image
imagewidth (px) 32
32
| label
class label 10
classes | corruption_name
stringclasses 19
values | corruption_level
int32 1
5
|
|---|---|---|---|
3cat
|
zoom_blur
| 1
|
|
8ship
|
zoom_blur
| 1
|
|
8ship
|
zoom_blur
| 1
|
|
0airplane
|
zoom_blur
| 1
|
|
6frog
|
zoom_blur
| 1
|
|
6frog
|
zoom_blur
| 1
|
|
1automobile
|
zoom_blur
| 1
|
|
6frog
|
zoom_blur
| 1
|
|
3cat
|
zoom_blur
| 1
|
|
1automobile
|
zoom_blur
| 1
|
|
0airplane
|
zoom_blur
| 1
|
|
9truck
|
zoom_blur
| 1
|
|
5dog
|
zoom_blur
| 1
|
|
7horse
|
zoom_blur
| 1
|
|
9truck
|
zoom_blur
| 1
|
|
8ship
|
zoom_blur
| 1
|
|
5dog
|
zoom_blur
| 1
|
|
7horse
|
zoom_blur
| 1
|
|
8ship
|
zoom_blur
| 1
|
|
6frog
|
zoom_blur
| 1
|
|
7horse
|
zoom_blur
| 1
|
|
0airplane
|
zoom_blur
| 1
|
|
4deer
|
zoom_blur
| 1
|
|
9truck
|
zoom_blur
| 1
|
|
5dog
|
zoom_blur
| 1
|
|
2bird
|
zoom_blur
| 1
|
|
4deer
|
zoom_blur
| 1
|
|
0airplane
|
zoom_blur
| 1
|
|
9truck
|
zoom_blur
| 1
|
|
6frog
|
zoom_blur
| 1
|
|
6frog
|
zoom_blur
| 1
|
|
5dog
|
zoom_blur
| 1
|
|
4deer
|
zoom_blur
| 1
|
|
5dog
|
zoom_blur
| 1
|
|
9truck
|
zoom_blur
| 1
|
|
2bird
|
zoom_blur
| 1
|
|
4deer
|
zoom_blur
| 1
|
|
1automobile
|
zoom_blur
| 1
|
|
9truck
|
zoom_blur
| 1
|
|
5dog
|
zoom_blur
| 1
|
|
4deer
|
zoom_blur
| 1
|
|
6frog
|
zoom_blur
| 1
|
|
5dog
|
zoom_blur
| 1
|
|
6frog
|
zoom_blur
| 1
|
|
0airplane
|
zoom_blur
| 1
|
|
9truck
|
zoom_blur
| 1
|
|
3cat
|
zoom_blur
| 1
|
|
9truck
|
zoom_blur
| 1
|
|
7horse
|
zoom_blur
| 1
|
|
6frog
|
zoom_blur
| 1
|
|
9truck
|
zoom_blur
| 1
|
|
8ship
|
zoom_blur
| 1
|
|
0airplane
|
zoom_blur
| 1
|
|
3cat
|
zoom_blur
| 1
|
|
8ship
|
zoom_blur
| 1
|
|
8ship
|
zoom_blur
| 1
|
|
7horse
|
zoom_blur
| 1
|
|
7horse
|
zoom_blur
| 1
|
|
4deer
|
zoom_blur
| 1
|
|
6frog
|
zoom_blur
| 1
|
|
7horse
|
zoom_blur
| 1
|
|
3cat
|
zoom_blur
| 1
|
|
6frog
|
zoom_blur
| 1
|
|
3cat
|
zoom_blur
| 1
|
|
6frog
|
zoom_blur
| 1
|
|
2bird
|
zoom_blur
| 1
|
|
1automobile
|
zoom_blur
| 1
|
|
2bird
|
zoom_blur
| 1
|
|
3cat
|
zoom_blur
| 1
|
|
7horse
|
zoom_blur
| 1
|
|
2bird
|
zoom_blur
| 1
|
|
6frog
|
zoom_blur
| 1
|
|
8ship
|
zoom_blur
| 1
|
|
8ship
|
zoom_blur
| 1
|
|
0airplane
|
zoom_blur
| 1
|
|
2bird
|
zoom_blur
| 1
|
|
9truck
|
zoom_blur
| 1
|
|
3cat
|
zoom_blur
| 1
|
|
3cat
|
zoom_blur
| 1
|
|
8ship
|
zoom_blur
| 1
|
|
8ship
|
zoom_blur
| 1
|
|
1automobile
|
zoom_blur
| 1
|
|
1automobile
|
zoom_blur
| 1
|
|
7horse
|
zoom_blur
| 1
|
|
2bird
|
zoom_blur
| 1
|
|
5dog
|
zoom_blur
| 1
|
|
2bird
|
zoom_blur
| 1
|
|
7horse
|
zoom_blur
| 1
|
|
8ship
|
zoom_blur
| 1
|
|
9truck
|
zoom_blur
| 1
|
|
0airplane
|
zoom_blur
| 1
|
|
3cat
|
zoom_blur
| 1
|
|
8ship
|
zoom_blur
| 1
|
|
6frog
|
zoom_blur
| 1
|
|
4deer
|
zoom_blur
| 1
|
|
6frog
|
zoom_blur
| 1
|
|
6frog
|
zoom_blur
| 1
|
|
0airplane
|
zoom_blur
| 1
|
|
0airplane
|
zoom_blur
| 1
|
|
7horse
|
zoom_blur
| 1
|
Dataset Card for CIFAR10-C
This dataset is simply an update of the original dataset into the parquet format which should work with the current (circa 2025) huggingface dataset library
Dataset Details
Dataset Description
The CIFAR-10-C dataset is an extension of CIFAR-10 designed to evaluate model robustness to common corruptions. It consists of 950,000 images derived from the original CIFAR-10 test set (10,000 images) by applying 19 different corruption types at 5 severity levels. The corruptions include noise, blur, weather effects, and digital distortions. This dataset is widely used for benchmarking robustness in image classification tasks.
Dataset Sources
- Homepage: https://github.com/hendrycks/robustness
- Paper: Hendrycks, D., & Dietterich, T. (2019). Benchmarking neural network robustness to common corruptions and perturbations. arXiv preprint arXiv:1903.12261.
Dataset Structure
Each sample in the dataset contains:
image: A 32×32 RGB image in PNG format
label: An integer between 0 and 9, representing the class
corruption_name: The name of the applied corruption
corruption_level: An integer between 1 and 5 indicating severity
Total images: 950,000
Classes: 10 (airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck)
Corruptions: 19 types (e.g., Gaussian noise, motion blur, contrast, fog, frost, elastic transform, pixelate, JPEG compression, etc.)
Severity Levels: 5 (ranging from least to most severe)
Splits:
- Train: 950,000 images
Image specs: PNG format, 32×32 pixels, RGB
Example Usage
Below is a quick example of how to load this dataset via the Hugging Face Datasets library.
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("robro/cifar10-c-parquet", split="train", trust_remote_code=False)
classes = ["airplane","automobile","bird","cat","deer","dog","frog","horse","ship","truck",]
# Access a sample from the dataset
example = dataset[0]
image = example["image"]
label = example["label"]
image.show() # Display the image
print(f"Label: {classes[label]}")
Citation
BibTeX:
@article{hendrycks2019benchmarking,
title={Benchmarking neural network robustness to common corruptions and perturbations},
author={Hendrycks, Dan and Dietterich, Thomas},
journal={arXiv preprint arXiv:1903.12261},
year={2019}
}
- Downloads last month
- 48