "sklearn/cluster/tests/test_bicluster.py::test_spectral_biclustering[42-csr_matrix]", "sklearn/utils/tests/test_estimator_checks.py::test_check_estimator_clones", "sklearn/cluster/tests/test_bicluster.py::test_spectral_biclustering[42-csr_array]", "sklearn/cluster/_kmeans.py::sklearn.cluster._kmeans.MiniBatchKMeans", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_sample_weights_pandas_series]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_sample_weights_not_an_array]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_sample_weights_list]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_sample_weights_shape]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_sample_weights_not_overwritten]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_transformer_n_iter]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_clusterer_compute_labels_predict]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_clustering]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_clustering(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=1,n_init=2)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_transformers_get_feature_names_out[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_check_param_validation[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_set_output_transform[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-115
1.0
{ "code": "diff --git b/sklearn/cluster/_kmeans.py a/sklearn/cluster/_kmeans.py\nindex 925f185f1..ef7b910e1 100644\n--- b/sklearn/cluster/_kmeans.py\n+++ a/sklearn/cluster/_kmeans.py\n@@ -2194,6 +2194,7 @@ class MiniBatchKMeans(_BaseKMeans):\n \n return self\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def partial_fit(self, X, y=None, sample_weight=None):\n \"\"\"Update k means estimate on a single mini-batch X.\n \n@@ -2219,3 +2220,79 @@ class MiniBatchKMeans(_BaseKMeans):\n self : object\n Return updated estimator.\n \"\"\"\n+ has_centers = hasattr(self, \"cluster_centers_\")\n+\n+ X = validate_data(\n+ self,\n+ X,\n+ accept_sparse=\"csr\",\n+ dtype=[np.float64, np.float32],\n+ order=\"C\",\n+ accept_large_sparse=False,\n+ reset=not has_centers,\n+ )\n+\n+ self._random_state = getattr(\n+ self, \"_random_state\", check_random_state(self.random_state)\n+ )\n+ sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)\n+ self.n_steps_ = getattr(self, \"n_steps_\", 0)\n+\n+ # precompute squared norms of data points\n+ x_squared_norms = row_norms(X, squared=True)\n+\n+ if not has_centers:\n+ # this instance has not been fitted yet (fit or partial_fit)\n+ self._check_params_vs_input(X)\n+ self._n_threads = _openmp_effective_n_threads()\n+\n+ # Validate init array\n+ init = self.init\n+ if _is_arraylike_not_scalar(init):\n+ init = check_array(init, dtype=X.dtype, copy=True, order=\"C\")\n+ self._validate_center_shape(X, init)\n+\n+ self._check_mkl_vcomp(X, X.shape[0])\n+\n+ # initialize the cluster centers\n+ self.cluster_centers_ = self._init_centroids(\n+ X,\n+ x_squared_norms=x_squared_norms,\n+ init=init,\n+ random_state=self._random_state,\n+ init_size=self._init_size,\n+ sample_weight=sample_weight,\n+ )\n+\n+ # Initialize counts\n+ self._counts = np.zeros(self.n_clusters, dtype=X.dtype)\n+\n+ # Initialize number of samples seen since last reassignment\n+ self._n_since_last_reassign = 0\n+\n+ with _get_threadpool_controller().limit(limits=1, user_api=\"blas\"):\n+ _mini_batch_step(\n+ X,\n+ sample_weight=sample_weight,\n+ centers=self.cluster_centers_,\n+ centers_new=self.cluster_centers_,\n+ weight_sums=self._counts,\n+ random_state=self._random_state,\n+ random_reassign=self._random_reassign(),\n+ reassignment_ratio=self.reassignment_ratio,\n+ verbose=self.verbose,\n+ n_threads=self._n_threads,\n+ )\n+\n+ if self.compute_labels:\n+ self.labels_, self.inertia_ = _labels_inertia_threadpool_limit(\n+ X,\n+ sample_weight,\n+ self.cluster_centers_,\n+ n_threads=self._n_threads,\n+ )\n+\n+ self.n_steps_ += 1\n+ self._n_features_out = self.cluster_centers_.shape[0]\n+\n+ return self\n", "test": null }
null
{ "code": "diff --git a/sklearn/cluster/_kmeans.py b/sklearn/cluster/_kmeans.py\nindex ef7b910e1..925f185f1 100644\n--- a/sklearn/cluster/_kmeans.py\n+++ b/sklearn/cluster/_kmeans.py\n@@ -2194,7 +2194,6 @@ class MiniBatchKMeans(_BaseKMeans):\n \n return self\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def partial_fit(self, X, y=None, sample_weight=None):\n \"\"\"Update k means estimate on a single mini-batch X.\n \n@@ -2220,79 +2219,3 @@ class MiniBatchKMeans(_BaseKMeans):\n self : object\n Return updated estimator.\n \"\"\"\n- has_centers = hasattr(self, \"cluster_centers_\")\n-\n- X = validate_data(\n- self,\n- X,\n- accept_sparse=\"csr\",\n- dtype=[np.float64, np.float32],\n- order=\"C\",\n- accept_large_sparse=False,\n- reset=not has_centers,\n- )\n-\n- self._random_state = getattr(\n- self, \"_random_state\", check_random_state(self.random_state)\n- )\n- sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)\n- self.n_steps_ = getattr(self, \"n_steps_\", 0)\n-\n- # precompute squared norms of data points\n- x_squared_norms = row_norms(X, squared=True)\n-\n- if not has_centers:\n- # this instance has not been fitted yet (fit or partial_fit)\n- self._check_params_vs_input(X)\n- self._n_threads = _openmp_effective_n_threads()\n-\n- # Validate init array\n- init = self.init\n- if _is_arraylike_not_scalar(init):\n- init = check_array(init, dtype=X.dtype, copy=True, order=\"C\")\n- self._validate_center_shape(X, init)\n-\n- self._check_mkl_vcomp(X, X.shape[0])\n-\n- # initialize the cluster centers\n- self.cluster_centers_ = self._init_centroids(\n- X,\n- x_squared_norms=x_squared_norms,\n- init=init,\n- random_state=self._random_state,\n- init_size=self._init_size,\n- sample_weight=sample_weight,\n- )\n-\n- # Initialize counts\n- self._counts = np.zeros(self.n_clusters, dtype=X.dtype)\n-\n- # Initialize number of samples seen since last reassignment\n- self._n_since_last_reassign = 0\n-\n- with _get_threadpool_controller().limit(limits=1, user_api=\"blas\"):\n- _mini_batch_step(\n- X,\n- sample_weight=sample_weight,\n- centers=self.cluster_centers_,\n- centers_new=self.cluster_centers_,\n- weight_sums=self._counts,\n- random_state=self._random_state,\n- random_reassign=self._random_reassign(),\n- reassignment_ratio=self.reassignment_ratio,\n- verbose=self.verbose,\n- n_threads=self._n_threads,\n- )\n-\n- if self.compute_labels:\n- self.labels_, self.inertia_ = _labels_inertia_threadpool_limit(\n- X,\n- sample_weight,\n- self.cluster_centers_,\n- n_threads=self._n_threads,\n- )\n-\n- self.n_steps_ += 1\n- self._n_features_out = self.cluster_centers_.shape[0]\n-\n- return self\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/cluster/_kmeans.py.\nHere is the description for the function:\n def partial_fit(self, X, y=None, sample_weight=None):\n \"\"\"Update k means estimate on a single mini-batch X.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n Training instances to cluster. It must be noted that the data\n will be converted to C ordering, which will cause a memory copy\n if the given data is not C-contiguous.\n If a sparse matrix is passed, a copy will be made if it's not in\n CSR format.\n\n y : Ignored\n Not used, present here for API consistency by convention.\n\n sample_weight : array-like of shape (n_samples,), default=None\n The weights for each observation in X. If None, all observations\n are assigned equal weight. `sample_weight` is not used during\n initialization if `init` is a callable or a user provided array.\n\n Returns\n -------\n self : object\n Return updated estimator.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/cluster/tests/test_k_means.py::test_minibatch_kmeans_partial_fit_init[random]", "sklearn/cluster/tests/test_k_means.py::test_minibatch_kmeans_partial_fit_init[k-means++]", "sklearn/cluster/tests/test_k_means.py::test_minibatch_kmeans_partial_fit_init[ndarray]", "sklearn/cluster/tests/test_k_means.py::test_minibatch_kmeans_partial_fit_init[callable]", "sklearn/cluster/tests/test_k_means.py::test_minibatch_sensible_reassign[42]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-MiniBatchKMeans-k-means++-int32-dense]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-MiniBatchKMeans-k-means++-int32-sparse_matrix]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-MiniBatchKMeans-k-means++-int32-sparse_array]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-MiniBatchKMeans-k-means++-int64-dense]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-MiniBatchKMeans-k-means++-int64-sparse_matrix]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-MiniBatchKMeans-k-means++-int64-sparse_array]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-MiniBatchKMeans-ndarray-int32-dense]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-MiniBatchKMeans-ndarray-int32-sparse_matrix]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-MiniBatchKMeans-ndarray-int32-sparse_array]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-MiniBatchKMeans-ndarray-int64-dense]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-MiniBatchKMeans-ndarray-int64-sparse_matrix]", "sklearn/cluster/tests/test_k_means.py::test_integer_input[42-MiniBatchKMeans-ndarray-int64-sparse_array]", "sklearn/cluster/tests/test_k_means.py::test_float_precision[42-MiniBatchKMeans-dense]", "sklearn/cluster/tests/test_k_means.py::test_float_precision[42-MiniBatchKMeans-sparse_matrix]", "sklearn/cluster/tests/test_k_means.py::test_float_precision[42-MiniBatchKMeans-sparse_array]", "sklearn/cluster/tests/test_k_means.py::test_feature_names_out[MiniBatchKMeans-partial_fit]", "sklearn/utils/tests/test_estimator_checks.py::test_check_estimator_clones", "sklearn/cluster/_kmeans.py::sklearn.cluster._kmeans.MiniBatchKMeans", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)-check_estimators_partial_fit_n_features]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)]", "sklearn/tests/test_common.py::test_check_param_validation[MiniBatchKMeans(batch_size=10,max_iter=5,n_clusters=2,n_init=2)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-116
1.0
{ "code": "diff --git b/sklearn/impute/_base.py a/sklearn/impute/_base.py\nindex ee2be9125..aecc235ec 100644\n--- b/sklearn/impute/_base.py\n+++ a/sklearn/impute/_base.py\n@@ -1014,6 +1014,31 @@ class MissingIndicator(TransformerMixin, BaseEstimator):\n The missing indicator for input data. The data type of `Xt`\n will be boolean.\n \"\"\"\n+ check_is_fitted(self)\n+\n+ # Need not validate X again as it would have already been validated\n+ # in the Imputer calling MissingIndicator\n+ if not self._precomputed:\n+ X = self._validate_input(X, in_fit=False)\n+ else:\n+ if not (hasattr(X, \"dtype\") and X.dtype.kind == \"b\"):\n+ raise ValueError(\"precomputed is True but the input data is not a mask\")\n+\n+ imputer_mask, features = self._get_missing_features_info(X)\n+\n+ if self.features == \"missing-only\":\n+ features_diff_fit_trans = np.setdiff1d(features, self.features_)\n+ if self.error_on_new and features_diff_fit_trans.size > 0:\n+ raise ValueError(\n+ \"The features {} have missing values \"\n+ \"in transform but have no missing values \"\n+ \"in fit.\".format(features_diff_fit_trans)\n+ )\n+\n+ if self.features_.size < self._n_features:\n+ imputer_mask = imputer_mask[:, self.features_]\n+\n+ return imputer_mask\n \n @_fit_context(prefer_skip_nested_validation=True)\n def fit_transform(self, X, y=None):\n", "test": null }
null
{ "code": "diff --git a/sklearn/impute/_base.py b/sklearn/impute/_base.py\nindex aecc235ec..ee2be9125 100644\n--- a/sklearn/impute/_base.py\n+++ b/sklearn/impute/_base.py\n@@ -1014,31 +1014,6 @@ class MissingIndicator(TransformerMixin, BaseEstimator):\n The missing indicator for input data. The data type of `Xt`\n will be boolean.\n \"\"\"\n- check_is_fitted(self)\n-\n- # Need not validate X again as it would have already been validated\n- # in the Imputer calling MissingIndicator\n- if not self._precomputed:\n- X = self._validate_input(X, in_fit=False)\n- else:\n- if not (hasattr(X, \"dtype\") and X.dtype.kind == \"b\"):\n- raise ValueError(\"precomputed is True but the input data is not a mask\")\n-\n- imputer_mask, features = self._get_missing_features_info(X)\n-\n- if self.features == \"missing-only\":\n- features_diff_fit_trans = np.setdiff1d(features, self.features_)\n- if self.error_on_new and features_diff_fit_trans.size > 0:\n- raise ValueError(\n- \"The features {} have missing values \"\n- \"in transform but have no missing values \"\n- \"in fit.\".format(features_diff_fit_trans)\n- )\n-\n- if self.features_.size < self._n_features:\n- imputer_mask = imputer_mask[:, self.features_]\n-\n- return imputer_mask\n \n @_fit_context(prefer_skip_nested_validation=True)\n def fit_transform(self, X, y=None):\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/impute/_base.py.\nHere is the description for the function:\n def transform(self, X):\n \"\"\"Generate missing values indicator for `X`.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n The input data to complete.\n\n Returns\n -------\n Xt : {ndarray, sparse matrix} of shape (n_samples, n_features) \\\n or (n_samples, n_features_with_missing)\n The missing indicator for input data. The data type of `Xt`\n will be boolean.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/impute/tests/test_impute.py::test_missing_indicator_error[X_fit0-X_trans0-params0-have missing values in transform but have no missing values in fit]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0-array-0-int32]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0-array-nan-float64]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0-array--1-int32]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0-csc_matrix-nan-float64]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0-csc_matrix--1-int32]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0-csc_array-nan-float64]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0-csc_array--1-int32]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0-csr_matrix-nan-float64]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0-csr_matrix--1-int32]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0-csr_array-nan-float64]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0-csr_array--1-int32]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0-coo_matrix-nan-float64]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0-coo_matrix--1-int32]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0-coo_array-nan-float64]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0-coo_array--1-int32]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0-lil_matrix-nan-float64]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0-lil_matrix--1-int32]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0-lil_array-nan-float64]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0-lil_array--1-int32]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0-bsr_matrix-nan-float64]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0-bsr_matrix--1-int32]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0-bsr_array-nan-float64]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_new[missing-only-3-features_indices0-bsr_array--1-int32]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1-array-0-int32]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1-array-nan-float64]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1-array--1-int32]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1-csc_matrix-nan-float64]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1-csc_matrix--1-int32]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1-csc_array-nan-float64]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1-csc_array--1-int32]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1-csr_matrix-nan-float64]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1-csr_matrix--1-int32]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1-csr_array-nan-float64]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1-csr_array--1-int32]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1-coo_matrix-nan-float64]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1-coo_matrix--1-int32]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1-coo_array-nan-float64]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1-coo_array--1-int32]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1-lil_matrix-nan-float64]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1-lil_matrix--1-int32]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1-lil_array-nan-float64]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1-lil_array--1-int32]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1-bsr_matrix-nan-float64]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1-bsr_matrix--1-int32]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1-bsr_array-nan-float64]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_new[all-3-features_indices1-bsr_array--1-int32]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_raise_on_sparse_with_missing_0[csc_matrix]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_raise_on_sparse_with_missing_0[csc_array]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_raise_on_sparse_with_missing_0[csr_matrix]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_raise_on_sparse_with_missing_0[csr_array]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_raise_on_sparse_with_missing_0[coo_matrix]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_raise_on_sparse_with_missing_0[coo_array]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_raise_on_sparse_with_missing_0[lil_matrix]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_raise_on_sparse_with_missing_0[lil_array]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_raise_on_sparse_with_missing_0[bsr_matrix]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_raise_on_sparse_with_missing_0[bsr_array]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[array-0-True]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[array-0-False]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[array-0-auto]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[csc_matrix-nan-True]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[csc_matrix-nan-False]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[csc_matrix-nan-auto]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[csc_array-nan-True]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[csc_array-nan-False]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[csc_array-nan-auto]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[csr_matrix-nan-True]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[csr_matrix-nan-False]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[csr_matrix-nan-auto]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[csr_array-nan-True]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[csr_array-nan-False]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[csr_array-nan-auto]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[coo_matrix-nan-True]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[coo_matrix-nan-False]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[coo_matrix-nan-auto]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[coo_array-nan-True]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[coo_array-nan-False]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[coo_array-nan-auto]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[lil_matrix-nan-True]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[lil_matrix-nan-False]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[lil_matrix-nan-auto]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[lil_array-nan-True]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[lil_array-nan-False]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[lil_array-nan-auto]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[bsr_matrix-nan-True]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[bsr_matrix-nan-False]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[bsr_matrix-nan-auto]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[bsr_array-nan-True]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[bsr_array-nan-False]", "sklearn/impute/tests/test_impute.py::test_missing_indicator_sparse_param[bsr_array-nan-auto]", "sklearn/impute/tests/test_impute.py::test_simple_imputation_add_indicator_sparse_matrix[csc_matrix]", "sklearn/impute/tests/test_impute.py::test_simple_imputation_add_indicator_sparse_matrix[csc_array]", "sklearn/impute/tests/test_impute.py::test_simple_imputation_add_indicator_sparse_matrix[csr_matrix]", "sklearn/impute/tests/test_impute.py::test_simple_imputation_add_indicator_sparse_matrix[csr_array]", "sklearn/impute/tests/test_impute.py::test_simple_imputation_add_indicator_sparse_matrix[coo_matrix]", "sklearn/impute/tests/test_impute.py::test_simple_imputation_add_indicator_sparse_matrix[coo_array]", "sklearn/impute/tests/test_impute.py::test_simple_imputation_add_indicator_sparse_matrix[lil_matrix]", "sklearn/impute/tests/test_impute.py::test_simple_imputation_add_indicator_sparse_matrix[lil_array]", "sklearn/impute/tests/test_impute.py::test_simple_imputation_add_indicator_sparse_matrix[bsr_matrix]", "sklearn/impute/tests/test_impute.py::test_simple_imputation_add_indicator_sparse_matrix[bsr_array]", "sklearn/impute/tests/test_impute.py::test_simple_imputation_inverse_transform[-1]", "sklearn/impute/tests/test_impute.py::test_simple_imputation_inverse_transform[nan]", "sklearn/impute/tests/test_common.py::test_imputation_missing_value_in_test_array[IterativeImputer]", "sklearn/impute/tests/test_common.py::test_imputation_missing_value_in_test_array[KNNImputer]", "sklearn/impute/tests/test_common.py::test_imputation_missing_value_in_test_array[SimpleImputer]", "sklearn/impute/tests/test_common.py::test_imputers_add_indicator[IterativeImputer-nan]", "sklearn/impute/tests/test_common.py::test_imputers_add_indicator[IterativeImputer--1]", "sklearn/impute/tests/test_common.py::test_imputers_add_indicator[IterativeImputer-0]", "sklearn/impute/tests/test_common.py::test_imputers_add_indicator[KNNImputer-nan]", "sklearn/impute/tests/test_common.py::test_imputers_add_indicator[KNNImputer--1]", "sklearn/impute/tests/test_common.py::test_imputers_add_indicator[KNNImputer-0]", "sklearn/impute/tests/test_common.py::test_imputers_add_indicator[SimpleImputer-nan]", "sklearn/impute/tests/test_common.py::test_imputers_add_indicator[SimpleImputer--1]", "sklearn/impute/tests/test_common.py::test_imputers_add_indicator[SimpleImputer-0]", "sklearn/impute/tests/test_common.py::test_imputers_add_indicator_sparse[csr_matrix-SimpleImputer-nan]", "sklearn/impute/tests/test_common.py::test_imputers_add_indicator_sparse[csr_matrix-SimpleImputer--1]", "sklearn/impute/tests/test_common.py::test_imputers_add_indicator_sparse[csr_array-SimpleImputer-nan]", "sklearn/impute/tests/test_common.py::test_imputers_add_indicator_sparse[csr_array-SimpleImputer--1]", "sklearn/impute/tests/test_common.py::test_imputers_pandas_na_integer_array_support[True-IterativeImputer]", "sklearn/impute/tests/test_common.py::test_imputers_pandas_na_integer_array_support[True-KNNImputer]", "sklearn/impute/tests/test_common.py::test_imputers_pandas_na_integer_array_support[True-SimpleImputer]", "sklearn/impute/tests/test_common.py::test_imputers_feature_names_out_pandas[True-IterativeImputer]", "sklearn/impute/tests/test_common.py::test_imputation_adds_missing_indicator_if_add_indicator_is_true[nan-IterativeImputer]", "sklearn/impute/tests/test_common.py::test_imputation_adds_missing_indicator_if_add_indicator_is_true[nan-KNNImputer]", "sklearn/impute/tests/test_common.py::test_imputation_adds_missing_indicator_if_add_indicator_is_true[nan-SimpleImputer]", "sklearn/impute/tests/test_common.py::test_imputation_adds_missing_indicator_if_add_indicator_is_true[1-IterativeImputer]", "sklearn/impute/tests/test_common.py::test_imputation_adds_missing_indicator_if_add_indicator_is_true[1-KNNImputer]", "sklearn/impute/tests/test_common.py::test_imputation_adds_missing_indicator_if_add_indicator_is_true[1-SimpleImputer]", "sklearn/impute/tests/test_base.py::test_base_no_precomputed_mask_transform", "sklearn/impute/_base.py::sklearn.impute._base.MissingIndicator", "sklearn/tests/test_common.py::test_estimators[MissingIndicator()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[MissingIndicator()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[MissingIndicator()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[MissingIndicator()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[MissingIndicator()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[MissingIndicator()-check_transformer_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[MissingIndicator()-check_transformer_general]", "sklearn/tests/test_common.py::test_estimators[MissingIndicator()-check_transformer_general(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[MissingIndicator()-check_transformers_unfitted]", "sklearn/tests/test_common.py::test_estimators[MissingIndicator()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[MissingIndicator()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[MissingIndicator()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[MissingIndicator()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[MissingIndicator()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[MissingIndicator()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[MissingIndicator()]", "sklearn/tests/test_common.py::test_set_output_transform[MissingIndicator()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_set_output_transform_pandas-MissingIndicator()]", "sklearn/tests/test_common.py::test_set_output_transform_configured[check_global_output_transform_pandas-MissingIndicator()]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-117
1.0
{ "code": "diff --git b/sklearn/preprocessing/_label.py a/sklearn/preprocessing/_label.py\nindex bdf851cd3..345d55556 100644\n--- b/sklearn/preprocessing/_label.py\n+++ a/sklearn/preprocessing/_label.py\n@@ -799,6 +799,7 @@ class MultiLabelBinarizer(TransformerMixin, BaseEstimator, auto_wrap_output_keys\n self.classes_[:] = classes\n return self\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def fit_transform(self, y):\n \"\"\"Fit the label sets binarizer and transform the given label sets.\n \n@@ -816,6 +817,31 @@ class MultiLabelBinarizer(TransformerMixin, BaseEstimator, auto_wrap_output_keys\n is in `y[i]`, and 0 otherwise. Sparse matrix will be of CSR\n format.\n \"\"\"\n+ if self.classes is not None:\n+ return self.fit(y).transform(y)\n+\n+ self._cached_dict = None\n+\n+ # Automatically increment on new class\n+ class_mapping = defaultdict(int)\n+ class_mapping.default_factory = class_mapping.__len__\n+ yt = self._transform(y, class_mapping)\n+\n+ # sort classes and reorder columns\n+ tmp = sorted(class_mapping, key=class_mapping.get)\n+\n+ # (make safe for tuples)\n+ dtype = int if all(isinstance(c, int) for c in tmp) else object\n+ class_mapping = np.empty(len(tmp), dtype=dtype)\n+ class_mapping[:] = tmp\n+ self.classes_, inverse = np.unique(class_mapping, return_inverse=True)\n+ # ensure yt.indices keeps its current dtype\n+ yt.indices = np.asarray(inverse[yt.indices], dtype=yt.indices.dtype)\n+\n+ if not self.sparse_output:\n+ yt = yt.toarray()\n+\n+ return yt\n \n def transform(self, y):\n \"\"\"Transform the given label sets.\n", "test": null }
null
{ "code": "diff --git a/sklearn/preprocessing/_label.py b/sklearn/preprocessing/_label.py\nindex 345d55556..bdf851cd3 100644\n--- a/sklearn/preprocessing/_label.py\n+++ b/sklearn/preprocessing/_label.py\n@@ -799,7 +799,6 @@ class MultiLabelBinarizer(TransformerMixin, BaseEstimator, auto_wrap_output_keys\n self.classes_[:] = classes\n return self\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def fit_transform(self, y):\n \"\"\"Fit the label sets binarizer and transform the given label sets.\n \n@@ -817,31 +816,6 @@ class MultiLabelBinarizer(TransformerMixin, BaseEstimator, auto_wrap_output_keys\n is in `y[i]`, and 0 otherwise. Sparse matrix will be of CSR\n format.\n \"\"\"\n- if self.classes is not None:\n- return self.fit(y).transform(y)\n-\n- self._cached_dict = None\n-\n- # Automatically increment on new class\n- class_mapping = defaultdict(int)\n- class_mapping.default_factory = class_mapping.__len__\n- yt = self._transform(y, class_mapping)\n-\n- # sort classes and reorder columns\n- tmp = sorted(class_mapping, key=class_mapping.get)\n-\n- # (make safe for tuples)\n- dtype = int if all(isinstance(c, int) for c in tmp) else object\n- class_mapping = np.empty(len(tmp), dtype=dtype)\n- class_mapping[:] = tmp\n- self.classes_, inverse = np.unique(class_mapping, return_inverse=True)\n- # ensure yt.indices keeps its current dtype\n- yt.indices = np.asarray(inverse[yt.indices], dtype=yt.indices.dtype)\n-\n- if not self.sparse_output:\n- yt = yt.toarray()\n-\n- return yt\n \n def transform(self, y):\n \"\"\"Transform the given label sets.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/preprocessing/_label.py.\nHere is the description for the function:\n def fit_transform(self, y):\n \"\"\"Fit the label sets binarizer and transform the given label sets.\n\n Parameters\n ----------\n y : iterable of iterables\n A set of labels (any orderable and hashable object) for each\n sample. If the `classes` parameter is set, `y` will not be\n iterated.\n\n Returns\n -------\n y_indicator : {ndarray, sparse matrix} of shape (n_samples, n_classes)\n A matrix such that `y_indicator[i, j] = 1` iff `classes_[j]`\n is in `y[i]`, and 0 otherwise. Sparse matrix will be of CSR\n format.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/preprocessing/tests/test_label.py::test_sparse_output_multilabel_binarizer", "sklearn/preprocessing/tests/test_label.py::test_multilabel_binarizer", "sklearn/preprocessing/tests/test_label.py::test_multilabel_binarizer_empty_sample", "sklearn/preprocessing/tests/test_label.py::test_multilabel_binarizer_given_classes", "sklearn/preprocessing/tests/test_label.py::test_multilabel_binarizer_multiple_calls", "sklearn/preprocessing/tests/test_label.py::test_multilabel_binarizer_same_length_sequence", "sklearn/preprocessing/tests/test_label.py::test_multilabel_binarizer_non_integer_labels", "sklearn/preprocessing/tests/test_label.py::test_multilabel_binarizer_non_unique", "sklearn/preprocessing/tests/test_label.py::test_multilabel_binarizer_inverse_validation", "sklearn/preprocessing/tests/test_label.py::test_label_encoders_do_not_have_set_output[encoder2]", "sklearn/preprocessing/_label.py::sklearn.preprocessing._label.MultiLabelBinarizer", "sklearn/tests/test_common.py::test_check_param_validation[MultiLabelBinarizer()]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-118
1.0
{ "code": "diff --git b/sklearn/preprocessing/_label.py a/sklearn/preprocessing/_label.py\nindex a53aff327..345d55556 100644\n--- b/sklearn/preprocessing/_label.py\n+++ a/sklearn/preprocessing/_label.py\n@@ -929,6 +929,32 @@ class MultiLabelBinarizer(TransformerMixin, BaseEstimator, auto_wrap_output_keys\n The set of labels for each sample such that `y[i]` consists of\n `classes_[j]` for each `yt[i, j] == 1`.\n \"\"\"\n+ check_is_fitted(self)\n+\n+ if yt.shape[1] != len(self.classes_):\n+ raise ValueError(\n+ \"Expected indicator for {0} classes, but got {1}\".format(\n+ len(self.classes_), yt.shape[1]\n+ )\n+ )\n+\n+ if sp.issparse(yt):\n+ yt = yt.tocsr()\n+ if len(yt.data) != 0 and len(np.setdiff1d(yt.data, [0, 1])) > 0:\n+ raise ValueError(\"Expected only 0s and 1s in label indicator.\")\n+ return [\n+ tuple(self.classes_.take(yt.indices[start:end]))\n+ for start, end in zip(yt.indptr[:-1], yt.indptr[1:])\n+ ]\n+ else:\n+ unexpected = np.setdiff1d(yt, [0, 1])\n+ if len(unexpected) > 0:\n+ raise ValueError(\n+ \"Expected only 0s and 1s in label indicator. Also got {0}\".format(\n+ unexpected\n+ )\n+ )\n+ return [tuple(self.classes_.compress(indicators)) for indicators in yt]\n \n def __sklearn_tags__(self):\n tags = super().__sklearn_tags__()\n", "test": null }
null
{ "code": "diff --git a/sklearn/preprocessing/_label.py b/sklearn/preprocessing/_label.py\nindex 345d55556..a53aff327 100644\n--- a/sklearn/preprocessing/_label.py\n+++ b/sklearn/preprocessing/_label.py\n@@ -929,32 +929,6 @@ class MultiLabelBinarizer(TransformerMixin, BaseEstimator, auto_wrap_output_keys\n The set of labels for each sample such that `y[i]` consists of\n `classes_[j]` for each `yt[i, j] == 1`.\n \"\"\"\n- check_is_fitted(self)\n-\n- if yt.shape[1] != len(self.classes_):\n- raise ValueError(\n- \"Expected indicator for {0} classes, but got {1}\".format(\n- len(self.classes_), yt.shape[1]\n- )\n- )\n-\n- if sp.issparse(yt):\n- yt = yt.tocsr()\n- if len(yt.data) != 0 and len(np.setdiff1d(yt.data, [0, 1])) > 0:\n- raise ValueError(\"Expected only 0s and 1s in label indicator.\")\n- return [\n- tuple(self.classes_.take(yt.indices[start:end]))\n- for start, end in zip(yt.indptr[:-1], yt.indptr[1:])\n- ]\n- else:\n- unexpected = np.setdiff1d(yt, [0, 1])\n- if len(unexpected) > 0:\n- raise ValueError(\n- \"Expected only 0s and 1s in label indicator. Also got {0}\".format(\n- unexpected\n- )\n- )\n- return [tuple(self.classes_.compress(indicators)) for indicators in yt]\n \n def __sklearn_tags__(self):\n tags = super().__sklearn_tags__()\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/preprocessing/_label.py.\nHere is the description for the function:\n def inverse_transform(self, yt):\n \"\"\"Transform the given indicator matrix into label sets.\n\n Parameters\n ----------\n yt : {ndarray, sparse matrix} of shape (n_samples, n_classes)\n A matrix containing only 1s ands 0s.\n\n Returns\n -------\n y : list of tuples\n The set of labels for each sample such that `y[i]` consists of\n `classes_[j]` for each `yt[i, j] == 1`.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/preprocessing/tests/test_label.py::test_sparse_output_multilabel_binarizer", "sklearn/preprocessing/tests/test_label.py::test_sparse_output_multilabel_binarizer_errors[csr_matrix]", "sklearn/preprocessing/tests/test_label.py::test_sparse_output_multilabel_binarizer_errors[csr_array]", "sklearn/preprocessing/tests/test_label.py::test_multilabel_binarizer", "sklearn/preprocessing/tests/test_label.py::test_multilabel_binarizer_same_length_sequence", "sklearn/preprocessing/tests/test_label.py::test_multilabel_binarizer_non_integer_labels", "sklearn/preprocessing/tests/test_label.py::test_multilabel_binarizer_inverse_validation" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-119
1.0
{ "code": "diff --git b/sklearn/multioutput.py a/sklearn/multioutput.py\nindex 2e6e646ff..ebcd73e95 100644\n--- b/sklearn/multioutput.py\n+++ a/sklearn/multioutput.py\n@@ -598,6 +598,20 @@ class MultiOutputClassifier(ClassifierMixin, _MultiOutputEstimator):\n scores : float\n Mean accuracy of predicted target versus true target.\n \"\"\"\n+ check_is_fitted(self)\n+ n_outputs_ = len(self.estimators_)\n+ if y.ndim == 1:\n+ raise ValueError(\n+ \"y must have at least two dimensions for \"\n+ \"multi target classification but has only one\"\n+ )\n+ if y.shape[1] != n_outputs_:\n+ raise ValueError(\n+ \"The number of outputs of Y for fit {0} and\"\n+ \" score {1} should be same\".format(n_outputs_, y.shape[1])\n+ )\n+ y_pred = self.predict(X)\n+ return np.mean(np.all(y == y_pred, axis=1))\n \n def __sklearn_tags__(self):\n tags = super().__sklearn_tags__()\n", "test": null }
null
{ "code": "diff --git a/sklearn/multioutput.py b/sklearn/multioutput.py\nindex ebcd73e95..2e6e646ff 100644\n--- a/sklearn/multioutput.py\n+++ b/sklearn/multioutput.py\n@@ -598,20 +598,6 @@ class MultiOutputClassifier(ClassifierMixin, _MultiOutputEstimator):\n scores : float\n Mean accuracy of predicted target versus true target.\n \"\"\"\n- check_is_fitted(self)\n- n_outputs_ = len(self.estimators_)\n- if y.ndim == 1:\n- raise ValueError(\n- \"y must have at least two dimensions for \"\n- \"multi target classification but has only one\"\n- )\n- if y.shape[1] != n_outputs_:\n- raise ValueError(\n- \"The number of outputs of Y for fit {0} and\"\n- \" score {1} should be same\".format(n_outputs_, y.shape[1])\n- )\n- y_pred = self.predict(X)\n- return np.mean(np.all(y == y_pred, axis=1))\n \n def __sklearn_tags__(self):\n tags = super().__sklearn_tags__()\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/multioutput.py.\nHere is the description for the function:\n def score(self, X, y):\n \"\"\"Return the mean accuracy on the given test data and labels.\n\n Parameters\n ----------\n X : array-like of shape (n_samples, n_features)\n Test samples.\n\n y : array-like of shape (n_samples, n_outputs)\n True values for X.\n\n Returns\n -------\n scores : float\n Mean accuracy of predicted target versus true target.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/tests/test_multioutput.py::test_multi_output_exceptions", "sklearn/tests/test_multioutput.py::test_support_missing_values[MultiOutputClassifier-LogisticRegression]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[MultiOutputClassifier(estimator=LogisticRegression(C=1))]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[MultiOutputClassifier(estimator=LogisticRegression(C=1))]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-120
1.0
{ "code": "diff --git b/sklearn/linear_model/_coordinate_descent.py a/sklearn/linear_model/_coordinate_descent.py\nindex 7369ba5fc..61aaf49a1 100644\n--- b/sklearn/linear_model/_coordinate_descent.py\n+++ a/sklearn/linear_model/_coordinate_descent.py\n@@ -2566,6 +2566,7 @@ class MultiTaskElasticNet(Lasso):\n self.random_state = random_state\n self.selection = selection\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y):\n \"\"\"Fit MultiTaskElasticNet model with coordinate descent.\n \n@@ -2590,6 +2591,71 @@ class MultiTaskElasticNet(Lasso):\n To avoid memory re-allocation it is advised to allocate the\n initial data in memory directly using that format.\n \"\"\"\n+ # Need to validate separately here.\n+ # We can't pass multi_output=True because that would allow y to be csr.\n+ check_X_params = dict(\n+ dtype=[np.float64, np.float32],\n+ order=\"F\",\n+ force_writeable=True,\n+ copy=self.copy_X and self.fit_intercept,\n+ )\n+ check_y_params = dict(ensure_2d=False, order=\"F\")\n+ X, y = validate_data(\n+ self, X, y, validate_separately=(check_X_params, check_y_params)\n+ )\n+ check_consistent_length(X, y)\n+ y = y.astype(X.dtype)\n+\n+ if hasattr(self, \"l1_ratio\"):\n+ model_str = \"ElasticNet\"\n+ else:\n+ model_str = \"Lasso\"\n+ if y.ndim == 1:\n+ raise ValueError(\"For mono-task outputs, use %s\" % model_str)\n+\n+ n_samples, n_features = X.shape\n+ n_targets = y.shape[1]\n+\n+ X, y, X_offset, y_offset, X_scale = _preprocess_data(\n+ X, y, fit_intercept=self.fit_intercept, copy=False\n+ )\n+\n+ if not self.warm_start or not hasattr(self, \"coef_\"):\n+ self.coef_ = np.zeros(\n+ (n_targets, n_features), dtype=X.dtype.type, order=\"F\"\n+ )\n+\n+ l1_reg = self.alpha * self.l1_ratio * n_samples\n+ l2_reg = self.alpha * (1.0 - self.l1_ratio) * n_samples\n+\n+ self.coef_ = np.asfortranarray(self.coef_) # coef contiguous in memory\n+\n+ random = self.selection == \"random\"\n+\n+ (\n+ self.coef_,\n+ self.dual_gap_,\n+ self.eps_,\n+ self.n_iter_,\n+ ) = cd_fast.enet_coordinate_descent_multi_task(\n+ self.coef_,\n+ l1_reg,\n+ l2_reg,\n+ X,\n+ y,\n+ self.max_iter,\n+ self.tol,\n+ check_random_state(self.random_state),\n+ random,\n+ )\n+\n+ # account for different objective scaling here and in cd_fast\n+ self.dual_gap_ /= n_samples\n+\n+ self._set_intercept(X_offset, y_offset, X_scale)\n+\n+ # return self for chaining fit and predict calls\n+ return self\n \n def __sklearn_tags__(self):\n tags = super().__sklearn_tags__()\n", "test": null }
null
{ "code": "diff --git a/sklearn/linear_model/_coordinate_descent.py b/sklearn/linear_model/_coordinate_descent.py\nindex 61aaf49a1..7369ba5fc 100644\n--- a/sklearn/linear_model/_coordinate_descent.py\n+++ b/sklearn/linear_model/_coordinate_descent.py\n@@ -2566,7 +2566,6 @@ class MultiTaskElasticNet(Lasso):\n self.random_state = random_state\n self.selection = selection\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y):\n \"\"\"Fit MultiTaskElasticNet model with coordinate descent.\n \n@@ -2591,71 +2590,6 @@ class MultiTaskElasticNet(Lasso):\n To avoid memory re-allocation it is advised to allocate the\n initial data in memory directly using that format.\n \"\"\"\n- # Need to validate separately here.\n- # We can't pass multi_output=True because that would allow y to be csr.\n- check_X_params = dict(\n- dtype=[np.float64, np.float32],\n- order=\"F\",\n- force_writeable=True,\n- copy=self.copy_X and self.fit_intercept,\n- )\n- check_y_params = dict(ensure_2d=False, order=\"F\")\n- X, y = validate_data(\n- self, X, y, validate_separately=(check_X_params, check_y_params)\n- )\n- check_consistent_length(X, y)\n- y = y.astype(X.dtype)\n-\n- if hasattr(self, \"l1_ratio\"):\n- model_str = \"ElasticNet\"\n- else:\n- model_str = \"Lasso\"\n- if y.ndim == 1:\n- raise ValueError(\"For mono-task outputs, use %s\" % model_str)\n-\n- n_samples, n_features = X.shape\n- n_targets = y.shape[1]\n-\n- X, y, X_offset, y_offset, X_scale = _preprocess_data(\n- X, y, fit_intercept=self.fit_intercept, copy=False\n- )\n-\n- if not self.warm_start or not hasattr(self, \"coef_\"):\n- self.coef_ = np.zeros(\n- (n_targets, n_features), dtype=X.dtype.type, order=\"F\"\n- )\n-\n- l1_reg = self.alpha * self.l1_ratio * n_samples\n- l2_reg = self.alpha * (1.0 - self.l1_ratio) * n_samples\n-\n- self.coef_ = np.asfortranarray(self.coef_) # coef contiguous in memory\n-\n- random = self.selection == \"random\"\n-\n- (\n- self.coef_,\n- self.dual_gap_,\n- self.eps_,\n- self.n_iter_,\n- ) = cd_fast.enet_coordinate_descent_multi_task(\n- self.coef_,\n- l1_reg,\n- l2_reg,\n- X,\n- y,\n- self.max_iter,\n- self.tol,\n- check_random_state(self.random_state),\n- random,\n- )\n-\n- # account for different objective scaling here and in cd_fast\n- self.dual_gap_ /= n_samples\n-\n- self._set_intercept(X_offset, y_offset, X_scale)\n-\n- # return self for chaining fit and predict calls\n- return self\n \n def __sklearn_tags__(self):\n tags = super().__sklearn_tags__()\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/linear_model/_coordinate_descent.py.\nHere is the description for the function:\n def fit(self, X, y):\n \"\"\"Fit MultiTaskElasticNet model with coordinate descent.\n\n Parameters\n ----------\n X : ndarray of shape (n_samples, n_features)\n Data.\n y : ndarray of shape (n_samples, n_targets)\n Target. Will be cast to X's dtype if necessary.\n\n Returns\n -------\n self : object\n Fitted estimator.\n\n Notes\n -----\n Coordinate descent is an algorithm that considers each column of\n data at a time hence it will automatically convert the X input\n as a Fortran-contiguous numpy array if necessary.\n\n To avoid memory re-allocation it is advised to allocate the\n initial data in memory directly using that format.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-5-MultiTaskLasso-brute-data11]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features0-10-MultiTaskLasso-brute-data11]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-5-MultiTaskLasso-brute-data11]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[average-features1-10-MultiTaskLasso-brute-data11]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-5-MultiTaskLasso-brute-data11]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features0-10-MultiTaskLasso-brute-data11]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-5-MultiTaskLasso-brute-data11]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[individual-features1-10-MultiTaskLasso-brute-data11]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-5-MultiTaskLasso-brute-data11]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features0-10-MultiTaskLasso-brute-data11]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-5-MultiTaskLasso-brute-data11]", "sklearn/inspection/tests/test_partial_dependence.py::test_output_shape[both-features1-10-MultiTaskLasso-brute-data11]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_path", "sklearn/linear_model/tests/test_coordinate_descent.py::test_uniform_targets", "sklearn/linear_model/tests/test_coordinate_descent.py::test_multi_task_lasso_and_enet", "sklearn/linear_model/tests/test_coordinate_descent.py::test_multi_task_lasso_readonly_data", "sklearn/linear_model/tests/test_coordinate_descent.py::test_multitask_enet_and_lasso_cv", "sklearn/linear_model/tests/test_coordinate_descent.py::test_1d_multioutput_enet_and_multitask_enet_cv", "sklearn/linear_model/tests/test_coordinate_descent.py::test_1d_multioutput_lasso_and_multitask_lasso_cv", "sklearn/linear_model/tests/test_coordinate_descent.py::test_random_descent[csr_matrix]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_random_descent[csr_array]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_float_precision", "sklearn/linear_model/tests/test_coordinate_descent.py::test_enet_l1_ratio", "sklearn/linear_model/tests/test_coordinate_descent.py::test_warm_start_multitask_lasso", "sklearn/linear_model/tests/test_coordinate_descent.py::test_convergence_warnings", "sklearn/linear_model/tests/test_coordinate_descent.py::test_multi_task_lasso_cv_dtype", "sklearn/linear_model/tests/test_coordinate_descent.py::test_multitask_cv_estimators_with_sample_weight[MultiTaskElasticNetCV]", "sklearn/linear_model/tests/test_coordinate_descent.py::test_multitask_cv_estimators_with_sample_weight[MultiTaskLassoCV]", "sklearn/utils/tests/test_estimator_checks.py::test_check_estimator", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-False-MultiTaskElasticNet]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-False-MultiTaskElasticNetCV]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-False-MultiTaskLasso]", "sklearn/linear_model/tests/test_common.py::test_balance_property[42-False-MultiTaskLassoCV]", "sklearn/linear_model/_coordinate_descent.py::sklearn.linear_model._coordinate_descent.MultiTaskElasticNet", "sklearn/linear_model/_coordinate_descent.py::sklearn.linear_model._coordinate_descent.MultiTaskElasticNetCV", "sklearn/linear_model/_coordinate_descent.py::sklearn.linear_model._coordinate_descent.MultiTaskLasso", "sklearn/linear_model/_coordinate_descent.py::sklearn.linear_model._coordinate_descent.MultiTaskLassoCV", "sklearn/tests/test_metaestimators_metadata_routing.py::test_metadata_is_routed_correctly_to_splitter[MultiTaskElasticNetCV]", "sklearn/tests/test_metaestimators_metadata_routing.py::test_metadata_is_routed_correctly_to_splitter[MultiTaskLassoCV]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNet(max_iter=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNet(max_iter=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNet(max_iter=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNet(max_iter=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNet(max_iter=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNet(max_iter=5)-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNet(max_iter=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNet(max_iter=5)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNet(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNet(max_iter=5)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNet(max_iter=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNet(max_iter=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNet(max_iter=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNet(max_iter=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNet(max_iter=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNet(max_iter=5)-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNet(max_iter=5)-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNet(max_iter=5)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNet(max_iter=5)-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNet(max_iter=5)-check_regressor_multioutput]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNet(max_iter=5)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNet(max_iter=5)-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNet(max_iter=5)-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNet(max_iter=5)-check_non_transformer_estimators_n_iter]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNet(max_iter=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNet(max_iter=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNet(max_iter=5)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNet(max_iter=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNet(max_iter=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNet(max_iter=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNet(max_iter=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNet(max_iter=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNet(max_iter=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNet(max_iter=5)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNet(max_iter=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNet(max_iter=5)-check_requires_y_none]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNetCV(cv=3,max_iter=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNetCV(cv=3,max_iter=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNetCV(cv=3,max_iter=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNetCV(cv=3,max_iter=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNetCV(cv=3,max_iter=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNetCV(cv=3,max_iter=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNetCV(cv=3,max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNetCV(cv=3,max_iter=5)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNetCV(cv=3,max_iter=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNetCV(cv=3,max_iter=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNetCV(cv=3,max_iter=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNetCV(cv=3,max_iter=5)-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNetCV(cv=3,max_iter=5)-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNetCV(cv=3,max_iter=5)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNetCV(cv=3,max_iter=5)-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNetCV(cv=3,max_iter=5)-check_regressor_multioutput]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNetCV(cv=3,max_iter=5)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNetCV(cv=3,max_iter=5)-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNetCV(cv=3,max_iter=5)-check_non_transformer_estimators_n_iter]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNetCV(cv=3,max_iter=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNetCV(cv=3,max_iter=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNetCV(cv=3,max_iter=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNetCV(cv=3,max_iter=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNetCV(cv=3,max_iter=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNetCV(cv=3,max_iter=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNetCV(cv=3,max_iter=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNetCV(cv=3,max_iter=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[MultiTaskElasticNetCV(cv=3,max_iter=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLasso(max_iter=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLasso(max_iter=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLasso(max_iter=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLasso(max_iter=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLasso(max_iter=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLasso(max_iter=5)-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLasso(max_iter=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLasso(max_iter=5)-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLasso(max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLasso(max_iter=5)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLasso(max_iter=5)-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLasso(max_iter=5)-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLasso(max_iter=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLasso(max_iter=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLasso(max_iter=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLasso(max_iter=5)-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLasso(max_iter=5)-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLasso(max_iter=5)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLasso(max_iter=5)-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLasso(max_iter=5)-check_regressor_multioutput]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLasso(max_iter=5)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLasso(max_iter=5)-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLasso(max_iter=5)-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLasso(max_iter=5)-check_non_transformer_estimators_n_iter]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLasso(max_iter=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLasso(max_iter=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLasso(max_iter=5)-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLasso(max_iter=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLasso(max_iter=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLasso(max_iter=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLasso(max_iter=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLasso(max_iter=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLasso(max_iter=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLasso(max_iter=5)-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLasso(max_iter=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLasso(max_iter=5)-check_requires_y_none]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLassoCV(cv=3,max_iter=5)-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLassoCV(cv=3,max_iter=5)-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLassoCV(cv=3,max_iter=5)-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLassoCV(cv=3,max_iter=5)-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLassoCV(cv=3,max_iter=5)-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLassoCV(cv=3,max_iter=5)-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLassoCV(cv=3,max_iter=5)-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLassoCV(cv=3,max_iter=5)-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLassoCV(cv=3,max_iter=5)-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLassoCV(cv=3,max_iter=5)-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLassoCV(cv=3,max_iter=5)-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLassoCV(cv=3,max_iter=5)-check_regressors_train]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLassoCV(cv=3,max_iter=5)-check_regressors_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLassoCV(cv=3,max_iter=5)-check_regressors_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLassoCV(cv=3,max_iter=5)-check_regressor_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLassoCV(cv=3,max_iter=5)-check_regressor_multioutput]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLassoCV(cv=3,max_iter=5)-check_regressors_no_decision_function]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLassoCV(cv=3,max_iter=5)-check_regressors_int]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLassoCV(cv=3,max_iter=5)-check_non_transformer_estimators_n_iter]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLassoCV(cv=3,max_iter=5)-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLassoCV(cv=3,max_iter=5)-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLassoCV(cv=3,max_iter=5)-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLassoCV(cv=3,max_iter=5)-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLassoCV(cv=3,max_iter=5)-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLassoCV(cv=3,max_iter=5)-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLassoCV(cv=3,max_iter=5)-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLassoCV(cv=3,max_iter=5)-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[MultiTaskLassoCV(cv=3,max_iter=5)-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[MultiTaskElasticNet(max_iter=5)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[MultiTaskElasticNetCV(cv=3,max_iter=5)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[MultiTaskLasso(max_iter=5)]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[MultiTaskLassoCV(cv=3,max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[MultiTaskElasticNet(max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[MultiTaskElasticNetCV(cv=3,max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[MultiTaskLasso(max_iter=5)]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[MultiTaskLassoCV(cv=3,max_iter=5)]", "sklearn/tests/test_common.py::test_check_param_validation[MultiTaskElasticNet(max_iter=5)]", "sklearn/tests/test_common.py::test_check_param_validation[MultiTaskLasso(max_iter=5)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[MultiTaskElasticNet(max_iter=5)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[MultiTaskElasticNetCV(cv=3,max_iter=5)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[MultiTaskLasso(max_iter=5)]", "sklearn/tests/test_common.py::test_check_inplace_ensure_writeable[MultiTaskLassoCV(cv=3,max_iter=5)]" ], "PASS_TO_PASS": null }
scikit-learn__scikit-learn-121
1.0
{ "code": "diff --git b/sklearn/neighbors/_nearest_centroid.py a/sklearn/neighbors/_nearest_centroid.py\nindex b16322b9c..f92ae6897 100644\n--- b/sklearn/neighbors/_nearest_centroid.py\n+++ a/sklearn/neighbors/_nearest_centroid.py\n@@ -107,6 +107,7 @@ class NearestCentroid(ClassifierMixin, BaseEstimator):\n self.metric = metric\n self.shrink_threshold = shrink_threshold\n \n+ @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y):\n \"\"\"\n Fit the NearestCentroid model according to the given training data.\n@@ -125,6 +126,73 @@ class NearestCentroid(ClassifierMixin, BaseEstimator):\n self : object\n Fitted estimator.\n \"\"\"\n+ # If X is sparse and the metric is \"manhattan\", store it in a csc\n+ # format is easier to calculate the median.\n+ if self.metric == \"manhattan\":\n+ X, y = validate_data(self, X, y, accept_sparse=[\"csc\"])\n+ else:\n+ X, y = validate_data(self, X, y, accept_sparse=[\"csr\", \"csc\"])\n+ is_X_sparse = sp.issparse(X)\n+ if is_X_sparse and self.shrink_threshold:\n+ raise ValueError(\"threshold shrinking not supported for sparse input\")\n+ check_classification_targets(y)\n+\n+ n_samples, n_features = X.shape\n+ le = LabelEncoder()\n+ y_ind = le.fit_transform(y)\n+ self.classes_ = classes = le.classes_\n+ n_classes = classes.size\n+ if n_classes < 2:\n+ raise ValueError(\n+ \"The number of classes has to be greater than one; got %d class\"\n+ % (n_classes)\n+ )\n+\n+ # Mask mapping each class to its members.\n+ self.centroids_ = np.empty((n_classes, n_features), dtype=np.float64)\n+ # Number of clusters in each class.\n+ nk = np.zeros(n_classes)\n+\n+ for cur_class in range(n_classes):\n+ center_mask = y_ind == cur_class\n+ nk[cur_class] = np.sum(center_mask)\n+ if is_X_sparse:\n+ center_mask = np.where(center_mask)[0]\n+\n+ if self.metric == \"manhattan\":\n+ # NumPy does not calculate median of sparse matrices.\n+ if not is_X_sparse:\n+ self.centroids_[cur_class] = np.median(X[center_mask], axis=0)\n+ else:\n+ self.centroids_[cur_class] = csc_median_axis_0(X[center_mask])\n+ else: # metric == \"euclidean\"\n+ self.centroids_[cur_class] = X[center_mask].mean(axis=0)\n+\n+ if self.shrink_threshold:\n+ if np.all(np.ptp(X, axis=0) == 0):\n+ raise ValueError(\"All features have zero variance. Division by zero.\")\n+ dataset_centroid_ = np.mean(X, axis=0)\n+\n+ # m parameter for determining deviation\n+ m = np.sqrt((1.0 / nk) - (1.0 / n_samples))\n+ # Calculate deviation using the standard deviation of centroids.\n+ variance = (X - self.centroids_[y_ind]) ** 2\n+ variance = variance.sum(axis=0)\n+ s = np.sqrt(variance / (n_samples - n_classes))\n+ s += np.median(s) # To deter outliers from affecting the results.\n+ mm = m.reshape(len(m), 1) # Reshape to allow broadcasting.\n+ ms = mm * s\n+ deviation = (self.centroids_ - dataset_centroid_) / ms\n+ # Soft thresholding: if the deviation crosses 0 during shrinking,\n+ # it becomes zero.\n+ signs = np.sign(deviation)\n+ deviation = np.abs(deviation) - self.shrink_threshold\n+ np.clip(deviation, 0, None, out=deviation)\n+ deviation *= signs\n+ # Now adjust the centroids using the deviation\n+ msd = ms * deviation\n+ self.centroids_ = dataset_centroid_[np.newaxis, :] + msd\n+ return self\n \n def predict(self, X):\n \"\"\"Perform classification on an array of test vectors `X`.\n", "test": null }
null
{ "code": "diff --git a/sklearn/neighbors/_nearest_centroid.py b/sklearn/neighbors/_nearest_centroid.py\nindex f92ae6897..b16322b9c 100644\n--- a/sklearn/neighbors/_nearest_centroid.py\n+++ b/sklearn/neighbors/_nearest_centroid.py\n@@ -107,7 +107,6 @@ class NearestCentroid(ClassifierMixin, BaseEstimator):\n self.metric = metric\n self.shrink_threshold = shrink_threshold\n \n- @_fit_context(prefer_skip_nested_validation=True)\n def fit(self, X, y):\n \"\"\"\n Fit the NearestCentroid model according to the given training data.\n@@ -126,73 +125,6 @@ class NearestCentroid(ClassifierMixin, BaseEstimator):\n self : object\n Fitted estimator.\n \"\"\"\n- # If X is sparse and the metric is \"manhattan\", store it in a csc\n- # format is easier to calculate the median.\n- if self.metric == \"manhattan\":\n- X, y = validate_data(self, X, y, accept_sparse=[\"csc\"])\n- else:\n- X, y = validate_data(self, X, y, accept_sparse=[\"csr\", \"csc\"])\n- is_X_sparse = sp.issparse(X)\n- if is_X_sparse and self.shrink_threshold:\n- raise ValueError(\"threshold shrinking not supported for sparse input\")\n- check_classification_targets(y)\n-\n- n_samples, n_features = X.shape\n- le = LabelEncoder()\n- y_ind = le.fit_transform(y)\n- self.classes_ = classes = le.classes_\n- n_classes = classes.size\n- if n_classes < 2:\n- raise ValueError(\n- \"The number of classes has to be greater than one; got %d class\"\n- % (n_classes)\n- )\n-\n- # Mask mapping each class to its members.\n- self.centroids_ = np.empty((n_classes, n_features), dtype=np.float64)\n- # Number of clusters in each class.\n- nk = np.zeros(n_classes)\n-\n- for cur_class in range(n_classes):\n- center_mask = y_ind == cur_class\n- nk[cur_class] = np.sum(center_mask)\n- if is_X_sparse:\n- center_mask = np.where(center_mask)[0]\n-\n- if self.metric == \"manhattan\":\n- # NumPy does not calculate median of sparse matrices.\n- if not is_X_sparse:\n- self.centroids_[cur_class] = np.median(X[center_mask], axis=0)\n- else:\n- self.centroids_[cur_class] = csc_median_axis_0(X[center_mask])\n- else: # metric == \"euclidean\"\n- self.centroids_[cur_class] = X[center_mask].mean(axis=0)\n-\n- if self.shrink_threshold:\n- if np.all(np.ptp(X, axis=0) == 0):\n- raise ValueError(\"All features have zero variance. Division by zero.\")\n- dataset_centroid_ = np.mean(X, axis=0)\n-\n- # m parameter for determining deviation\n- m = np.sqrt((1.0 / nk) - (1.0 / n_samples))\n- # Calculate deviation using the standard deviation of centroids.\n- variance = (X - self.centroids_[y_ind]) ** 2\n- variance = variance.sum(axis=0)\n- s = np.sqrt(variance / (n_samples - n_classes))\n- s += np.median(s) # To deter outliers from affecting the results.\n- mm = m.reshape(len(m), 1) # Reshape to allow broadcasting.\n- ms = mm * s\n- deviation = (self.centroids_ - dataset_centroid_) / ms\n- # Soft thresholding: if the deviation crosses 0 during shrinking,\n- # it becomes zero.\n- signs = np.sign(deviation)\n- deviation = np.abs(deviation) - self.shrink_threshold\n- np.clip(deviation, 0, None, out=deviation)\n- deviation *= signs\n- # Now adjust the centroids using the deviation\n- msd = ms * deviation\n- self.centroids_ = dataset_centroid_[np.newaxis, :] + msd\n- return self\n \n def predict(self, X):\n \"\"\"Perform classification on an array of test vectors `X`.\n", "test": null }
null
scikit-learn/scikit-learn
c71340fd74280408b84be7ca008e1205e10c7830
2024-09-17T18:25:43+02:00
null
null
{ "code": "I want to add a new function in file in sklearn/neighbors/_nearest_centroid.py.\nHere is the description for the function:\n def fit(self, X, y):\n \"\"\"\n Fit the NearestCentroid model according to the given training data.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n Training vector, where `n_samples` is the number of samples and\n `n_features` is the number of features.\n Note that centroid shrinking cannot be used with sparse matrices.\n y : array-like of shape (n_samples,)\n Target values.\n\n Returns\n -------\n self : object\n Fitted estimator.\n \"\"\"\n", "test": null }
c71340fd74280408b84be7ca008e1205e10c7830
{ "FAIL_TO_PASS": [ "sklearn/neighbors/tests/test_nearest_centroid.py::test_classification_toy[csr_matrix]", "sklearn/neighbors/tests/test_nearest_centroid.py::test_classification_toy[csr_array]", "sklearn/neighbors/tests/test_nearest_centroid.py::test_iris", "sklearn/neighbors/tests/test_nearest_centroid.py::test_iris_shrinkage", "sklearn/neighbors/tests/test_nearest_centroid.py::test_pickle", "sklearn/neighbors/tests/test_nearest_centroid.py::test_shrinkage_correct", "sklearn/neighbors/tests/test_nearest_centroid.py::test_shrinkage_threshold_decoded_y", "sklearn/neighbors/tests/test_nearest_centroid.py::test_predict_translated_data", "sklearn/neighbors/tests/test_nearest_centroid.py::test_manhattan_metric[csr_matrix]", "sklearn/neighbors/tests/test_nearest_centroid.py::test_manhattan_metric[csr_array]", "sklearn/neighbors/tests/test_nearest_centroid.py::test_features_zero_var", "sklearn/neighbors/_nearest_centroid.py::sklearn.neighbors._nearest_centroid.NearestCentroid", "sklearn/tests/test_common.py::test_estimators[NearestCentroid()-check_fit_score_takes_y]", "sklearn/tests/test_common.py::test_estimators[NearestCentroid()-check_estimators_overwrite_params]", "sklearn/tests/test_common.py::test_estimators[NearestCentroid()-check_estimators_dtypes]", "sklearn/tests/test_common.py::test_estimators[NearestCentroid()-check_estimators_fit_returns_self]", "sklearn/tests/test_common.py::test_estimators[NearestCentroid()-check_estimators_fit_returns_self(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[NearestCentroid()-check_complex_data]", "sklearn/tests/test_common.py::test_estimators[NearestCentroid()-check_dtype_object]", "sklearn/tests/test_common.py::test_estimators[NearestCentroid()-check_estimators_empty_data_messages]", "sklearn/tests/test_common.py::test_estimators[NearestCentroid()-check_pipeline_consistency]", "sklearn/tests/test_common.py::test_estimators[NearestCentroid()-check_estimators_nan_inf]", "sklearn/tests/test_common.py::test_estimators[NearestCentroid()-check_estimator_sparse_array]", "sklearn/tests/test_common.py::test_estimators[NearestCentroid()-check_estimator_sparse_matrix]", "sklearn/tests/test_common.py::test_estimators[NearestCentroid()-check_estimators_pickle]", "sklearn/tests/test_common.py::test_estimators[NearestCentroid()-check_estimators_pickle(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[NearestCentroid()-check_f_contiguous_array_estimator]", "sklearn/tests/test_common.py::test_estimators[NearestCentroid()-check_classifier_data_not_an_array]", "sklearn/tests/test_common.py::test_estimators[NearestCentroid()-check_classifiers_one_label]", "sklearn/tests/test_common.py::test_estimators[NearestCentroid()-check_classifiers_classes]", "sklearn/tests/test_common.py::test_estimators[NearestCentroid()-check_classifiers_train]", "sklearn/tests/test_common.py::test_estimators[NearestCentroid()-check_classifiers_train(readonly_memmap=True)]", "sklearn/tests/test_common.py::test_estimators[NearestCentroid()-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]", "sklearn/tests/test_common.py::test_estimators[NearestCentroid()-check_classifiers_regression_target]", "sklearn/tests/test_common.py::test_estimators[NearestCentroid()-check_supervised_y_no_nan]", "sklearn/tests/test_common.py::test_estimators[NearestCentroid()-check_supervised_y_2d]", "sklearn/tests/test_common.py::test_estimators[NearestCentroid()-check_methods_sample_order_invariance]", "sklearn/tests/test_common.py::test_estimators[NearestCentroid()-check_methods_subset_invariance]", "sklearn/tests/test_common.py::test_estimators[NearestCentroid()-check_fit2d_1sample]", "sklearn/tests/test_common.py::test_estimators[NearestCentroid()-check_fit2d_1feature]", "sklearn/tests/test_common.py::test_estimators[NearestCentroid()-check_dict_unchanged]", "sklearn/tests/test_common.py::test_estimators[NearestCentroid()-check_dont_overwrite_parameters]", "sklearn/tests/test_common.py::test_estimators[NearestCentroid()-check_fit_idempotent]", "sklearn/tests/test_common.py::test_estimators[NearestCentroid()-check_fit_check_is_fitted]", "sklearn/tests/test_common.py::test_estimators[NearestCentroid()-check_n_features_in]", "sklearn/tests/test_common.py::test_estimators[NearestCentroid()-check_fit1d]", "sklearn/tests/test_common.py::test_estimators[NearestCentroid()-check_fit2d_predict1d]", "sklearn/tests/test_common.py::test_estimators[NearestCentroid()-check_requires_y_none]", "sklearn/tests/test_common.py::test_check_n_features_in_after_fitting[NearestCentroid()]", "sklearn/tests/test_common.py::test_pandas_column_name_consistency[NearestCentroid()]", "sklearn/tests/test_common.py::test_check_param_validation[NearestCentroid()]" ], "PASS_TO_PASS": null }